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1 Introduction

Fluid dynamics is an effective description of near-equilibrium systems. Properties of a

fluid system are always slowly varying compared to some intrinsic length scale, for exam-

ple a mean free path. This length scale is determined by the details of the underlying

microscopic theory. The fundamental variables of fluid dynamics are local velocities uµ(x),

temperature T (x), and all the other conserved charges or their chemical potentials µa(x).

The conservation equations for the stress tensor Tµν and the other conserved currents Jaµ

govern the time evolution of fluid dynamics.

The stress tensor and the conserved currents are related to the fluid variables

{uµ, T, µa} via constitutive relations. Since fluid systems are always slowly varying it

is appropriate to organize the constitutive relations in terms of a derivative expansion of

the fluid variables. At every order in the derivative expansion, the independent terms of

the constitutive relation are constructed out of the independent derivatives of the fluid

variables. The independent terms in the constitutive relation are multiplied by coefficients

which are functions of temperature and chemical potentials. These coefficients are called

transport coefficients. In this paper we will study the transport coefficients that occur in

the parity odd sector, at second order in the derivative expansion. These are terms con-

structed out of various derivatives in the fluid variables which are odd under parity. We

will consider relativistic fluid systems with one additional conserved current.

It is usually difficult to compute transport coefficients from the microscopic theory

and they are generically determined from experiments. However parity odd transport
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coefficients which occur at the first order in the derivative expansion have been related

to quantum anomalies of the microscopic theory [1–8].1 Our goal is to see if a similar

phenomenon occurs at the second order in the derivative expansion of the constitutive

relations. One motivation to consider second order fluid dynamics is that first order fluid

dynamics is known to have problems with causality and numerical stability. Transport

coefficients which occur at second order provide important constraints for spectral densi-

ties through sum rules [10]. Parity odd transport coefficients at second order affect the

dispersion relation of chiral modes [11].2 This phenomenon has important experimental

consequences like the spatial separation of particles of different chirality. In the relativistic

context this phenomenon was first observed holographically [12] and then understood due

to the presence of a parity odd transport coefficient at second order by [13].

Parity odd transport coefficients at second order has been studied earlier in [13] for

conformal fluids. They used the principle that parity odd terms which are even under time-

reversal invariance should not contribute to local entropy production. With this principle

they could constrain these transport coefficients and determine some of them. We will use

the method developed in [14, 15] to determine and constrain the parity odd transport coef-

ficients. We consider non-conformal fluids in 3+1 dimensions which admits one anomalous

charge current. This method is based on the requirement that the fluid equations have to be

consistent with the existence of an equilibrium partition function. Therefore the approach

first relies on the physical requirement of the existence of equilibrium. More precisely:

• In a time independent background, that is a space-time metric with a time like

Killing vector and background gauge fields independent of the time direction, any

fluid equation will admit a time independent solution.

The second assumption is:

• The stress tensor and the charge current evaluated on this time independent solu-

tion can be obtained from the partition function by varying it with respect to the

background metric and the gauge field.

This method is implemented as follows.

1. We first classify all the parity odd transport coefficients till the second order in the

derivative expansion of the stress tensor and the charge current using symmetries.

2. We then evaluate the stress tensor and the charge current on the equilibrium fluid

configuration to the second order in the derivative expansion.

3. The equilibrium partition function is written to the second order in derivative expan-

sion taking all the parity odd terms into consideration. This is also done based on

symmetries.

1See [9] for a recent review with a complete list of references.
2We thank Yashodhan Hatwalne for bringing this reference to our attention.
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4. This stress tensor and the charge current obtained from the equilibrium partition

function is required to agree with that obtained from the stress tensor evaluated on

the equilibrium fluid configuration.

From the description of the method it is clear that only transport coefficients which

do not vanish in the equilibrium fluid configuration will be constrained or determined. We

will see that in total there are 27 parity odd transport coefficients. Out of these 12 do not

vanish in the equilibrium fluid configuration. Among the 12, we determine 7 which we label

as Φi, i = 1, · · · 6 and ∆2. and show that they are related to the anomaly. The rest of the

5 are constrained by 3 relations. These relations also involve the anomaly. The results are

summarized in (1.9) and (1.10). We will then derive Kubo formulae for two of the transport

coefficients Φ1,Φ2 and show that it agrees with the equilibrium partition function method.

The remaining transport coefficients seem to be related to three point functions.

The organization of the paper is as follows. In the rest of the introduction we summarize

our main results. In section 2 we implement the method of [14] to relate the transport

coefficients which do not vanish in equilibrium to the anomalies. In section 3 we use the

Kubo formalism to derive two of the transport coefficients. In section 4 we study the

effects of the second order transport coefficients on linearized dispersion relations. We

also verify the relation between the transport coefficient Φ1 and the anomaly coefficient

obtained using the holographic evaluation of this transport coefficient for the case of N =

4 Yang-Mills. Using holography we also show that for the conformal case of N = 4

Yang-Mills the transport coefficient Φ12 vanishes. In appendix A we discuss some of the

details involving the classification of the parity odd data at second order in derivatives.

In appendix B we show the consistency of the velocity profile used to derive the Kubo

formulae for transport coefficients.

1.1 Summary of the results

As we mentioned earlier, the aim of this note is to constrain the parity odd second order

transport coefficients of an anomalous charged fluid in the presence of background electric

and magnetic fields. To define the transport coefficients unambiguously we first must have

an unambiguous definition of fluid variables, that is the velocities, the temperature and

the chemical potentials. {uµ, T, µ}. We will work in Landau frame which is defined by the

following two conditions for the charged fluid.

Jµuµ = −q, Tµνuµ = −Euν . (1.1)

Let us now consider the expansion of the charge current Jµ and the stress tensor Tµν in

terms of the number of space time derivatives. This is given by

Jµ = J
µ

(0) + J
µ

(1) + · · · , Tµν = T
µν

(0) + T
µν

(1) + · · · , (1.2)

where the subscript (i) refer to the number of space-time derivatives. The terms Jµ

(i) and

T
µν

(i) for i 6= 0 are all perpendicular to the velocity uµ. The equations of motion for the fluid

– 3 –
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Scalars Vectors Pseudo Vectors Tensors

(1) (3) (2) (1)

Θ = ∇µu
µ uµ∇µuν lµ = ǫµναβuν∂αuβ σµν = ∇〈µuν〉

Pµν∇νν Bµ = 1
2ǫ

µναβuνFαβ

V µ =
(

Eµ

T
− Pµν∇νν

)

Table 1. Data at 1st order in derivative.

in the presence of external electromagnetic field are given by the following conservation laws

∇µT
µν = FνµJµ +

cm

2
∇µ[ǫ

αβγδFαβR
µν
γδ], (1.3)

∇µJ
µ = −C

8
ǫαβγδFαβFγδ +

cm

4
ǫαβγδR

µ
ναβR

ν
µγδ

= CEµB
µ +

cm

4
ǫαβγδR

µ
ναβR

ν
µγδ.

Here Eµ = Fµνu
ν , Bµ = 1

2ǫ
µναβuνFαβ and C is the gauge anomaly coefficient and cm is the

coefficient of the mixed gauge-gravitational anomaly. Note that the terms proportional to

the mixed anomaly are fourth order in derivatives, therefore they do not affect the analysis

of the equations of motion to 2nd order in derivatives. However the gravitational anomaly

does enter the discussion of the equilibrium partition function at the first order in the

derivative expansion [16].

We will now state the known results for the form of the stress tensor and the current up

to first order in the derivative expansion. For i = 0, the part with no space-time derivative

the stress tensor and current is completely determined by thermodynamics. At first order

in derivative expansion, that is i = 1, the form of the current and stress tensor is explicitly

known [1, 14]. This form is consistent with all physical requirements in the presence of

anomaly as well as an external electromagnetic field [1, 14]. The final result for the stress

tensor and the charge current to first order in derivatives is given by

[T(0)]µν = (E + P )uµuν + PGµν ,

[T(1)]µν = − 2ησµν − ζΘPµν ,

J
µ

(0) = quµ,

J
µ

(1) = ∆V µ + ξl l
µ + ξBB

µ.

(1.4)

Here E is the energy density, P the pressure and q, the charge density and Gµν is the

background metric. The variables Θ, σµν , V µ, lµ and Bµ are all on-shell independent

terms which are first order in derivatives. These are defined in table 1. The variables

η, ζ, ∆, ξl and ξB refer to the first order transport coefficients. Throughout this paper,

the symbol A〈µν〉 on any tensor Aµν denotes the projected, traceless, symmetric part of

the tensor.

A〈µν〉 = Pα
µ P

β
ν

(

Aαβ +Aβα

2
− P γθAγθ

3
Gαβ

)

, (1.5)
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Pseudo-scalars Pseudo Vectors Pseudo-tensors

(6) (9) (12)

S1 = lµ∂µν Vµ

(1) = ǫµναβuνBαlβ τ
(1)
µν = ∇〈µlν〉

S2 = Bµ∂µν Vµ

(2) = ǫµναβuν(∂αν)(∂αT ) τ
(2)
µν = ∇〈µBν〉

S3 = lµ∂µT Vµ

(3) = Θlµ τ
(3)
µν = l〈µ∂ν〉ν

S4 = Bµ∂µT Vµ

(4) = ǫµνλσuν∇λVσ τ
(4)
µν = B〈µ∂ν〉ν

S5 = lµVµ Vµ

(5) = σ
µ
ν l

ν τ
(5)
µν = l〈µ∂ν〉T

S6 = BµVµ Vµ

(6) = ΘBµ τ
(6)
µν = B〈µ∂ν〉T

Vµ

(7) = σ
µ
νB

ν τ
(7)
µν = l〈µVν〉

Vµ

(8) = ǫµναβuν(∂αT )Vβ τ
(8)
µν = B〈µVν〉

Vµ

(9) = ǫµναβuν(∂αν)Vβ τ
(9)
µν = uθσ〈µα(∂βT )ǫ

θαβ
ν〉

τ
(10)
µν = uθσ〈µα(∂βν)ǫ

θαβ
ν〉

τ
(11)
µν = uθσ〈µαVβǫ

θαβ

ν〉

τ
(12)
µν = uθ∇βσ〈µαǫ

θαβ
ν〉

Table 2. Parity odd data at 2nd order in derivatives.

and Pµν is the projector

Pµν = uµuν +Gµν . (1.6)

The variable ν is related to the chemical potential by

ν =
µ

T
. (1.7)

Let us now proceed to the stress tensor and the charge current at second order in

derivatives which we denote as [T(2)]µν and J
µ

(2). Purely from symmetry considerations, the

number of independent transport coefficients upto second order is equal to total number of

possible scalars which appear in the trace of the stress tensor, together with the number of

possible vectors which appear in the current and the possible symmetric traceless tensors

which appear in the traceless part of the stress tensor. But not all of them are independent,

they can be related using the equations of motion given in (1.3). In table 2 we have listed

all the parity odd and on-shell independent scalars, vectors and tensors containing two

space-time derivatives. Some of the details that went into this classification is discussed in

appendix A.

From the table it can be seen that at second order in derivatives there are 27 parity

odd transport coefficients which appear in the current and the stress tensor. Therefore the

most general parity odd contributions at second order in the stress tensor and current can

be parametrized as follows.

[T(2)]µν =
12
∑

i=1

Φi τ
(i)
µν + Pµν

[

6
∑

i=1

χi Si

]

,

J
µ

(2) =
9
∑

i=1

∆i Vµ

(i).

(1.8)
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Where τ
(i)
µν , Si and Vµ

(i) are defined in table 2. Our goal is to constrain the transport

coefficients Φi, χi and ∆i , using the existence of an equilibrium partition function. It can

be shown among these 27 terms only 12 can be non-zero in a time independent equilibrium

fluid configuration. These are the first 4 in the list of scalars S1 · · · S4, the first 2 in the

list of vectors Vµ

(1),V
µ

(2) and the first 6 in the list of tensors τ
(1)
µν · · · τ (6)µν . Therefore the

analysis using the equilibrium partition function can be used to constrain the 12 transport

coefficients multiplying these non-vanishing terms. These are χ1 · · ·χ4 and ∆1,∆2 and

Φ1 · · ·Φ6. The final result of this analysis is the following.

Φ1 = η b1, Φ2 = 2η b2, Φ3 = η

(

∂b1

∂ν

)

, Φ4 = 2η

(

∂b2

∂ν

)

,

Φ5 = η

[

−b1

T
+

∂b1

∂T

]

, Φ6 = 2η

[

−b2

T
+

∂b2

∂T

]

,

(1.9)

∆2 = −∆b1

2
,

T 2R1

[

χ3 −
ζ

2

(

∂b1

∂T
− 2b1

T

)]

−R2

[

χ1 −
ζ

2

(

∂b1

∂ν
− 2b2T

)]

= 0,

T 2R1

[

χ4 − ζ

(

∂b2

∂T
− b2

T

)]

+R2

[

χ2 − ζ

(

∂b2

∂ν

)]

= 0,

R1T∆1 +

[

χ2 − ζ

(

∂b2

∂ν

)]

− q

(E + P )

[

χ1 −
ζ

2

(

∂b1

∂ν
− 2b2T

)]

= 0,

(1.10)

where

b1 =
T 3

E + P

(

2Cν3

3
− 4C2ν

)

, b2 =
T 2

E + P

(

Cν2

2
− C2

)

,

R1 =

(

∂P

∂E

)

q

, R2 =

(

∂P

∂q

)

E

.

Note that C is the gauge anomaly coefficient and C2 is related to the coefficient of the

mixed gauge-gravitational anomaly [16] by3

C2 = 8π2cm. (1.11)

Therefore we see that the coefficients Φ1, · · ·Φ6 and ∆2 are determined in terms of the

anomaly, the shear viscosity η, the charge diffusivity ∆ and the thermodynamic functions

E,P, T, ν. The rest ∆1, χ1, · · ·χ4 are constrained by 3 relations which involve the anomaly

and the bulk viscosity ζ.

2 Anomalous transport from equilibrium partition function

In subsection 2.1 we will briefly outline the general procedure we use to relate parity

odd transport at the second order in derivatives to the anomaly. This method has been

3The relation (1.11) is derived in [16] using properties of the partition function on cones. It is an equation

that relates coefficients at different orders in derivative expansion. In our analysis we shall simply assume

their result. We will subsequently see that this identification is also consistent with the analysis of [9] which

studies the effect of gravitational anomalies on hydrodynamics.
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described and analyzed in detail by [14] and [15]. It relies on the analysis of the equilibrium

partition function. Thus we will be able to constrain only those transport coefficients which

do not vanish in the equilibrium configuration. This section also will serve to introduce the

notation and conventions used in the paper. In subsection 2.2 we implement this method

and derive the relations given in (1.9) and (1.10).

2.1 The equilibrium partition function method

We are interested in a fluid flow on a static background metric and a static external

electromagnetic field. The most general static metric and gauge field can be written in the

following form.

ds2 = Gµνdx
µdxν = −e2σ(dt+ aidx

i)2 + gijdx
idxj ,

Gauge Field : Aµdx
µ,

(2.1)

σ, ai , gij , A0 and Aµ are all slowly varying functions of the spatial co-ordinates (~x). Our

notations are as follows:

• Greek indices run from 1 to 4.

• Latin indices run from 1 to 3.

• All Greek indices are lowered or raised by the 4 dimensional metric Gµν unless ex-

plicitly mentioned.

• All Latin indices are lowered or raised by the 3 dimensional metric gij unless explicitly

mentioned.

• ∇̄µ is covariant derivative with respect to the metric Gµν and ∇i is the covariant

derivative with respect to the metric gij .

• For any tensor Aµν the notation A〈µν〉 denotes the traceless symmetric part of the

tensor, projected in direction perpendicular to the fluid velocity.

A〈µν〉 = Pα
µ P

β
ν

(

Aαβ +Aβα

2
− P γθAγθ

3
Gαβ

)

,

where Pµν ≡ uµuν +Gµν is referred to as the projector.

Our basic assumption is that in such a background any fluid equation will admit a

time independent solution. The stress tensor and the current, evaluated on this time

independent solution, can be generated by varying the partition function of the system

with respect to the background metric and gauge field. If Z is the partition function at

temperature T0 then the stress tensor and the current evaluated on the equilibrium are

– 7 –
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given by the following formulae.

T00|equilibrium = −T0e
2σ

√
−G

[

δZ

δσ

]

=
T 2
0√
g

[

δZ

δT̄

]

,

T i
0|equilibrium =

T0√
−G

[

δZ

δai
−A0

δZ

δAi

]

=
T̄√
g

[

δZ

δai
−A0

δZ

δAi

]

,

T ij |equilibrium = − 2T0√
−G

gilgjm
[

δZ

δglm

]

= − 2T̄√
g
gilgjm

[

δZ

δglm

]

,

J0|equilibrium = −T0e
2σ

√
−G

[

δZ

δA0

]

= − eσ√
g

[

δZ

δν̄

]

,

J i|equilibrium =
T0√
−G

[

δZ

δAi

]

=
T̄√
g

[

δZ

δAi

]

,

(2.2)

where

T̄ = T0e
−σ, ν̄ =

A0

T0
, Ai = Ai −A0ai.

The strategy we will adopt to constrain the parity odd coefficients which occur at the

second order is the following:

1. Write down the most general partition function upto a given order in derivative

expansion and consistent with all the symmetries. It will be a function of ai, σ and

Ai and their derivatives.

2. Vary the partition function Z, to obtain the most general possible expression for

Tµν |equilibrium and Jµ|equilibrium.

3. Parametrize the most general possible fluid stress tensor and current up to some

given order in derivative expansion using symmetries. This will give the maximum

number of independent transport coefficients possible constrained only by symmetry.

We have stated the results of this analysis already in equations (1.4) and (1.8).

4. Evaluate the most general fluid stress tensor and current on the equilibrium solution.

The final outcome will contain some of the unknown transport coefficients.

5. Equate the final outcome of the previous step with the stress tensor and current we

have already obtained by varying the partition function.

6. This will express the transport coefficients which appear in the stress tensor and

the current evaluated in equilibrium, in terms of the coefficients appearing in the

partition function.

7. Eliminating the coefficients which appear in the partition function results in the

desired relations among the transport coefficients.

One might wonder that to execute the fourth step, the equilibrium solution for the

velocity, temperature and the other fluid variables needs to be independently found. But

as it has been explained in [14] using this method one can perturbatively determine both

the solution and the transport coefficients in terms of the free functions appearing in the

partition function.

– 8 –
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2.2 Partition function analysis: parity-odd sector at second order

In this subsection we shall apply the general procedure described in 2.1 to the particular

case of the parity-odd sector of the charged fluid at second order in derivative expansion.

The first contribution to the parity-odd sector comes at first order in derivative expansion.

This has been analyzed in detail in section 3 of [14]. We will not repeat the first order

computation here but we will extensively use their result.

Stress tensor and current from the partition function. Since the transport coeffi-

cients we are interested in belong to the parity-odd sector, we will restrict our attention to

only the parity odd part of the partition function. The partition function Z(2) at second

order in derivatives is a gauge invariant scalar functional of the background metric and

gauge-fields.4 Hence we need to list all possible parity odd scalars that can be constructed

from the metric functions and gauge fields that contain two space-derivatives. Note that

since all the functions are time independent no time derivatives occur. There are four

such scalars:

1. ǫijk∂iν̄fjk,

2. ǫijk∂iT̄ fjk,

3. ǫijk∂iν̄Fjk,

4. ǫijk∂iT̄Fjk,

where ν̄ = A0
T0

, T̄ = T0e
−σ, Ai = Ai −A0ai and fjk = ∂jak − ∂kaj , Fjk = ∂jAk − ∂kAj .

Therefore naively, the parity odd second order partition function at two derivative

order can have 4 free parameters, but two of them can be related by total derivatives.

Ignoring the total derivative terms the most general second order partition function can be

written as

Z(2) =

∫ √
g
[

M1(T̄ , ν̄) ǫ
ijk∂iν̄Fjk + T0M2(T̄ , ν̄) ǫ

ijk∂iν̄fjk

]

.

Varying this partition function with respect to the metric and the gauge fields and

using (2.2) we get the following second order correction to the stress tensor and

charge current.

[Π(2)]00 = T 2
0

[(

∂M1

∂T̄

)

ǫijk∂iν̄Fjk + T0

(

∂M2

∂T̄

)

ǫijk∂iν̄fjk

]

,

[Π(2)]i0 = 2T0T̄

(

∂M2

∂T̄
− ν̄

∂M1

∂T̄

)

ǫijk(∂j T̄ )(∂kν̄),

[Π(2)]ij = 0,

[j(2)]0 =
T0

T̄

[(

∂M1

∂T̄

)

ǫijk∂iT̄Fjk + T0

(

∂M2

∂T̄

)

ǫijk∂iT̄ fjk

]

,

[j(2)]i = 2T̄

(

∂M1

∂T̄

)

ǫijk(∂j T̄ )(∂kν̄).

(2.3)

4Though the system is anomalous, all the effects of anomaly i.e. the anomalous transformation property

of the partition function under the gauge transformation is accounted by the first order part Z(1). Therefore

in Z(2) we need to consider only gauge invariant scalars.
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It is important to note the third equation in (2.3). The fact that the spatial components of

the equilibrium stress tensor vanish at second order will serve as an important constraint

in determining the transport coefficients.

Stress tensor from fluid dynamics. We have to evaluate the fluid dynamical stress

tensor on the equilibrium, that is a time independent solution in the given static background

metric and gauge field. This equilibrium solution for the velocity field, temperature or

chemical potential in terms of the background metric and gauge field can also be expanded

in terms of derivatives. We shall use the following notation.

uµ|eq = ūµ + δu
µ

(1) + δu
µ

(2) + · · · ,
T |eq = T̄ + δT(1) + δT(2) + · · · ,
ν|eq = ν̄ + δν(1) + δν(2) + · · · ,

(2.4)

where δu
µ

(i), δT(i) and δν(i) are ith corrections to the zeroth order equilibrium solution

containing i derivatives on the background data. Now we have to substitute (2.4) in fluid

stress tensor and current given in (1.4)) and extract the part that will be parity odd and

which involve exactly two derivatives on the background data. This is the part which have

to be equated with (2.3).

From the analysis done in [14] we know that5

ūµ = e−σ{1, 0, 0, 0}, T̄ = T0e
−σ, ν̄ =

A0

T0
,

[δu(1)]0 = 0, δT(1) = 0, δν(1) = 0,

[δu(1)]
0 = −ai[δu(1)]

i,

[δu(1)]
i =

(

b1

2

)

l̄i + b2B̄
i,

[δu(1)]i = gij [δu(1)]
j ,

(2.5)

where

Fjk ≡ ∂jAk − ∂kAj ,

l̄i = −eσ

2
ǫijkfjk,

B̄i =
1

2

(

ǫijkFjk +A0ǫ
ijkfjk

)

=
1

2
ǫijkFjk − T̄ ν̄ l̄i,

b1 =
T 3

E + P

(

2Cν3

3
− 4C2ν

)

,

b2 =
T 2

E + P

(

Cν2

2
− C2

)

.

(2.6)

Here C is the anomaly coefficient and C2 is related to the mixed anomaly6 in (1.3) by

C2 = 8π2cm. (2.7)

5Note that equation (2.5) is valid only if we choose Landau frame. This is the place where the choice of

a fluid frame enters our analysis. We are going to use these equations in all our subsequent calculation.
6The relation (2.7) was derived in [16]. Here we simply use it.
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If we also expand E, P and q in terms of a derivative expansion as

E|eq = Ē+δE(1)+δE(2)+· · · , P |eq = P̄+δP(1)+δP(2)+· · · , q|eq = q̄+δq(1)+δq(2)+· · · ,

then from (2.5) it follows that

δE(1) = δP(1) = δq(1) = 0. (2.8)

Using the fact that (uµu
µ = −1) to all order in derivative expansion we find that

[δu(2)]0 ∝ [δu(1)]
i[δu(1)]i = Parity even ∼ 0 (For our purpose). (2.9)

Also using the Landau gauge condition on the second order stress tensor and current one

can show that in equilibrium

[T(2)]00 = [T(2)]
i
0 = [J(2)]0 = 0. (2.10)

Note that [T(2)]00, [T(2)]
i
0, [J(2)]0 are the components of the stress tensor and the charge

current which are second order in derivatives obtained from the equation (1.8). While

[Π(2)]00, [Π
(2)]i0, [j

(2)]0 refer to the components of the stress tensor and the charge current

obtained from the equilibrium partition function using (2.3).

Using (2.5), (2.8), (2.9) and (2.10) we get the following form for the second order stress

tensor and current evaluated in equilibrium.

[Π(2)]00 = δE(2)ū
2
0 + δ(−2ησ00) + δ(−ζΘP00),

[Π(2)]i0 = (Ē + P̄ )ū0[δu(2)]
i + δ(−2ησi

0) + δ(−ζΘP i
0),

[j(2)]0 = δq(2)ū0 + δ(∆V0) + δ(ξll0) + δ(ξBB0),

(2.11)

where δ(−2ησµν), δ(ζΘPµν) and δ(∆Vµ) are the two derivative corrections of (−2ησµν),

(ζΘPµν) and (∆Vµ) when evaluated on δu
µ

(1), δT(1) and δν(1).

Now if Q
(1)
µν is a tensor which is first order in the derivative expansion satisfying the

following two conditions

Q(1)
µν u

µ = 0 at all orders and Q(1)
µν |(ūµ,T̄ ,ν̄) = 0, (2.12)

then one can show in general that7

δQ
(1)
00 = δ[Q(1)]i0 = 0. (2.13)

Similarly if Q
(1)
µ is a vector which is first order in the derivative expansion satisfying

Q(1)
µ uµ = 0 at all orders and Q(1)

µ |(ūµ,T̄ ,ν̄) = 0, (2.14)

then it follows that8

δQ
(1)
0 = 0. (2.15)

70 = δ
[

uµQ
(1)
µν

]

= ūµδQ
(1)
µν + δuµ

[

Q
(1)
µν |(ūα,T̄ ,ν̄)

]

= e−σδQ
(1)
0ν .

80 = δ[uµQ
(1)
µ ] = ūµδQ

(1)
µ + δuµ[Q

(1)
µ |(ūα,T̄ ,ν̄)] = e−σδQ

(1)
0 .
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This argument allows us to conclude that

δ(−2ησ00) = δ(ζΘP00) = δ(−2ησi
0) = δ(ζΘP i

0) = δ(∆V0) = 0.

Similarly δ(ξllµ) and δ(ξBBµ) are the two derivative corrections of (ξllµ) and (ξBBµ) when

evaluated on δu
µ

(1), δT(1) and δν(1). But lµ and Bµ are already parity odd. Therefore

δ(ξllµ) and δ(ξBBµ) are going to be parity even and hence we can set them to zero for our

purpose. Putting all this together we have the following result for the components of the

stress tensor and the current at the second order in derivative expansion

[Π(2)]00 = δE(2)ū
2
0 = e2σδE(2),

[Π(2)]i0 = (Ē + P̄ )ū0[δu(2)]
i = −eσ(Ē + P̄ )[δu(2)]

i,

[j(2)]0 = −eσδq(2).

(2.16)

Inverting (2.16) and using (2.3) we can determine the second order piece of the equilibrium

solution for velocity, temperature and chemical potential in terms of background data.

Now the components [Π(2)]ij and [j(2)]i will give rise to the constraints on the transport

coefficients.

[Π(2)]ij = δP2g
ij − 2η δσij − ζ δΘgij + [T(2)]

ij ,

[j(2)]i = q̄[δu(2)]
i +∆ δ[V i] + [J(2)]

i.
(2.17)

We have to use (2.16) to determine δP2 and [δu(2)]
i.

The transport coefficients are determined by demanding that (2.17) is satisfied. For

convenience let us further split the first equation in (2.17) in two parts, the trace part which

is obtained by contracting the equation with gij and a traceless part which is obtained by

subtracting the trace part of the equation from the first equation of (2.17).9 These are

given by

Trace part :

δP2 − ζδΘ+
1

3
(−2ηδσij + [T(2)]

ij)gij = 0.

Traceless part :

− 2η

(

δσij − gij

3
(δσlmglm)

)

+

(

[T(2)]
ij − gij

3
([T(2)]

lmglm)

)

= 0.

(2.18)

In (2.18) we have used (2.3) to set [Π(2)]ij to zero. Therefore the r.h.s. of (2.18) vanishes.

Transport in the traceless part of the stress tensor. In this subsection we shall

analyze the second equation of (2.18).

Traceless part :

− 2η

(

δσij − gij

3
(δσlmglm)

)

+

(

[T(2)]
ij − gij

3
([T(2)]

lmglm)

)

= 0.
(2.19)

We now go through the following steps:

9Note that here trace is taken with the 3 dimensional metric.
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• We first evaluate the second order contribution from σij .

• We then write down the most general form for [T(2)]
〈µν〉 from usual symmetry analysis

and on shell independence. In general it will contain many unknown transport trans-

port coefficients to begin with. But if we restrict our attention to only the parity odd

ones, the total number of terms is 18 ( Φi, (i = 1, · · · , 12) multiplying 12 independent

traceless symmetric tensors and χ, (i = 1, · · · , 6) multiplying 6 independent scalars,

see (1.8)). All these 18 terms have been listed in table 2.

• One can see that all the 6 χis are not going to appear in the combination that we

are going to evaluate in (2.19).

• So we have to evaluate the rest of the 12 terms (multiplying Φis on the equilibrium

time-independent solution.

For this it is sufficient to substitute only the zeroth order equilibrium solution, since

each of these terms already contain two derivatives.

• As mentioned in section 1.1, it turns out that 6 of these twelve terms evaluate to zero

in equilibrium. So there are only 6 transport coefficients which can be constrained

by this equilibrium analysis. These 6 terms are the following.

τ (1)µν = ∇̄〈µlν〉, τ (2)µν = ∇̄〈µBν〉, τ (3)µν = (∂〈µν)lν〉, (2.20)

τ (4)µν = (∂〈µν)Bν〉, τ (5)µν = (∂〈µT )lν〉, τ (6)µν = (∂〈µT )Bν〉,

where lµ ≡ ǫµναβuν∂αuβ and Bµ ≡ ǫµναβuν∂αAβ. Let us now rewrite the traceless

part of the second order fluid stress tensor with these six terms, this is given by

[T(2)]
µν
odd =

6
∑

a=1

Φa[τ
(a)]µν + trace part + terms that vanish in equilibrium. (2.21)

• From (2.19) we see that each of these six Φa’s has to be such that, they cancel the

contribution of δσµν when all of them are evaluated in equilibrium.

• Evaluating the spatial components of these six terms on the zeroth order equilibrium

solution given in (2.5) we obtain

[τ (1)]ij = ∇̄〈ilj〉 = gilgjm
[∇l l̄m +∇m l̄l

2
− glm

3
(∇k l̄

k)

]

+O(∂3), (2.22)

[τ (2)]ij = ∇̄〈iBj〉 = gilgjm
[∇lB̄m +∇mB̄l

2
− glm

3
(∇kB̄

k)

]

+O(∂3),

[τ (3)]ij = (∇̄〈µν)lν〉 = gilgjm
[

(∇lν̄)l̄m + (∇mν̄)l̄l
2

− glm

3
(∇kν̄ l̄

k)

]

+O(∂3),

[τ (4)]ij = (∇̄〈µν)Bν〉 = gilgjm
[

(∇lν̄)B̄m + (∇mν̄)B̄l

2
− glm

3
(Bk∇kν̄ )̄

]

+O(∂3),

[τ (5)]ij = (∇̄〈µT )lν〉 = gilgjm
[

(∇lT̄ )l̄m + (∇mT̄ )l̄l
2

− glm

3
(l̄k∇kT̄ )

]

+O(∂3),

[τ (6)]ij = (∇̄〈µT )Bν〉 = gilgjm
[

(∇lT̄ )B̄m + (∇mT̄ )B̄l

2
− glm

3
(B̄k∇kT̄ )

]

+O(∂3),
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where l̄i ≡ − eσ

2 ǫ
ijkfjk and B̄i ≡ 1

2ǫ
ijk(Fjk + A0fjk). To evaluate equation (2.22) we

have extensively used section 2 of [14].

• The spatial components of the shear tensor gives the following contribution to [Π(2)]ij

− 2η δσij

=− 2η

[

P̄ iµP̄ jν

{

∇̄µ[δu(1)]ν + ∇̄ν [δu(1)]µ

2
−

∇̄α[δu(1)]
α

3

}

+
(

P̄ jµδP iν + P̄ iνδP jµ
)

(∇̄µūν + ∇̄ν ūµ

2

)]

=− 2η

[

gilgjm
{∇l[δu(1)]m +∇m[δu(1)]l

2
− glm

3
∇k[δu(1)]

k − glm

3
(∂kσ)[δu(1)]

k

}

+
δuigjk(∂kσ) + [δu(1)]

jgik(∂kσ)

2

]

, (2.23)

where

P̄ iµ = ūiūµ +Giµ = Giµ, P̄ jµδP iν = Gjµūν [δu(1)]
i.

The last term in the last line of (2.23) results from this expansion of the projectors.

Substituting (2.5) in (2.23) we obtain the following

−2ηδσij = −2η

[

b1

2
[τ (1)]ij + b2[τ

(2)]ij +
1

2

(

∂b1

∂ν

)

[τ (3)]ij +

(

∂b2

∂ν

)

[τ (4)]ij

+
1

2

(

−b1

T
+

∂b1

∂T

)

[τ (5)]ij +

(

−b2

T
+

∂b2

∂T

)

[τ (6)]ij
]

.

(2.24)

Next we have to substitute (2.23) and (2.24) in (2.19). Now to satisfy (2.19) the coefficient

of each independent expression should vanish. From examining (2.23) and (2.24) it seems

that demanding every independent term to vanish results in more equations than the

unknowns which are the transport coefficients. However from the structure of the equations

in (2.19) it is clear that the equation admits the following unique solution for the transport

coefficients

Φ1 = η b1, Φ2 = 2η b2, Φ3 = η

(

∂b1

∂ν

)

, Φ4 = 2η

(

∂b2

∂ν

)

,

Φ5 = η

[

−b1

T
+

∂b1

∂T

]

, Φ6 = 2η

[

−b2

T
+

∂b2

∂T

]

,

(2.25)

where

b1 =
T 3

E + P

(

2Cν3

3
− 4C2ν

)

, b2 =
T 2

E + P

(

Cν2

2
− C2

)

, (2.26)

and E,P, T is the energy density, pressure and temperature respectively. ν = µ
T

refers to

the chemical potential, and η is the shear viscosity. C is the gauge anomaly coefficient,

while C2 is related to the mixed anomaly by (1.11). The transport coefficient Φ1 gives rise

to chiral dispersion relations in the shear mode [13].
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Transport in the trace of the stress tensor and current. We will now constrain the

transport coefficients that occur in the trace part of the stress tensor and the current using

the equilibrium partition function. We will first rewrite the relevant part of the current

and the trace part of the stress tensor up to 2nd order in derivative expansion. Using (2.3)

and (2.17) we obtain the following equation for the trace part of the stress tensor and

current at second order.

Trace part : 0 = δP2 − ζδΘ+
1

3
(−2ηδσij + [T(2)]

ij)gij

= δP2 − ζδΘ+

[

6
∑

1

χiSi

]

eq

=

[

−ζδΘ+

(

∂P

∂E

)

q

δE(2) +

(

∂P

∂q

)

E

δq(2)

]

+

[

6
∑

1

χiSi

]

eq

(2.27)

Current : [J(2)]
i = [j(2)]i − δ[∆V i]− q[δu(2)]

i

⇒
[

9
∑

k=1

∆kV i
(k)

]

eq

= 2T̄

(

∂M1

∂T̄

)

ǫijk(∂j T̄ )(∂kν̄)− δ[∆V i]− q[δu(2)]
i.

(2.28)

Both in (2.27) and (2.28) we have used (1.8) to write the fluid stress tensor and the

current in terms of the transport coefficients. Also in (2.27) to evaluate the combination

(−2ηδσij + [T(2)]
ij)gij we have used (2.24) and (2.25). One can see that the transport

coefficients Φis drop out.

Using (2.16) and (2.3) we evaluate δE2, δq2 and [δu(2)]
i, this results in

δE2 = e−2σΠ
(2)
00 = 2T̄ 2

(

∂M1

∂T̄

)

(B̄i∂iν̄)− 2T̄ 3

(

∂M2

∂T̄
− ν̄

∂M1

∂T̄

)

(l̄i∂iν̄),

δq2 = e−σj
(2)
0 = 2

(

∂M1

∂T̄

)

(B̄i∂iT̄ )− 2T̄

(

∂M2

∂T̄
− ν̄

∂M1

∂T̄

)

(l̄i∂iT̄ ),

[δu(2)]
i = −

(

e−σ

Ē + P̄

)

[Π(2)]i0 = −
(

2T̄ 2

E + P

)(

∂M2

∂T̄
− ν̄

∂M1

∂T̄

)

ǫijk(∂j T̄ )(∂kν̄).

(2.29)

Now we have to compute δΘ and δ(∆V i).

δΘ = ∇̄µ[δu(1)]
µ = ∇k[δu(1)]

k −
(

∂kT̄

T̄

)

[δu(1)]
k

=
1

2

(

∂b1

∂T̄
− 2b1

T̄

)

(l̄i∂iT̄ ) +
1

2

(

∂b1

∂ν̄
− 2b2T̄

)

(l̄i∂iν̄)

+

(

∂b2

∂T̄
− b2

T̄

)

(B̄i∂iT̄ ) +

(

∂b2

∂ν̄

)

(B̄i∂iν̄).

(2.30)

To derive (2.30) we have used the following identities

∇i l̄
i = −

(

∂iT̄

T̄

)

l̄i, ∇iB̄
i = −T̄ l̄i∂iν̄. (2.31)
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Similarly δV i is given by the following expression

δ{∆V i} = ∆GiµFµνδu
ν = ∆ǫijk[δu(1)]jB̄k = ∆

(

b1

2

)

ǫijk l̄jB̄k, (2.32)

where Fµν = ∂µAν − ∂νAµ.

Now we have to evaluate the 6 scalars (Si, i = 1, · · · , 6) and the ith component of

the 9 vectors (V i
(k), k = 1, · · · , 9) on the equilibrium solution. We need the equilibrium

solution only at zeroth order since all of them already contain two derivatives. Explicit

expressions for all these terms are listed in table 2.

As mentioned in section 1.1, only 6 terms, 4 scalars and 2 vectors are non-vanishing on

the zeroth order equilibrium solution. Thus the relevant parts of the second order current

and trace of the stress tensor are given by

[T(2)]
αβ |trace part = Pαβ [χ1(l

µ∂µν) + χ2(B
µ∂µν) + χ3(l

µ∂µT ) + χ4(B
µ∂µT )] ,

J
µ

(2) = ∆1[ǫ
µναβuν(∂αν)(∂βT )] + ∆2[ǫ

µναβuνBαlβ ].
(2.33)

We then evaluate all these six terms on the zeroth order equilibrium solution.

(lµ∂µν) = (l̄i∂iν̄),

(Bµ∂µν) = (B̄i∂iν̄),

(lµ∂µT ) = (l̄i∂iT̄ ),

(Bµ∂µT ) = (B̄i∂iT̄ ),

ǫiναβuν(∂αν)(∂βT ) = ǫijk(∂j ν̄)(∂kT̄ ),

ǫiναβuνBαlβ = ǫijkB̄j l̄k.

(2.34)

Substituting (2.34) in (2.33) we express the l.h.s. of (2.33) in terms of the background

data and the two arbitrary functions M1 and M2 of the second order parity odd partition

function. Now using (2.27) and (2.3) we can express the 5 transport coeffcients appearing

in (2.33) in terms ofM1 andM2. Since one cannot generate a term of the form ǫijkljBk from

the partition function, the 6th transport coefficients ∆2 will be completely determined by

the correction of the first order current. This is similar to the way the transport coefficients

Φi’s, which appear in the traceless part of the stress tensor were determined. The end result

of this step is

∆2 = −∆ b1

2
,

χ1 = −2R1T̄
3

[

ν̄
∂M1

∂T̄
− ∂M2

∂T̄

]

+ ζ

(

1

2

∂b1

∂ν
− b2T̄

)

,

χ2 = −2R1T̄
2

(

∂M1

∂T̄

)

+ ζ

(

∂b2

∂ν

)

,

χ3 = −2R2T̄

[

ν̄
∂M1

∂T̄
− ∂M2

∂T̄

]

+
ζ

2

(

∂b1

∂T̄
− 2b1

T̄

)

,

χ4 = 2R2

(

∂M1

∂T̄

)

+ ζ

(

∂b2

∂T̄
− b2

T̄

)

,

∆1 = 2T̄

(

∂M1

∂T̄

)

+

(

2qT 2

E + P

)(

∂M2

∂T̄
− ν̄

∂M1

∂T̄

)

,

(2.35)

– 16 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
0

where

R1 =

(

∂P

∂E

)

q

, R2 =

(

∂P

∂q

)

E

,

b1 =
T 3

E + P

(

2Cν3

3
− 4C2ν

)

, b2 =
T 2

E + P

(

Cν2

2
− C2

)

.

Eliminating M1 and M2 from these expressions we get three relations among the remaining

5 second order transport coefficients.

∆2 = −∆b1

2
,

T 2R1

[

χ3 −
ζ

2

(

∂b1

∂T
− 2b1

T

)]

−R2

[

χ1 −
ζ

2

(

∂b1

∂ν
− 2b2T

)]

= 0,

T 2R1

[

χ4 − ζ

(

∂b2

∂T
− b2

T

)]

+R2

[

χ2 − ζ

(

∂b2

∂ν

)]

= 0,

R1T∆1 +

[

χ2 − ζ

(

∂b2

∂ν

)]

− q

(E + P )

[

χ1 −
ζ

2

(

∂b1

∂ν
− 2b2T

)]

= 0.

(2.36)

3 Kubo formula for the transport coefficients Φ1,Φ2

In this section we derive the relations obtained for the transport coefficients Φ1 and Φ2

given in (2.25) using the Kubo formula. We consider the following equilibrium background

for the metric, gauge field and the velocity

g(0)µν = diag(−1, 1, 1, 1), Aµ = (ν(0)T0, 0, 0, 0), uµ = (1, 0, 0, 0). (3.1)

The chemical potential ν(0) and the temperature T0 are constants and do not depend on

space-time. Since the energy E(0) and the pressure P (0) can be thought of as functions of

the temperature and the chemical potential, they are also constants in space-time. Now

consider the following non-zero metric perturbations about this background

δgtx = htx, δgtz = htz, δgyx = hyx, δgyz = hyz. (3.2)

The gauge field perturbations are given by

δAµ = (0, ax, 0, az). (3.3)

The fluid velocity is close to the rest frame and its perturbations are given by

δuµ = (0, vx, 0, vz). (3.4)

All perturbations are assumed to have dependence only in the time t and y-direction.

In appendix B we will show that the background and the perturbations considered in

equations (3.1) to (3.4) consistently solve the linearized fluid equations without the need for

turning on any other perturbations. A simple reason that these perturbations consistently

solve the linearized fluid equations is that they are all in the spin-2 shear sector and

therefore they decouple from the rest.

To derive Kubo formulae for transport coefficients, we consider the constitutive rela-

tions for the stress tensor and the charge current as one point functions in the presence

of external sources. We then obtain two point functions for the currents by differentiating
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with respect to the metric and the gauge field perturbations. Working this out to the linear

order in perturbations will result in Kubo formulae for the transport coefficients Φ1,Φ2.

To proceed we will require the the Christoffel symbols to the linear order in perturba-

tions. The non-vanishing elements at the linear order are given by

Γt
xy = −1

2
(∂yhtx − ∂thyx) , Γt

zy = −1

2
(∂yhtz − ∂thzy) , (3.5)

Γx
tt = ∂thtx, Γx

ty =
1

2
(∂yhtx + ∂thyx) , Γx

yy = ∂yhxy,

Γz
tt = ∂thz0, Γz

ty =
1

2
(∂yhtz + ∂thyz) , Γx

yy = ∂yhzy,

Γy
tx =

1

2
(∂thyx − ∂yhtx) , Γy

tz =
1

2
(∂thyz − ∂yhtz) .

Evaluating the inverse metric to the linear order we obtain

htx = htx, htz = htz, hyx = −hyx, hyz = −hyz. (3.6)

The covariant components of the velocity are given by

uµ = (−1, vx + hxt, 0, v
z + hzt). (3.7)

We now evaluate various components of the stress tensor to the linear order in the

perturbations. From the list of terms that contribute at 2nd order in derivatives given

in table 2 we see that in the background we have chosen all the scalars Si vanish. The

reason for this is for the background all the thermodynamic functions are independent of

space-time. We now examine the traceless part of the stress tensor. Note that the contri-

butions from τ
(i)
µν for i = 3, 4, 5, 6, 7, 8, 9, 10, 11 vanish since the thermodynamic functions

are independent of space-time. What remains to be evaluated are the contributions from

τ
(i)
µ for i = 1, 2 and i = 12. Let us first examine the tx and the ty component of the stress

tensor. To the second order in derivatives and to the linear order in the perturbation this

is given by

T tx = (E(0) + P (0)vx + P (0)htx, (3.8)

T tz = (E(0) + P (0))vz + P (0)htz,

T ty = 0.

Note that σtx, σtz, [τ (i)]tx and [τ (i)]tz for i = 1, 2, 12 do not contribute at the linear order.

The reason is that the term ∇αuβ and ∇αlβ is a first order term, therefore one has to

evaluate the projector for these components say P tαP xβ at the zeroth order, which vanishes.

Lets examine the yx component of the stress tensor. We need to evaluate the contri-

butions from [τ (i)]yx for i = 1, 2, 12. These are given by10

[τ (1)]yx =
1

2
∂2
y(v

z + hzt), (3.9)

[τ (2)]yx =
1

2
∂2
yaz,

[τ (12)]yx =
1

2
∂y(∂yv

z + ∂thyz).

10In evaluating these contributions we take ǫ0123 = 1
√

−g
.
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We also need the contribution of the shear tensor to the linear order. This is given by

σyx =
1

2
(∂yv

x + ∂thyx). (3.10)

Considering all these contributions along with the contribution to the stress tensor to the

zeroth order in derivative we obtain

T yx = −P (0)hyx − η(∂yv
x + ∂thyx) (3.11)

+
1

2
Φ1∂

2
y(v

z + hzt) +
1

2
Φ2∂

2
yaz

+
Φ12

2
∂y(∂yv

z + ∂thyz).

The equations of motion for the x component of the stress tensor to the linear order in the

fields is given by

∂tT
tx + ∂thtxT

tt + ∂yT
yx = 0. (3.12)

Here T tt is the zeroth order tt component of the stress tensor which is given by

T tt = E(0). (3.13)

Fourier transforming these equations and taking the zero frequency limit or taking the

time independent situation we obtain the Ward identities for the one point function of the

stress tensor.

lim
ω→0

T yx(k) = 0. (3.14)

We can now differentiate these with respect to the background fields hzt, and az and obtain

Kubo formulae for the transport coefficients Φ1 and Φ2 respectively. A similar procedure

for the yz component of the stress tensor yields the same result.

To proceed we first eliminate vx and vz using (3.8). This results in the following

equations

T yx = −P (0)hyx − η

(

∂yT
tx − P (0)∂yhtx

E(0) + P (0

)

(3.15)

+
Φ1

2

(

∂2
yT

tz + E(0)∂2
yhtz

E(0) + P (0)

)

+
Φ2

2
∂2
yaz

+
Φ12

2

(

∂2
yT

tz − P (0)∂2
yhtz

E(0) + P (0

)

.

Here we have already used time-independence to drop the time derivatives. Fourier trans-

forming these equations we obtain

T yx(k) = −P (0)hyx − η

(

ikT tx − ikP (0)htx

E(0) + P (0

)

(3.16)

−Φ1

2

(

k2T tz + E(0)k2htz

E(0) + P (0)

)

− Φ2

2
k2az

−Φ12

2
k2

(

T tz − P (0)htz

E(0) + P (0)

)

= 0.
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The last equality in the above equation implements the Ward identity given in (3.14) and

k is the momentum in the y direction. Let us now focus on the expression for T yx a similar

analysis can be repeated for T yz. Differentiating the Ward identity for T yx with respect to

hzt and az and setting the other backgrounds to zero we obtain the following two equations

k2

E(0) + P (0)

[

(Φ1〈T tz(k)T tz(−k)〉+ E(0)) + Φ12(〈T tz(k)T tz(−k)〉 − P (0))
]

= −ik
2η

E(0) + P (0)
〈T tx(k)T tz(−k)〉, (3.17)

Φ1 +Φ12

E(0) + P (0)
k2〈T tz(k)jz(−k)〉+Φ2k

2 = −ik
2η

E(0) + P (0)
〈T tz(k)jz(−k)〉.

To obtain the first equation we have differentiated with respect to htz and set all the other

backgrounds to zero. The second equation is obtained by differentiating the Ward identity

with respect to az and setting the remaining backgrounds to zero. The equations in (3.17)

are sufficient to determine the transport coefficients Φ1,Φ2. From [9] we have the following

results for the various two point functions.

lim
k→0,ω→0

〈T tx(k)T tz(−k)〉 = ik

(

C

3
(ν(0)T (0))3 − 2C2(T

(0))3ν(0)
)

, (3.18)

lim
k→0,ω→0

〈T tx(k)jz(−k)〉 = ik

(

C

2
(ν(0)T (0))2 − C2(T

(0))2
)

.

These results are given in equations (79)-(81) for a system with 3 chemical potentials and

equations (123)-(125) for a system with a single chemical potential of [9]. The definition

of the variables for the two point functions used is given in equation (47). This reference

also uses the normalization

−C

8
=

1

32π2
,

cm

4
=

1

768π2
, C2 =

1

24
, (3.19)

for the gauge anomaly and we have rewritten the chemical potential µ in terms of the

variable ν. From [17] we can read out the following correlators

lim
k→0,ω→0

〈T tz(k)T tz(−k)〉 = P (0), lim
k→0,ω→0

〈T tz(k)jz(−k)〉 = 0. (3.20)

These correlators are mentioned below equation (2.16) of reference [17]. Substituting the

formulae for the two point functions given in (3.18) and (3.20) into the equations given

in (3.17) we obtain

Φ1 =
2η

E(0) + P (0)

(

C

3
(ν(0)T (0))3 − 2C2(T

(0))3ν(0)
)

, (3.21)

Φ2 =
2η

E(0) + P (0)

(

C

2
(ν(0)T (0))2 − C2(T

(0))2
)

.

These expressions agree with that derived using the equilibrium partition function method

which are given in (2.25).
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4 Chiral shear waves

In this section we examine the effects of the second order parity transport coefficients

on linearized dispersion relations about the equilibrium characterized by the following

background given in (3.1). Note that the temperature T0 and the chemical potential ν(0) are

independent of space-time and therefore all other thermodynamic variables are constants

in space-time. We consider shear modes,11 for this we examine velocity perturbations of

the form

δuµ = (0, vx, 0, vz). (4.1)

These perturbations depend only on time t and the y-direction. We include all the terms

in the stress tensor to the 2nd order in derivatives given by

Tµν = [T(0)]
µν + [T(1)]

µν + [T(2)]
µν
odd , (4.2)

where [T(0)]
µν and [T(1)]

µν are given in (1.4) and [T(2)]
µν
odd is given in (1.8). We now write

down the contribution to the stress tensor from these velocity fluctuations which are linear

order in the fluctuations. It can be seen that the only contributions from 2nd order which

arise are from the term involving Φ1 and Φ12. Thus the stress tensor to the linear order in

velocity fluctuations is given by

δT tx = (E(0) + P (0))vx, δT tz = (E(0) + P (0))vz, (4.3)

δT yx = −η∂yv
x +

Φ1

2
∂2
yv

z +
Φ12

2
∂2
yv

z,

δT yz = −η∂yv
z − Φ1

2
∂2
yv

x − Φ12

2
∂2
yv

x.

We now substitute these values in the equations of motion for the stress tensor given by

∂tδT
tx + ∂yT

yx = 0, (4.4)

∂tδT
tz + ∂yT

yz = 0.

Substituting the expressions for the stress tensor from (4.3) into the above equations and

then taking the Fourier transform of these equations result in the following set of coupled

equations

(−iω(E(0) + P (0)) + ηk2)vx − i
k3

2
(Φ1 +Φ12)v

z = 0, (4.5)

(−iω(E(0) + P (0)) + ηk2)vz + i
k3

2
(Φ1 +Φ12)v

x = 0,

From these equations we see that the two shear modes split depending on their chirality.

The dispersion relations for these modes are given by

ω = −i
η

E(0) + P (0)
k2 ∓ i

2(E(0) + P (0))
(Φ1 +Φ12)k

3. (4.6)

11We have shown that none of the parity odd transport coefficients modify the sound or the charge

dissipation mode for the equilibrium characterized by (3.1).

– 21 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
0

Thus in the basis we have used to list the second order transport coefficients both Φ1 as

well as Φ12 contribute to the splitting of the shear modes. Earlier studies of the chiral

shear modes were restricted to the conformal transport at second order, therefore the

contribution of Φ12 to the splitting was not noticed. Let us call the coefficient of k3 as the

chiral dispersion coefficient and define

D =
1

2(E(0) + P (0))
(Φ1 +Φ12). (4.7)

Using holography we now show that for the case N = 4 Yang-Mills, Φ12 = 0. We

will also check the relation of Φ1 to the anomaly coefficient derived in this paper using

the holographic result for this transport coefficient. The holographic dual of this system is

given by the Reisner Nordström black hole in AdS5. We will use the notations of [2]. The

five dimensional action we consider is given by

S =
1

16πG5

∫ √−g5

(

R+ 12− FABF
AB − 4κ

3
ǫLABCDALFABFCD

)

. (4.8)

The equations of motion of the above action are

GAB − 6gAB + 2

(

FACF
C
B +

1

4
gABFCDF

CD

)

= 0, (4.9)

∇BF
AB + κǫABCDEFBCFDE = 0,

where GAB is the five dimensional Einstein tensor. The Reisner-Nordström black brane

solution in Eddington Finkelstein coordinates is given by

ds2 = −2uµdx
µdr − r2V (r,m, q)uµuνdx

µdxν + r2Pµνdx
µdxν , (4.10)

A =

√
3q

2r2
uµdx

µ

and

uµdx
µ = dv, V (r,m, q) = 1− m

r4
+

q2

r6
. (4.11)

Let R be the radius of the outer horizon of the black hole. We then define the quantities

M ≡ m

R4
, Q =

q

R3
, Q2 = M − 1. (4.12)

The last equation results from the fact that R is the largest root of V (r) = 0. The

thermodynamic quantities of this black hole are given by

T =
R

2π
(2−Q2), µ = 2

√
3QR, (4.13)

where T is the Hawking temperature andQ the charge density. The energy density, pressure

and the shear viscosity in terms of these variables are given by

E(0) =
3MR4

16πG5
, P (0) =

MR4

16πG5
η =

R3

16πG5
=

s

4π
. (4.14)

– 22 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
0

Before we proceed we first relate the anomaly coefficient C to the Chern-Simons coefficient

κ. The boundary current is given by

Jµ =
1

16πG5

√−g5F
rµ|r→∞, (4.15)

where r is the radial direction. Here we are using the definition of the current which

is consistent with the Page charge using which the charge density of the black hole is

evaluated. There are other definitions of current as discussed in footnote 3 of [2]. The

bulk equations of motion for the gauge field results in the following conservation law for

the current.

∂µJ
µ = − κ

16πG5
ǫµνρσFµνFρσ. (4.16)

We now have to identify the relation between the gauge field used in field theory and that

of the bulk gauge field. Note that the chemical potential value is related to the horizon

value of the gauge field. Comparing the horizon value of the gauge field in (4.10) and (4.13)

we see that the relation between the bulk gauge field and the gauge field is given by

Afield
µ = 4Abulk

µ . (4.17)

The relation is important since we have already used this normalization to define the

thermodynamics of the boundary gauge theory. The gauge fields in the field theory must

be defined consistent with this thermodynamics. Substituting the relation (4.17) into the

conservation law (4.16) we obtain

∂µJ
µ = − κ

256πG5
ǫµνρσF field

µν F field
ρσ . (4.18)

Now all quantities are defined in the field theory. Comparing with the current conservation

law in (1.3) we obtain

C =
κ

32πG5
. (4.19)

The transport coefficient Φ1
2 can be identified to the coefficientN7 in the notation of [2],

equation (4.37) see also [3, 18]. Reading out the holographic value of N7 from equation

(4.38) of [2] we have

Φ1

2
=

1

16πG5

√
3

M
(M − 1)

3
2R2κ. (4.20)

Note that the action given in (4.8) captures the situation when the gravitational anomaly

is zero. Using the relations in (4.12), (4.13) and (4.14) it can be seen that Φ1 can be

written as

Φ1 =
µ3η

E(0) + P (0)

κ

48πG5
. (4.21)

We can now compare it with the expression derived earlier for this paper for Φ1 for charge

fluid with an anomaly which is given by

Φ1 =
2

3

µ3η

E(0) + P (0)
C. (4.22)

– 23 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
0

Therefore we obtain

C =
κ

32πG5
. (4.23)

This is precisely the relation between the Chern-Simons coefficient and C obtained directly

using equations of motion in (4.19). This serves as a check for the relation between the

transport coefficient Φ1 and the anomaly coefficient derived in this paper.

We will now use the holographic value of Φ1 given in (4.20) to evaluate its contribution

to the chiral dispersion coefficient for the Riesner-Nordström black hole

D =

√
3Q3κ

4M2R2
+

1

2(E(0) + P (0))
Φ12. (4.24)

By the AdS/CFT correspondence the chiral dispersion relation corresponds to the quasi-

normal modes seen in the shear channel of the graviton fluctuations [19]. We therefore

compare this dispersion coefficient with that obtained in [12] by studying the quasi-normal

modes in the shear sector. They find that the dispersion coefficient is given by

DQNM =
κSY (QSY )3

8m2R3
. (4.25)

By comparing the action and the background solution given in [12] to that given in (4.8)

and (4.10) we obtain the following relations between the variables of [12] and that used here

κSY =
2κ

3
, (QSY )2 = 3q2 = 3Q2R6. (4.26)

Substituting the above relations in (4.25) we see that

DQNM =

√
3Q3κ

4M2R2
. (4.27)

Since DQNM must be equal to D evaluated in (4.24) we see that we must have Φ12 = 0 for

this system.

5 Conclusions

We have used the equilibrium partition function to obtain expressions for 7 parity odd

transport coefficients which occur at 2nd order for a non-conformal fluid with a single

conserved charge. These transport coefficients can be expressed in terms of the anomaly,

shear viscosity, bulk viscosity, charge diffusivity and thermodynamic functions. Out of

these 2 transport coefficients can also be derived using the Kubo formulae. These formulae

agree with that obtained by the partition function method. The equilibrium partition

function also gives 3 constraints for 5 other parity odd transport coefficients at this order.

The transport coefficient Φ1 affects chiral dispersion relations [13].

As we have mentioned earlier, parity odd coefficients have be examined earlier for con-

formal charge transport in [13]. There the principle used was that these coefficients should

not contribute to entropy production. In general the constraints obtained by examining the

zero entropy production condition will be more than that obtained from the equilibrium
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partition function. It will be interesting to carry out the analysis of [13] to non-conformal

fluids and compare with the results obtained in this paper.

Our analysis of these transport properties were motivated by the possibility of studying

them in holography. While this work was being done we received preprint [18] which

evaluates all 2nd order transport coefficients for a charged conformal fluid in the framework

of AdS/CFT. It is useful to compare the relations we have obtained for the parity odd

sector with the expressions of [18].

Finally it will be useful to develop Kubo like expressions for all the parity odd transport

coefficients. From the constitutive relations it seems that the remaining transport coeffi-

cients involves 3 point functions. Determining these relations will provide an alternate

method to obtain the transport coefficients from holography.

A Classification of parity odd data at 2nd order in derivatives

In this appendix we provide some details which led to the classification of the parity odd

data at second order in derivatives given in table 2. We consider the following basis of

vectors to construct the the second order terms:

• Parity odd vectors:

Vorticity : lµ = ǫµναβuν∂αuβ Magnetic field : Bµ =
1

2
ǫµναβuνFαβ . (A.1)

• Parity even vectors

uµ, ∂µT, ∂µν, (A.2)

Electric field : → V µ =
Eµ

T
− Pµρ∂ρν.

Among these vectors, the electric field V µ vanishes on the equilibrium fluid configuration

given in (2.1). We also consider the shear tensor

σµν = ∇〈µuν〉. (A.3)

and the scalar

Θ = ∇µu
µ. (A.4)

Note that both σµν and the scalar Θ vanishes on the equilibrium configuration in (2.1).

We use these basic quantities we can construct the various parity odd terms that occur at

second order in derivatives given in table 2. These terms are independent and cannot be

related to each other by equations of motion to first order in derivatives.

Let us consider the scalars listed in table 2: one would have thought that scalars of

the form ∇µl
µ and ∇µB

µ should be listed. But it can be shown that these scalars can be

related to the ones listed in the table by calculations which lead to the following identities.

∇µl
µ =

(

2qT

E + P

)

V µlµ − 2

(

∂µT

T

)

lµ (A.5)

∇µB
µ =

(

qT

E + P

)

V µBµ −
(

∂µT

T

)

Bµ − T lµ(Vµ − ∂µν) (A.6)

These identities can be verified by straight forward calculations.
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Let us now consider the vectors listed in table 2: note that the vectors Vµ

(3) to Vµ

(9)

vanish on the equilibrium configuration (2.1). Again one would have naively expected to list

terms such as Pµ
α (u.∇)Bα. We will show now using the equations of motion to the zeroth

order that this term is related to the vectors already listed in table 2. The manipulations

are as follows:

Pµ
α (u.∇)Bα =

1

2
Pµ
αu

θ∇θ

[

ǫανλβuνFλβ

]

,

=
1

2
Pµ
α ǫ

ανλβ
aνFλβ +

1

2
ǫµνλβuνu

θ∇θFλβ,

= −ǫµνλβaνuλu
θFθβ − ǫµνλβuνu

θ∇λFβθ,

= ǫµνλβaνuλEβ − ǫµνλβuν∇λEβ + ǫµνλβuν(∇λu
θ)Fβθ,

= −Tǫµναβuν∇αVβ + σµνBν −Θ

[

2Bµ

3
− T

(

s
∂ν

∂s
+ q

∂ν

∂q

)

lµ
]

−
(

qT 2

E + P

)

ǫµνλσuνVλ∂σν − 1

2
ǫµνλσuν lλBσ,

= −Tǫµναβuν∇αVβ + Vµ
7 − 2Vµ

6

3
+ T

(

s
∂ν

∂s
+ q

∂ν

∂q

)

Vµ
3

+

(

qT 2

E + P

)

Vµ

(9) +
1

2
Vµ

(1). (A.7)

Here aν = (u.∇)uν . In the r.h.s. of equation (A.7), all terms except the last one vanishes

at equilibrium. Therefore (u.∇)Bµ does not vanish in equilibrium but it can be related to

all the other vectors listed in the table. A similar analysis can be done for the vector of

the form P
µ
α (u.∇)lα. We have

Pµ
α (u.∇)lα = Rǫµναβuν∇αVβ +

(

∂R

∂T

)

ǫµναβuν(∇αT )Vβ (A.8)

+

(

∂R

∂ν

)

ǫµναβuν(∇αν)Vβ + σµν lν +

(

s

T

∂ν

∂s
+

q

T

∂ν

∂q
− 2

3

)

Θlµ,

where

R =
qT

E + P
. (A.9)

From equation (A.8) it is clear that Pµ
α (u.∇)lα vanishes at equilibrium and that it is related

to the other vectors listed in table 2.

In fact using symmetries we can list out all the independent terms appearing at the

second order. We can show that out at two derivatives either involving only the fluid

variables or the velocity and derivative of the field strength, only one pseudo vector can

be constructed if we demand on-shell independence for all the terms. This makes it clear

that once we have chosen ǫµναβuν∇αVβ , all other two derivative pseudo vectors of the form

mentioned earlier must be related to Vµ

(4) by equations of motion. From this argument it

is possible to observe that it is not necessary to list (u.∇)Bµ, (u.∇)lµ, ∇µl
µ or ∇µB

µ as

independent data. A similar analysis can be performed for the Pseudo-tensor. This leads

to the the 12 tensors listed in 2.
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B Consistency of the fluid profiles at the linear order

In this section we show that the velocity perturbations and the background field configura-

tion considered in equations (3.1) to (3.4) consistently solve the linearized fluid equations

of motion without the need of the any other fluctuations. The perturbations depends only

on the time, t and the spatial direction, y.

We will consider the perturbations to the linear order. We first write down all the compo-

nents of the stress tensor to 2nd order in derivatives and to linear order in the perturbations.

This are given by

T tt = E(0), (B.1)

T tx = = (E(0) + P (0))vx + P (0)htx,

T tz = (E(0) + P (0))vz + P (0)htz,

T ty = 0,

T xx = P (0),

T xy = −P (0)hyx − η(∂yv
x + ∂thyx)

+
1

2
Φ1∂

2
y(v

z + hzt) +
1

2
Φ2∂

2
yaz

+
1

2
Φ12∂y(∂yv

z + ∂thyz),

T xz = 0,

T yy = P (0),

T yz = −P (0)hyz − η(∂yv
z + ∂thyz)

−1

2
Φ1∂

2
y(v

x + hzt)−
1

2
Φ2∂

2
yax

−1

2
Φ12∂y(∂yv

x + ∂thy),

T zz = P (0).

Now there are 4 equations of motion for the stress tensor. We will show that that the t

and y components are trivially satisfied. The x and z components of this equations can be

used to determine the velocity profiles. The t component of the equations of motion of the

stress tensor is given by

∂tT
tt + ∂yT

yt + Γµ
µtT

tt + Γt
ttT

tt + Γt
xxT

xx + Γt
yyT

yy + Γt
zzT

zz = 0. (B.2)

Note that we have used the fact that all Christofell symbols are first order in the fields. We

have also used the fact that the only dependence is through time t and y. Now examining

the Christofell symbols given in (3.5) we see that there is no contribution to the equation

in (B.2) from any term involving the Christofell symbols. Also since T tt = E(0), the first

term also vanishes. The second term in the equation vanishes because T yt = 0. Thus this

equation is satisfied and imposes no constrains on the velocity configuration chosen. Now

let examine the y component of the equations of motion of the stress tensor. We have

∂tT
ty + ∂yT

yy + Γµ
µyT

yy + Γy
ttT

tt + Γy
xxT

xx + Γy
yyT

yy + Γy
zzT

zz = 0. (B.3)
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Again, examining each term one can see that this equation is also satisfied. Thus the t and

y equations are satisfied. Thus vx and vy are determined by the x and z component of the

equations of motion

∂tT
tx + ∂thtxT

tt + ∂yT
yx = 0, (B.4)

∂tT
tz + ∂thtzT

tt + ∂yT
yz = 0.

To complete the analysis we show that the equations of motion of the charge current

are also trivially satisfied. The only non-zero values of the the vorticity to the linear order

is given by

lx = ∂yvz, lz = −∂yvx. (B.5)

Similarly the non-zero values of the magnetic field to the linear order

Bx =
1

2
∂yaz, Bz = −1

2
∂yax. (B.6)

One can also see that for the background in (3.1) and fluctuations to the linear order the

electric field V µ vanishes to the linear order in the fields. It can also be seen that to

the linear order in fields the vectors Vµ

(i) with i = 1, · · · 9 all vanish. Now using all this

information, the currents to the linear order in fields and to second order in derivatives are

given by

J t = −q(0), (B.7)

Jx = q(0)vx + ξlx + ξBB
x,

Jy = 0,

Jz = q(0)vz + ξlz + ξBB
z.

Now the current conservation equation to this order reads

∂t(
√
gJ t) + ∂y(

√
gJy) = 0, (B.8)

and since
√
g does not change to the linear order, this equation is satisfied and does not

impose any further conditions on the velocities vx and vy. Here we have used that the only

dependence is through t and y.

Thus the constant background with the linear velocity profiles vx, vy given in (3.1)

to (3.4) consistently solve the equations of motion. There are only 2 equations which

determine the velocity profiles vx, vy. A simple way of stating this is that we have turned

only the shear fluctuations which decouple from the rest of the modes.
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