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Abstract A novel ultralow-current-mode amplifier

(ULCA) serving for on-chip biosensor signal pre-amplifi-

cation in the integrated biosensing system (IBS) has been

presented and verified in SMIC 0.18 lm CMOS technology

by elaborately considering gain, bandwidth, noise, offset,

and mismatch. The proposed ULCA solved the noise,

bandwidth, and current headroom dilemma in the reported

works, and can completely satisfy the specifications of IBS.

It provides a current gain of 20 dB, 3 dB bandwidth of 7.03

kHz and input dynamic range of 20 bit, with only 1 nA of

DC quiescent current, while the input offset current and

noise current are less than 16.0 pA and 4.67 pArms,

respectively.

Keywords Integrated biosensing system (IBS) �
Ultralow-current-mode amplifier (ULCA) � Subthreshold �
Noise � Mismatch

1 Introduction

Biomedical technology emerges since the past century and

is believed to be one of the most promising industries in the

21st century together with micro and nano-electronics

industries. Recently, DNA molecule based biosensors are

being reported by many famous literatures [1–3]. Natu-

rally, the integrated biosensing system (IBS) which

monolithically integrates the biomedical sensor arrays and

ASICs such as ultralow-current-mode amplifier (ULCA),

ADC, and DSP in a single chip is avidly expected to be

realized to greatly reduce the cost of common sensors used

in the hospitals and markets. Actually, the proposed sens-

ing schemes implemented on silicon-nanowire and golden

surface [2, 3] are inherently compatible with modern

CMOS process, however, the fastidious requirements as

summarized in Table 1 of ultralow-current-mode operation

and sensitivity (nA or sub-nA) for the following stages of

ICs make great challenges to analog IC designers. Obviously,

conventional transistor–saturation-based current-mode

circuits are out of consideration due to the large noise

background induced by the DC quiescent current and

subthreshold-based current-mode circuits emerge to be the

candidates [4, 5].

It is well known that since the subthreshold current

appears an exponential function of the gate voltage in

MOSFET, subthreshold circuits suffer from power fluctu-

ations and process fluctuations between die to die seriously.

Fortunately, they suffer little fluctuations on the same die

[6] which makes it possible to realize ultralow-current-mode

circuits by integrating all the circuit modules on a single

chip [7, 8].

Some ULCA topologies have been reported in litera-

tures [9–11], as shown in Fig. 1. The circuit in Fig. 1(a)

uses a regulated current mirror to achieve current amplifi-

cation whose quiescent currents are provided by current

sources, while the bandwidth is limited by capacitor C0.

However, since quiescent current I0 should be low enough

to reduce the noise level and meet the requirement of

sensitivity, the required current headroom (in both push

and pull directions) can hardly be achieved. One can cer-

tainly use the complimentary topology in Fig. 1(b) to meet

the headroom requirement and increase sensitivity by

removing noise background introduced by quiescent cur-

rent I0, however, at the cost of losing bandwidth on the low

input cases.
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To meet the specifications in Table 1, in this paper, a

ULCA in achieving biosensing pre-amplification purpose has

been proposed, characterized and verified by using SMIC

0.18 lm CMOS mixed signal technology. The results show

that proposed ULCA can completely satisfy the requirements

of IBS application, which makes it a promising candidate for

the purpose of pre-amplification of biosensor signals.

2 Circuit descriptions

The proposed topology of ULCA has been shown in Fig. 2.

In this circuit, the current from DNA biosensors is input to

a complimentary regulated current mirror composed of N

type opamp AN0, P type opamp AP0, and transistor M0,

M1, M3, M4, where it is amplified by a factor of 10

(20 dB). Opamp AN1, AP1, and M6–M11 compose a

voltage limiter. Initially, due to the ‘‘virtual short’’ mech-

anism ‘‘in’’ is fixed at ‘‘clamp’’ by AN0 and AP0, and a

quiescent current of Iref is constructed in M0 and M3 by

AN1 and AP1. When a push input is applied, Vvn comes

down and so does the output of opamp AN1, thus turns off

M2, and the current of M0 and M1 is being sinked by AP0,

on the other hand, since Vvp is also prone to decrease,

current provided by AN0 become smaller, while M5 is

turned on by AP1 and compensates the current at node

‘‘vp’’, which limits Vvp from decreasing and assures the

quiescent current of M0 and M3 exactly equals to the

reference current Iref provided by M6–M9 even if the input

current Iin is much larger than the quiescent current Iref.

Similar conclusion can also be made for the pull input

cases. It can be seen that M2 and M5 alternatively sustain a

quiescent current of Iref for the input current mirror, which

in turn keeps a constant bandwidth when input varies

between push and pull (positive and negative) directions.

Furthermore, Iref can be designed small enough to achieve
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Fig. 2 Circuit diagram of proposed ULCA

Table 1 Specifications of integrated biosensor

DNA releasing voltage 0.9 V

DNA modulation voltage ±0.4 V

Current headroom ±100 nA

Current sensitivity *100 pA

Max. signal bandwidth 6 kHz

Dynamic range 10 bit

Temperature range 10–40�C
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the required sensitivity and noise level without restricted

by the current headroom any more, since the current

headroom is no longer depending on the magnitude of

quiescent current of the input stage in the proposed ULCA.

Therefore, the circuit can provide an extremely high sen-

sitivity and large current headroom at the required band-

width. Due to the variation and pad leakage issues, Iref is

unpractical to be provided off-chip. Therefore, in the

design, the biasing stage composed of three steps of current

mirroring (each step achieves a conversion factor of 0.1)

realized by M12–M16 is introduced, from which a lA off-

chip current is down converted by 1,000 times, thus

relaxing these unwanted impacts. Capacitors C0 and C1

serve for frequency compensation and bandwidth confine-

ment purposes in the circuit.

The topologies of auxiliary N and P type opamp are

shown in Fig. 3(a) and (b). In the circuit, M0, M1, M3, and

M4 compose a differential input stage, and are chosen as

large dimensions to improve matching and reduce offset,

meanwhile, they are biased in their subthreshold regions

for the purpose of noise reduction. Transistor M5 and M6

compose a trans-conductance output stage providing cur-

rent for the following circuits. Capacitor Cn and Cp are

serving for frequency compensation in the circuit, thus

ensuring the AC stability.

3 Circuit analysis

As found from Fig. 2, when a push input is applied, the

conversion gain is provided by regulated current mirror

composed of M0, M1, and opamp AP0, while M3–M5 and

opamp AP1 are serving as current sources providing the

quiescent current for the stage, which can be simplified to

the circuit shown in Fig. 4(a). Complimentary discussion

of the pull input case leads to the topology shown in

Fig. 4(b).

3.1 AC small signal analysis

The small signal equivalent circuit for AC analysis is

shown in Fig. 4(c). In this circuit, the trans-conductance of

opamp is modeled as gma(s) considering delays introduced
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by parasitic capacitances of its internal nodes. As suggested

by [12], gma(s) can be written as:

gma sð Þ ¼ gma 1� s

xa

� �
ð1Þ

where gma is the DC trans-conductance and xa models the

delay.

Detailed analysis of the equivalent circuit results in

the characterization function of as2 ? bs ? c = 0,

where:

a ¼ Cia Ci þ Coað Þxa þ Ci Coa �
gma

xa

� �
xa ð2Þ

b � Cia gm0 þ gm1 þ goað Þxa

þ gm0 þ go0ð Þ Coa �
gma

xa

� �
xa ð3Þ

c � gmb0 gma � gm1ð Þxa þ gm0 gmb1 þ goa þ gmað Þxa ð4Þ

and the parameters are defined as follows:

Cia: Input capacitance of opamp.

Coa: Output capacitance of opamp (Cn or Cp).

Ci: Cgs0 ? Cgs1 ? C0 (or C1).

gm: Trans-conductance of MOSFET.

gmb: Body trans-conductance of MOSFET.

go: Output conductance of MOSFET.

goa: Output conductance of opamp.

In order to maintain the AC stability, a [ 0, b [ 0, and

c [ 0 must be satisfied, resulting in the conditions of

gma [ gm1 and Coa [ gma/xa. Moreover, it can be found

that provided the quiescent current Iref, by adjusting the

capacitance of C0 and C1, the bandwidth of proposed

ULCA can be confined at the expected value.

3.2 Noise characterization

Generally, three kinds of noises are considered in CMOS

circuit: thermal noise and shot noise, which are white

noise, and flicker noise or 1/f noise. According to the

subthreshold noise characterization in [6, 7] and the dis-

cussions in [11], the low frequency noises (flicker noise

and some low frequency components of white noise) are

being substantially canceled in the input node due to the

quiescent current substraction and the symmetrical topol-

ogy, resulting in that white noise appears more remarkable

than flicker noise over the required bandwidth. Further-

more, white noise in the subthreshold MOSFET is basically

contributed by shot noise, and the noise power density is

given by: SI = 2qI, where I is the DC current and q is the

unit charge [6, 7].

The noise performance of proposed ULCA can be

characterized by two noise sources, ‘‘vn’’ and ‘‘in’’ with the

corresponding power densities of Svn and Sin, which can be

calculated as usual: by evaluating the output noise current

with input open or shorted to ground and dividing by the

gain. Meanwhile, considering the practical noises from

Vclamp and Iref sources, the simplified expressions are

reported as:

Sin ¼ 4qIref 1þ 1

A

� �
þ 4kTM2GS ð5Þ

Svn ¼
4qAIref þ 4kTM2A2GS

g2
ma

þ 2Sva þ 4kTRS ð6Þ

where A is the current gain, Sva is the input–referred noise

power density of opamp, M = 0.001 is the conversion

factor of biasing current mirrors, RS and GS represent the

source resistance and conductance of the voltage and cur-

rent sources, k and T are the Boltzman constant and

absolute temperature, respectively. In practical implemen-

tation, the values of RS and GS are 50 X and \10-7 s, and

the noise voltage and current from the sources over the

specified the bandwidth are 76 nVrms and 3.4 fArms,

much smaller than the typical noises of opamp and tran-

sistors in the application, thus being insignificant for the

overall noise performance. From (5) and (6), Sin and Svn

can be reduced by decreasing the input–referred noise of

the opamp and the quiescent current Iref, however, trading

with the power consumption and the bandwidth of ULCA.

4 Verification and discussion

The proposed ULCA is verified by using SMIC 0.18 lm

CMOS mixed signal technology over the specified tem-

perature range of 10–40�C at all process corners of TT, FF,

SS, FS, and SF. Meanwhile, mismatching issues are also

analyzed by Monte Carlo simulations over 30 different

samples.

As stated in Sect. 3, the DC quiescent current of ULCA

comes from the trade-off between noise and bandwidth

requirement. From the simulation, the optimized quiescent

current is given as Iref = 1 nA, transistor channel length is

chosen as L = 1 lm, and the aspect ratios (W/L) of basic N

and P transistor cells are 10 and 20, respectively, while all

the capacitances are designed as 1 pF.

4.1 Process corners analysis

Figure 5(a) shows the gain–bandwidth–product (GBW)

and input–referred–noise–current (IRNC) as functions of

DC input current Iin at all process corners, and the data at

Iin = 0 is summarized in Table 2. It can be seen that within

an input range of ±100 pA, GBW and IRNC virtually
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remain constant at 96.9 dBHz and 4.02 pArms, respec-

tively, while increase monotonously for larger input levels.

The minimal bandwidth is 7.03 kHz, a little bit larger than

the specified 6 kHz, and the DC gain holds constantly at

20 dB. Meanwhile, GBW and IRNC are suffering little

variations from different process corners, and the relative

fluctuations are within ±0.3 and ±5.5%, respectively.

Moreover, for -4.67 pA B Iin B 4.67 pA the input

current is sinked by the noise floor, and the signal-to-noise-

ratio (SNR) is less than 0 dB. When |Iin| increases up to

100 pA (the sensitivity level of IBS specification) where

the noise level still remains constant, SNR linearly ascends

with |Iin| to 27.5 ± 0.9 dB. For larger input current, the

following equation holds until the input current mirror

becomes saturated:

SNR / Iinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iin þ Iref

� �
B

q / Iin

Iin þ Iref
! const: ð7Þ

where B is the bandwidth of the circuit at the input current

of Iin.

The SNR when the input current mirror becomes satu-

rated can be formulated as follow considering the first

order pole of the circuit:

SNR / Iinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iin

p
B

p /
ffiffiffiffiffi
Iin

p
ð8Þ

Equation (7) suggests that SNR tends to converge before

the input current mirror saturates, which indicates that the

increase of IRNC does not worsen the SNR. This has been

verified by the linear part of IRNC curve in Fig. 5(a) when

|Iin| [ 1 nA. The saturation value of SNR is calculated as

54.6 ± 0.3 dB over the five corners. Along with the

increase of Iin, the input current mirror becomes

saturated, and the SNR should follows (8). However,

since the second order conjugate pole gradually becomes

dominant and extends the bandwidth as suggested by

simulation, the increasing of SNR is slower than (8).

4.2 Temperature dependencies

The temperature dependencies of GBW and IRNC as

functions of DC input current Iin within the specified

temperature range of 10–40�C are illustrated in Fig. 5(b),

while the data at Iin = 0 is also summarized in Table 2. It

is concluded from Fig. 5(b) that both the GBW and IRNC

exhibit slightly larger dependencies on temperature with

respect to process corners, and vary around ±0.4 and

±7.4%, respectively, within the required temperature range

of 10–40�C.

Similar conclusion can be made for SNR as analyzed in

the previous section, the SNR at |Iin| = 100 pA is

27.2 ± 0.9 dB, and the saturation value of SNR is

55.0 ± 0.8 dB within 10–40�C.
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Fig. 5 GBW and IRNC versus DC input current varying from -100

to 100 nA. a GBW and IRNC at various process corners. b
Temperature dependencies of GBW and IRNC of proposed ULCA

Table 2 Process corners data and temperature characteristics of GBW, 3 dB bandwidth, and IRNC at Iin = 0

TT FF SS FS SF 10�C 27�C 40�C

GBW

(dBHz)

96.94 97.99 96.85 97.41 97.13 97.60 96.94 96.86

3 dB bandwidth

(kHz)

7.03 7.93 6.96 7.42 7.19 7.59 7.03 6.97

IRNC (pArms) 4.02 4.49 3.94 4.19 4.06 4.17 4.02 4.66
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4.3 Mismatch considerations

In reality, the performances of practical circuit also suffers

from process fluctuations due to transistor mismatches. To

characterize these impacts, Monte–Carlo simulations on

gain, 3 dB bandwidth, input–referred–offset (IRO), and

IRNC of proposed ULCA are applied over 30 different

samples. According to the design kits of SMIC 0.18 lm

CMOS mixed signal technology, the standard deviations r
due to threshold voltage VT and aspect ratio W/L mis-

matches are 1.85 mV and 0.5% for the applied transistor

dimension. In the simulation, W, L, and VT are randomly

selected within the 3r range at absolute Gaussian distri-

bution, and are applied to the transistors. The results are

shown in Fig. 6. It can be seen that the DC gain distributes

from 19.8–20.1 dB, and 21 results of 3 dB bandwidth,

IRO, and IRNC within the all 30 samples appear good

consistency and randomly distribute in the ranges of

7.03–7.27 kHz, 14.3–16.0 pA, and 4.00–4.67 pArms,

while other 9 samples are expressing large deviations.

Specifically, the bandwidth and IRNC deviations are

mainly induced by the input–referred offsets Voff of opamp

AN1 and AP1, and IRO deviation is due to the Voff of

opamp AN0 and AP0, and mismatches of M0, M1, M3,

M4. If the offsets of opamp AN1 and AP1 due to transistor

mismatches are as large as hundreds millivolts, the quies-

cent current of M0 and M3 might considerably differ from

Iref, which in turn leads to the large deviations on the 3 dB

bandwidth and IRNC. Similarly, if offsets of opamp AN0

and AP0, and mismatches of M0, M1, M3, M4 are con-

siderably large, a large DC output current will be observed

in the quiescent state, thus worsening the IRO of the cir-

cuit. For further improvement of circuit performances and

yield, transistor M0, M1, M3, and M4 in Figs. 2, and 3(a)

and (b) have to be carefully laid out or even larger areas are

applied to these transistors in the design, however, trading

with the bandwidth of the circuit.

The summarized circuit performances from post sim-

ulation are listed in Table 3. In the worst case, the input

sensitivity is 20.7 pA, which determines the lower rail of

input dynamic range, while the higher rail restricted by

the maximal input current is 38.4 lA. Therefore, the

proposed ULCA is capable of achieving an input dynamic

range larger than 20 bit, thus satisfies the IBS specifica-

tion. The SNR at Iin = 38.4 lA is 62.3 dB, roughly

10 dB lower than the value following the square-root law

in (8) as a result of the second order conjugate pole of the

circuit.

5 Conclusion

In this paper, a novel ULCA aiming at the application of

signal pre-amplification in the integrated biosensing system

has been proposed and verified by using SMIC 0.18 lm

CMOS technology. The proposed ULCA can completely

satisfy the prescribed specifications of input current head-

room, sensitivity, bandwidth, as well as input dynamic

range for IBS applications. The proposed ULCA can also

be used for ultralow current amplification in other types of
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Fig. 6 Monte–Carlo simulation results of DC gain, 3 dB Bandwidth,

IRO, and IRNC considering device mismatches. a Monte–Carlo

simulation of 3 dB Bandwidth and IRO as functions of DC gain over

30 samples. b Monte–Carlo simulation of IRNC as a function of DC

gain over 30 samples

Table 3 Summary of post simulated circuit performances of pro-

posed ULCA

DC gain 20 dB

3 dB bandwidth 7.03 kHz

Phase margin [90�
Max. output current 0.384 mA

Input referred offset -14.3 to 16.0 pA

Input referred noise current 4.02 pA

Input dynamic range [20 bit

DC power dissipation 26.97 lW

Power supply 1.8 V

Layout area 220 lm 9 80 lm
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biosensor interfaces, nanoscale device sensing, and optical

sensing in the future.
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