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We introduce multipulse multicarrier (MPMC) modulation, a wireless communication scheme that augments traditional single-
pulse multicarrier systems by using multiple pulses at the transmitter and the receiver. The mathematical foundation of MPMC
systems is established by the novel concept of multipulse Gabor Riesz bases. We adapt Zak-Fourier domain tools previously de-
veloped for multiwindow Gabor frames to analyze and design (bi)orthogonal multipulse Gabor Riesz bases and the corresponding
MPMC systems in a computationally efficient manner. Furthermore, explicit expressions for the interference power and the spec-
tral efficiency in MPMC transmissions over time-varying multipath channels are derived. The superiority of MPMC modulation
over single-pulse multicarrier systems is finally demonstrated via numerical simulations.
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1. INTRODUCTION

1.1. Background and contributions

Multicarrier modulation [1–3] is an attractive technique for
high data-rate wireless communications. Cyclic prefix or-
thogonal frequency-division multiplexing (CP-OFDM) [4–7]
is a multicarrier scheme that is being used or proposed for
numerous wireless standards like WLAN (IEEE 802.11a/g/n,
HIPERLAN/2), broadband wireless access (IEEE 802.16),
wireless personal area networks (IEEE 802.15), and digital
audio and video broadcasting (DAB, DRM, DVB-T). More-
over, it is a promising candidate for mobile radio systems be-
yond 3G. Recently, pulse-shaping OFDM [8, 9] and biorthog-
onal frequency-division multiplexing [9–12] have been shown
to be less susceptible to channel distortions than CP-OFDM.
We unifyingly refer to all of the above schemes as single-pulse
multicarrier (SPMC) systems.

In this paper, we develop the foundations of multipulse
multicarrier (MPMC) modulation, a novel wireless commu-
nication scheme that extends SPMC systems by using mul-
tiple transmit and receive pulses [13]. MPMC modulation
is similar in spirit to multiwindow Gabor expansions [14]
that extend the Gabor expansion [15, 16] by using mul-
tiple windows. It establishes a unifying framework for the
various SPMC systems discussed in Section 1.2 and features
increased design freedom which can be used to optimize sys-
tem performance (cf. [17, 18]).

The specific contributions of the paper are as follows.

(i) In Section 2, we introduce and discuss MPMC modu-
lation and point out its relation to existingmulticarrier
schemes. An equivalent MPMC system formulation in
terms of the piecewise Zak transform and a 2D Fourier
transform is presented in Section 3.

(ii) General linear modulation schemes are studied using
the theory of Riesz bases in Section 4. Specializing this
to the MPMC context leads us to the novel concept of
multipulse Gabor Riesz bases (Section 5).

(iii) We derive explicit expressions for the interference
power and the spectral efficiency of MPMC trans-
missions over time-varying multipath channels in
Section 6.

(iv) Numerical examples regarding the design and perfor-
mance of MPMC systems are provided in Section 7,
including a comparison with SPMC systems.

Some conclusions are finally provided in Section 8. As a basis
for the introduction of MPMC modulation, we next discuss
SPMC systems in slightly more detail.

1.2. Single-pulsemulticarrier systems

The modulator of an SPMC system with K subcarriers maps
the transmit symbols al,k (l and k denote symbol time and
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Figure 1: Schematic TF domain illustration of (a) an SPMC system
and (b) an MPMC system withM = 4.

subcarrier index, resp.) to the transmit signal

s(t) =
∞∑

l=−∞

K−1∑

k=0
al,k , gl,k(t), gl,k(t) � g(t − lT)e j2πkFt. (1)

Here, g(t) is the prototype transmit pulse, and T and F de-
note the symbol duration and subcarrier spacing, respec-
tively. It is seen that each symbol al,k is carried by a pulse
gl,k(t) localized about the time-frequency (TF) lattice point
(lT , kF) (cf. Figure 1(a)).

The SPMC demodulator calculates the receive sequence1

xl,k =
∫

t
r(t)γ∗l,k(t)dt, γl,k(t) � γ(t − lT)e j2πkFt, (2)

where r(t) and γ(t) denote the received signal and the proto-
type receive pulse, respectively.

For the case of an ideal channel (r(t) = s(t)), perfect sym-
bol recovery (xl,k = al,k) is obtained if and only if the pulses
g(t), γ(t) and the lattice constants T , F are designed such that
the biorthogonality condition

∫
t g(t)γ

∗
l,k(t)dt = δlδk is satisfied

(cf. Section 4). For this, it is necessary that TF ≥ 1 (TF is
termed the redundancy). A larger redundancy amounts to a
guard region between neighboring pulses which is beneficial
for reducing intersymbol and intercarrier interference (ISCI)

1 Integrals are from −∞ to∞ unless stated otherwise. Throughout the pa-
per, the superscripts ∗, T , and H denote the complex conjugate, trans-
pose, and Hermitian transpose, respectively.

but reduces the number of symbols transmitted per second
and Hertz.

Since wireless communication systems often operate over
rapidly time-varying channels, minimizing ISCI is important
to assure high spectral efficiencies. For SPMC systems, this
problem leads to the development of pulse-shaping OFDM
[8, 9] and BFDM [9–12]. Lattice OFDM [19] is another at-
tempt to reduce ISCI by using a hexagonal TF lattice. Finally,
OFDM/offset QAM (OFDM/OQAM) [9, 20–22] is an SPMC
variant that allows to use critical redundancy TF = 1 at the
cost of increased equalization complexity.

2. MULTIPULSEMULTICARRIER SYSTEMS

2.1. MPMCmodulator and demodulator

The fundamental idea behind MPMC systems is to use
multiple transmit and receive prototype pulses [13] (see
Figure 1(b)).

TheMPMCmodulator usesM linearly independent pro-
totype transmit pulses g(m)(t), m = 1, . . . ,M. We will re-
fer to the vector g(t) = [g(1)(t) · · · g(M)(t)]T as transmit
multipulse. At symbol time l and subcarrier k, M symbols

a(m)
l,k , m = 1, . . . ,M, are transmitted in parallel via the pulses

g(m)
l,k (t) = g(m)(t − lT)e j2πkFt, m = 1, . . . ,M (the symbol du-
ration T and the subcarrier spacing F constitute the MPMC
TF lattice parameters). With K again denoting the number
of subcarriers, the MPMC transmit signal equals

s(t) =
M∑

m=1

∞∑

l=−∞

K−1∑

k=0
a(m)
l,k g(m)

l,k (t). (3)

Hence, MPMC modulation can be interpreted as super-
position of M SPMC modulators with different transmit
pulses. Using the vector notations al,k = [a(1)l,k · · · a(M)

l,k ]T , and

gl,k(t) =
[
g(1)l,k (t) · · · g(M)

l,k (t)]T , the MPMC transmit signal
can be written as (cf. (1))

s(t) =
∞∑

l=−∞

K−1∑

k=0
aTl,kgl,k(t). (4)

At the receiver, the MPMC demodulator employs a re-
ceive multipulse γ(t) = [γ(1)(t) · · · γ(M)(t)]T consisting of
M linearly independent prototype receive pulses γ(m)(t),
m = 1, . . . ,M, to calculate the vector sequence xl,k =
[x(1)l,k · · · x(M)

l,k ]T from the received signal r(t) according to (cf.
(2))

xl,k =
∫

t
r(t)γ∗l,k(t)dt. (5)

Here, γl,k(t) = [γ(1)l,k (t) · · · γ(M)
l,k (t)]T with γ(m)

l,k (t) = γ(m)(t −
lT)e j2πkFt.

Block diagrams of MPMC modulator and demodulator
are shown in Figure 2.

2.2. Biorthogonality and TF lattice

ForMPMC systems, perfect symbol recovery (xl,k = al,k) in the
case of an ideal channel (r(t) = s(t)) is obtained if and only
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Figure 2: Block diagrams of MPMC modulator and demodulator.

if the multipulses g(t) and γ(t) and the TF lattice parameters
T and F are chosen such that the biorthogonality condition

∫

t
g(t)γHl,k(t)dt = δlδkI (6)

is satisfied (i.e., {gl,k(t)} and {γl,k(t)} are biorthogonal sets).
If in addition g(t) = γ(t), then {gl,k(t)} is an orthogonal set.
(Bi)orthogonal pulses require that the sets {gl,k(t)}, {γl,k(t)}
constitute multipulse Gabor Riesz bases (see Section 5) which
in turn presuppose that the redundancy TF/M satisfies
TF/M ≥ 1, consistent with the single-pulse case. Thus, in-
creasing the number of pulses M requires a corresponding
reduction of the TF lattice density (cf. Figure 1).

For fixed M, choosing the TF lattice parameters T and
F is equivalent to specifiying the lattice ratio T/F and the re-
dundancy TF/M. Choosing the redundancy TF/M is a trade-
off between high spectral efficiency (achieved with small re-
dundancy) and robustness against ISI/ICI (obtained for large
redundancy that reduces the overlap of adjacent pulses). Typ-
ically, TF/M = 1 + ε with ε = 0.02 · · · 0.5 (according to the
Balian-Low-type theorem discussed in Section 5, TF/M = 1
leads to poorly localized pulses). Regarding the lattice ratio,
symmetry arguments suggest the choice T/F = τmax/νmax (cf.
[10, 19] for the case M = 1), where τmax and νmax are the
maximum delay and the maximum Doppler frequency, re-
spectively, of the channel. The impact of the MPMC TF lat-
tice on spectral efficiency will be illustrated in Section 6.

2.3. Special cases

Various existing SPMC systems fit within the MPMC frame-
work as special cases. In particular, (pulse-shaping) OFDM
[3–5, 8, 9] and BFDM [9–12] are simple special cases with
M = 1.

Lattice OFDM [19], an SPMC scheme using an orthog-
onalized Gaussian pulse g(t) on a hexagonal TF lattice (see
Figure 3(a)), can be viewed as MPMC system with M = 2
and transmit/receive multipulses g(t) = γ(t) = [g(t) g(t −
T/2)e jπFt]T (cf. Figure 3(b)).

OFDM/OQAM [9, 20–22] can be interpreted as M = 4
MPMC system with real-valued transmit symbols and trans-
mit multipulse g(t) = [g(t) jg(t)e jπt/T jg(t − T/2) g(t −
T/2)e jπt/T]T (see Figure 4(a)). While OFDM/OQAM uses

f
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−2T −T 0 T 2T
t
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Figure 3: Lattice OFDM system: (a) equivalent MPMC representa-
tion withM = 2, (b) correspondingMPMCmultipulse for TF/M =
1.5 (solid line: real part, dashed line: imaginary part).

TF/M = 1/2, perfect symbol recovery for an ideal channel
can still be achieved due to the restriction to real-valued sym-
bols.

Finally, multicarrier direct sequence CDMA (MC-DS-
CDMA), a combination of OFDM and CDMA [23], can be
interpreted as an MPMC system where the prototype pulses
{g(m)(t)}, m = 1, . . . ,M, correspond to the M CDMA chip
sequences (cf. Figure 4(b)).

3. ZAK-FOURIER FORMULATION

We next present an alternative MPMC system description in
terms of the piecewise Zak transform [14] and a 2D Fourier
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transform. We note that the (piecewise) Zak transform has
successfully been applied for the analysis and design of (mul-
tiwindow) Gabor frames [15, 16]. This description applies to
systems with rational lattice, TF = p/q, p, q ∈ N (note that
this is not a severe restriction). For simplicity, we first con-
sider the case of integer TF lattice, TF = p ∈ N and discuss
the extension to rational TF lattice in Section 3.3.

3.1. (Piecewise) Zak transform and
2D Fourier transform

The Zak transform of a signal2 s(t) ∈ L2(R) is defined as (cf.
[14])

(Zs)(η, θ) � 1√
F

∞∑

n=−∞
s
(
η + n

F

)
e− j2πθn. (7)

In our context, F is the MPMC subcarrier spacing. The Zak
transform is (quasi-)periodic in the sense that

(Zs)(η +m, θ + n) = e j2πθm(Zs)(η, θ), m,n ∈ Z. (8)

Consequently, it is uniquely defined by its values on the unit
square (η, θ) ∈ U2, U = [0, 1). The Zak transform can be
inverted via the relation

s
(
t+
n

F

)
= 1√

F

∫ 1

0
(Zs)(tF, θ)e j2πθndθ, 0 ≤ t <

1
F
, n ∈ Z,

(9)

and it is a unitary mapping from L2(R) to the Hilbert space
L2(U2) with inner product

〈Zs,Zr〉L2(U2) �
∫ 1

0

∫ 1

0
(Zr)∗(η, θ)(Zs)(η, θ)dη dθ. (10)

The Zak transform is covariant to time and frequency shifts
in the sense that

s̃(t) = s(t − τ)e j2πνt

⇐⇒ (Zs̃)(η, θ) = e j2πην/F(Zs)
(
η − τF, θ − ν

F

)
.

(11)

For integer TF lattice, (8) and (11) imply that

sl,k(t) = s(t − lT)e j2πkFt

⇐⇒ (
Zsl,k

)
(η, θ) = e− j2π(lpθ−kη)(Zs)(η, θ).

(12)

The piecewise Zak transform (PZT) of s(t) is defined as
the length-p vector [14]

(Zps)(η, θ)

�
[
(Zs)(η, θ) (Zs)

(
η, θ +

1
p

)
· · · (Zs)

(
η, θ +

p − 1
p

)]T
.

(13)

2 The space of functions (sequences) that are square-integrable (square-
summable) on a set S are denoted by L2(S) (l2(S)).
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Figure 4: Multipulses for special cases of MPMC modulation:
(a) OFDM/OQAM, (b) MC-DS-CDMA with M = 4. (solid line:
real part, dashed line: imaginary part).

It is uniquely defined by its values on the rectangle (η, θ) ∈
[0, 1) × [0, 1/p) and it is a unitary mapping from L2(R) to
the Hilbert space H p � L2([0, 1) × [0, 1/p);Cp) with inner
product

〈
Zps,Zpr

〉
H p �

∫ 1

0

∫ 1/p

0
(Zpr)H(η, θ)

(
Zps

)
(η, θ)dθ dη.

(14)

Due to their unitarity, Zak transform and PZT preserve the
L2(R) inner product 〈s, r〉 �

∫
t r
∗(t)s(t)dt:

〈s, r〉 = 〈Zs,Zr〉L2(U2) =
〈
Zps,Zpr

〉
H p . (15)

Note that the TF shift covariance properties (11) and (12)
also apply to the PZT.

We will further use the following 2D Fourier transform
(2D-FT) of 2D vector sequences xl,k:

(F x)(η, θ) � √
p

∞∑

l=−∞

∞∑

k=−∞
xl,ke− j2π(lpθ−kη). (16)

Like the PZT, (F x)(η, θ) is uniquely defined by its values
on the rectangle (η, θ) ∈ [0, 1) × [0, 1/p). The 2D-FT is a
unitary mapping from the Hilbert space of 2D sequences in
l2(Z2;CM), M ∈ N, with inner product 〈x, a〉 � ∑

l,k a
H
l,kxl,k

to the Hilbert space HM . The inverse 2D-FT of A(η, θ) =
(F a)(η, θ) is defined as

(
F −1A

)
l,k � √

p
∫ 1

0

∫ 1/p

0
A(η, θ)e j2π(lpθ−kη)dθ dη. (17)

In practical implementations, PZT and 2D-FT can efficiently
be computed using the FFT [24].
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3.2. MPMCmodulator and demodulator

We next reformulate the MPMC modulator (4) and the
MPMC demodulator (5) in terms of PZTs and 2D-FTs.

Using (12) and (16), the PZT of the MPMC transmit sig-
nal in (4) can be calculated as

(
Zps

)
(η, θ) =

M∑

m=1

∞∑

l=−∞

∞∑

k=−∞

(
Zpg

(m)
l,k

)
(η, θ)a(m)

l,k

=
M∑

m=1

(
Zpg

(m))(η, θ)
∞∑

l=−∞

∞∑

k=−∞
e− j2π(lpθ−kη)a(m)

l,k

= 1√
p

M∑

m=1

(
Zpg

(m))(η, θ)
(
F a(m))(η, θ)

=Mg(η, θ)(F a)(η, θ),
(18)

where

Mg(η, θ) � 1√
p

[(
Zpg

(1))(η, θ) · · · (Zpg
(M))(η, θ)

]
(19)

denotes the p ×M modulator matrix. Equation (18) consti-
tutes the Zak-Fourier formulation of the MPMC modulator
(4) and amounts to a simple matrix-vector multiplication for
each (η, θ).

To reformulate the MPMC demodulator (5) in the Zak-
Fourier domain, we use the unitarity (15) and the TF shift
covariance (cf. (12)) of the PZT,

x(m)
l,k =

〈
r, γ(m)

l,k

〉
=
〈
Zpr,Zpγ

(m)
l,k

〉

H p

=
∫ 1

0

∫ 1/p

0

(
Zpγ

(m))H(η, θ)(Zpr)(η, θ)e j2π(lpθ−kη)dθ dη.

(20)

Comparing the last expression with (17), we obtain

(
F x(m))(η, θ)

= 1√
p

(
Zpγ

(m))H(η, θ)
(
Zpr

)
(η, θ), m = 1, . . . ,M,

(21)

which can again be rewritten as a Zak-Fourier domain
matrix-vector multiplication,

(F x)(η, θ) = Dγ(η, θ)
(
Zpr

)
(η, θ). (22)

Here,Dγ(η, θ) denotes theM×p demodulator matrix defined
as

Dγ(η, θ) � 1√
p

[(
Zpγ(1)

)
(η, θ) · · · (

Zpγ(M)
)
(η, θ)

]H
.

(23)

Note that (19) and (23) imply that MH
g (η, θ) = Dg(η, θ).

Furthermore, for an ideal channel, that is, r(t) = s(t), we
have (F x)(η, θ) = Dγ(η, θ)Mg(η, θ)(F a)(η, θ). Block dia-
grams for the Zak-Fourier implementation of MPMC mod-
ulator and demodulator are shown in Figure 5.

al,k � Mg(η, θ) �−1p s(t)

(a)

r(t) �p Dγ(η, θ) �−1 xl,k

(b)

Figure 5: Zak-Fourier domain implementations of (a) MPMC
modulator, (b) MPMC demodulator.

3.3. Rational TF lattice

The foregoing results for integer TF lattice (TF = p ∈ N) can
straightforwardly be generalized to MPMC systems with ra-
tional lattices, TF = p/q, p, q ∈ N. In particular, an MPMC
systemwithM×1 transmit/receive multipulses g(t), γ(t) and
rational TF lattice TF = p/q can equivalently be viewed as
MPMC system with transmit/receive multipulses

g̃(t) =
[
gT(t) gT(t − T) · · · gT

(
t − (q − 1)T

)]T
,

γ̃(t) =
[
γT(t) γT(t − T) · · · γT

(
t − (q − 1)T

)]T
,

(24)

of length M̃ = qM and integer TF lattice T̃F = p, T̃ = qT .
The corresponding transmit/receive symbols are

ãl,k =
[
aTql,k aTql+1,k · · · aTql+q−1,k

]T
,

x̃l,k =
[
xTql,k xTql+1,k · · · xTql+q−1,k

]T
.

(25)

The previously developed Zak-Fourier formulations of
MPMC modulator and demodulator can then be applied to
the equivalent MPMC system with integer TF lattice. Note,
however, that the size of the matrices and vectors involved
(and thus computational complexity) increases with q.

4. (BI)ORTHOGONALMODULATION VIA RIESZ BASES

This section provides a brief introduction to Riesz bases
[15, 25, 26] and discusses their relevance to linear modu-
lation formats aiming at perfect symbol recovery for ideal
channels. The general discussion of this section will be spe-
cialized and deepened for MPMC systems in Section 5. We
note that Riesz bases involve similar mathematical tools as
frames [15, 16, 25, 26] to which they are closely related.

4.1. Riesz bases

A sequence {gk(t)}k∈K of functions in L2(R) with a count-
able index set K is called a Riesz basis for its closed linear
span3 if and only if there exist two constants Ag , Bg with

3 For simplicity, the expression “for its closed linear span” will be omitted
in the following.
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0 < Ag ≤ Bg <∞, such that4

Ag

∑

k∈K

∣∣ak
∣∣2 ≤

∥∥∥∥∥
∑

k∈K
akgk

∥∥∥∥∥

2

≤ Bg

∑

k∈K

∣∣ak
∣∣2 (26)

for any {ak} ∈ l2(K). The tightest possible bounds Ag , Bg

in (26) are called lower Riesz bound and upper Riesz bound,
respectively, and their ratio Bg/Ag is the condition number
of the Riesz basis. If Ag = Bg , then the sequence {gk(t)} is
an orthogonal basis (orthonormal if Ag = Bg = 1). Two sets
{gk(t)}, {γk(t)} are called biorthogonal if 〈gk, γl〉 = δk−l for
all k, l ∈K . If and only if a sequence {gk(t)} is a Riesz basis,
then there exists a (not necessarily unique) biorthogonal se-
quence {γk(t)} which is also a Riesz basis. The Gram operator
Gg associated to a Riesz basis {gk(t)} is a bounded, positive-
definite (hence also selfadjoint and invertible) linear operator
[27] that maps l2(K) to l2(K) according to

(
Gga

)
k �

∑

k′∈K
ak′

〈
gk′ , gk

〉
. (27)

For any Riesz basis {gk(t)}, an associated modulation
(synthesis) operator can be defined as the mapping from
l2(K) to L2(R) given by

(
Mga

)
(t) �

∑

k∈K
akgk(t). (28)

Furthermore, a demodulation (analysis) operator Dγ map-
ping L2(R) to l2(K) can be defined for any Riesz basis {γk(t)}
as

(
Dγs

)
k �

〈
s, γk

〉
. (29)

Note that any linear modulation scheme can be cast in the
forms (28), (29).

If and only if {gk(t)} and {γk(t)} are biorthogonal Riesz
bases, thenDγ is a left inverse ofMg :

DγMg = I ⇐⇒ 〈
gk, γl

〉 = δk−l (30)

(for an orthogonal Riesz basis DgMg = AgI). In this case,
the coefficients ak in (28) can be reobtained from s(t) =
(Mga)(t) via (29). This corresponds to perfect symbol recov-
ery in a linear modulation scheme with transmit symbols ak,
transmit pulses gk(t), transmit/receive signal s(t), and receive
pulses γk(t).

Note that the adjoint [27] of Dg is given by D+
g = Mg ,

that is, 〈Dg s, a〉 = 〈s,Mga〉. Furthermore, the Gram opera-
tor can be written as Gg =DgMg .

4.2. (Bi)orthogonalization

We next consider a generalized procedure for computing
(bi)orthogonal Riesz bases. Starting from a prescribed Riesz

4 Here, ‖s‖ = √〈s, s〉 denotes the usual L2(R) norm.

basis {gk(t)} with associated modulation and Gram opera-
tors Mg and Gg , we define an α-parametrized sequence of

functions {g〈α〉k (t)} as (cf. [19])

g〈α〉k (t) �
(
MgG

−1/2+α
g δk

)
(t) (31)

(here, δkl = δl−k). Note that g
〈1/2〉
k (t) = gk(t).

It can be verified that {g〈α〉k (t)} is also a Riesz basis with
associated modulation operatorMg〈α〉 =MgG−1/2+αg , demod-
ulation operator Dg〈α〉 = G−1/2+αg Dg , and Gram operator
Gg〈α〉 = G2α

g . The associated Riesz bounds are Ag〈α〉 = A2α
g ,

Bg〈α〉 = B2α
g for α ≥ 0 and Ag〈α〉 = B2α

g , Bg〈α〉 = A2α
g for

α ≤ 0. Using (30), it is seen that {g〈α〉k (t)} and {g〈−α〉k (t)} are
biorthogonal,

Dg〈−α〉Mg〈α〉 = G−1/2−αg DgMgG
−1/2+α
g = I. (32)

Hence, {g〈0〉k (t)} is an orthonormal Riesz basis (Ag〈α〉 =
Bg〈α〉 = 1). Furthermore, {g〈−1/2〉k (t)} is the canonical bior-
thogonal basis for the originally prescribed Riesz basis
{gk(t)} = {g〈1/2〉k (t)}.

Consider a linear modulation scheme with transmit
pulses {g〈α〉k (t)} and receive pulses {g〈−α〉k (t)} derived from
a prescribed Riesz basis {gk(t)}. There are three important
cases.

(i) α = 0. Here, both transmitter and receiver use the or-
thogonal pulses g〈0〉k (t) = (MgG−1/2g δk)(t). For trans-
mission over additive white Gaussian noise (AWGN)
channels, this maximizes the SNR after demodulation
(“matched filter” [28]).

(ii) α = 1/2. In this case, the modulator uses the pre-
scribed pulses g〈1/2〉k (t) = gk(t) and the demodulator

employs the canonical biorthogonal pulses g〈−1/2〉k (t) =
(MgG−1g δk)(t).

(iii) α = −1/2. Now the canonical biorthogonal pulses
g〈−1/2〉k (t) are used at the transmitter, while the pre-
scribed pulses gk(t) are used at the receiver.

Other choices of α allow to “interpolate” between the above
special cases (cf. Section 7).

We finally note that in general, there exist different bi-
orthogonal Riesz bases for a prescribed Riesz basis {gk(t)} =
{g〈1/2〉k (t)}. This is useful, for example, for optimization pur-
poses. In particular, any biorthogonal Riesz basis can be writ-
ten as {g〈−1/2〉k (t) + uk(t)}, where {g〈−1/2〉k (t)} is the canonical
biorthogonal basis and {uk(t)} is an arbitrary sequence of
functions lying in the nullspace ofDg , (Dgul)k = 0. This fol-

lows from the observation 〈gk, g〈−1/2〉l +ul〉 = δk−l+〈gk,ul〉 =
δk−l that exploits the fact that 〈gk,ul〉 = (Dgul)∗k = 0 (cf.
(29)).

5. MULTIPULSE GABOR RIESZ BASES

The general framework of linear modulation using Riesz
bases from the previous section will now be applied to
MPMC systems. This leads to the novel notion of multipulse
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Gabor Riesz bases [13] which are closely related to multiwin-
dow Gabor frames [14].

For SPMC systems (M = 1), two pulses inducing bior-
thogonal Gabor Riesz bases on the TF lattice (lT , kF) can be
shown to induce dual frames on the adjoint TF lattice (l/F,
k/T) [29]. This fact has been exploited for the design
and analysis of SPMC systems via frame-theoretic tools
[9, 19, 21]. Unfortunately, there is no similar duality rela-
tion for multipulse Gabor Riesz bases and multiwindow Ga-
bor frames for M > 1. More precisely, while any two multi-
pulses inducing biorthogonal multipulse Gabor Riesz bases
on the TF lattice (lT , kF) also induce dual multiwindow Ga-
bor frames [14] on the adjoint TF lattice, the reverse does
not hold in general, that is, there exist dual multiwindow
Gabor frames on the adjoint TF lattice that do not corre-
spond to biorthogonal multipulse Gabor Riesz bases on the
original TF lattice (lT , kF). Consider, for example, a mul-
tiwindow Gabor frame (M ≥ 2) with TF lattice (lT′, kF′)
such that 1/M < T′F′ ≤ M. Clearly, for the adjoint lat-
tice (lT , kF) = (l/F′, k/T′), there is TF < M. Hence, the
multiwindow Gabor frame cannot induce a multipulse Ga-
bor Riesz basis on the adjoint lattice since this presupposes
TF ≥M. Nevertheless, we will show in this section thatmany
tools used for multiwindow Gabor frames can be adapted for
multipulse Gabor Riesz bases.

5.1. Definition and properties

Let us consider sequences of functions {g(m)
l,k (t)}with l, k ∈ Z

andm ∈ {1, . . . ,M}, constructed from theM × 1 multipulse
g(t) = [g(1)(t) · · · g(M)(t)]T according to

g(m)
l,k (t) = g(m)(t − lT)e j2πkFt. (33)

Using the vector notation from Section 2, {g(m)
l,k (t)} can more

compactly be represented by {gl,k(t)}. We call {gl,k(t)} amul-
tipulse Gabor Riesz basis if and only if it satisfies (26) (with
the single index k replaced by the triple index (l, k, r) ∈
Z× Z× {1, . . . ,M}).

As obvious from (3) and (5), function sets of the form
{gl,k(t)} are the basis of MPMC modulation and demod-
ulation. Restricting to MPMC systems with perfect sym-
bol recovery (i.e., biorthogonality of {gl,k(t)} and {γl,k(t)})
amounts to constraining {gl,k(t)} to be a multipulse Gabor
Riesz basis.5 Clearly, the corresponding modulation and de-
modulation operators are specified by (4) and (5), respec-
tively. However, it is more convenient to analyze multipulse
Gabor Riesz bases via the Zak-Fourier framework forMPMC
systems introduced in Section 3. Again, for simplicity, we ini-
tially restrict ourselves to integer TF lattice, TF = p ∈ N, and
discuss the extension to rational TF lattice later.

In the Zak-Fourier domain, the modulation operator
Mg, the demodulation operator Dg, and the Gram opera-
tor Gg = DgMg are represented, respectively, by the p ×M

5 Note that practical MPMC systems with k ∈ {0, . . . ,K −1} correspond to
setting a(m)

l,k = 0 for k /∈ {0, . . . ,K − 1}.

modulator matrix Mg(η, θ) in (18), the M × p demodula-
tor matrix Dg(η, θ) in (23), and the M × M Gram matrix
Gg(η, θ) = Dg(η, θ)Mg(η, θ). Note that DH

g (η, θ) = Mg(η, θ)
and Gg(η, θ) = GH

g (η, θ), consistent with D+
g = Mg and

Gg = G+
g . The biorthogonality of two multipulse Gabor Riesz

bases {gl,k(t)}, {γl,k(t)} amounts to the Zak-Fourier domain
relation Dγ(η, θ)Mg(η, θ) = I (cf. (30)).

Using the shorthand notation A(η, θ) = (F a)(η, θ) and
the fact that

∥∥MgA
∥∥2
HM =

〈
MgA,MgA

〉
HM =

〈
A,MH

g MgA
〉
HM

= 〈
A,DgMgA

〉
HM =

〈
A,GgA

〉
HM ,

(34)

the Riesz basis definition (26) can be shown to be equivalent
to

Ag‖A‖2HM ≤ 〈
A,GgA

〉
HM ≤ Bg‖A‖2HM . (35)

This inequality is satisfied, if and only if 0 < λmin ≤ λmax <
∞, with

λmin � ess inf (η,θ) min
r∈{1,...,M}

λr(η, θ),

λmax � ess sup(η,θ) max
r∈{1,...,M}

λr(η, θ),
(36)

where λr(η, θ),m = 1, . . . ,M, are the eigenvalues of Gg(η, θ).
As a matter of fact, using similar arguments as in [14], it
can be shown that λmin and λmax coincide with the Riesz
bounds, that is, λmin = Ag and λmax = Bg. Since Gg(η, θ) =
MH

g (η, θ)Mg(η, θ) and Mg(η, θ) is a p × M matrix, it fol-
lows that rank{Gg(η, θ)}≤p. Hence,Gg(η, θ) is singular (i.e.,
λmin = 0) if TF = p < M. Since this argument extends to
rational TF lattice (see below), it follows that the existence
of multipulse Gabor Riesz bases requires a TF lattice with
TF ≥M.

To maximize spectral efficiency in an MPMC system,
TF/M = 1 is desirable. However, for any multipulse Gabor
Riesz basis with TF = M and multipulse g(t), at least one of
the inducing pulses has poor temporal or spectral localiza-
tion, that is, tg(m)(t) �∈ L2(R) or (d/dt)g(m)(t) �∈ L2(R) for
at least one m ∈ {1, . . . ,M}. This follows from the Balian-
Low-type theorem for multiwindow Gabor frames in [14]
by observing that any multipulse Gabor Riesz basis with
TF = M is simultaneously a multiwindow Gabor frame. We
note, however, that our simulations showed that for redun-
dancies slightly above 1, the TF localization of MPMC mul-
tipulses may be much better than that of SPMC pulses.

5.2. (Bi)orthogonalization

The computation of (bi)orthogonal multipulse Gabor Riesz
bases according to the methods in Section 4.2 can be per-
formed efficiently in the Zak-Fourier domain.

It can be shown that for multipulse Gabor Riesz bases,
the PZT domain equivalent of (31) is6

(
Zpg

〈α〉
l,k

)
(η, θ) = √

pMg(η, θ)G−1/2+αg (η, θ)e j2π(lpη−kθ). (37)

6 We use the notation (Zpg)(η, θ) = [(Zpg(1))(η, θ) · · · (Zpg(M))(η, θ)].
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Note that G−1/2+αg (η, θ) can always be calculated (e.g.,
via eigenvalue decompositions) since Gg(η, θ) is positive-
definite almost everywhere (recall that λmin > 0). The TF shift
covariance of the PZT (cf. (12)) then implies that {g〈α〉l,k (t)} is
a multipulse Gabor Riesz basis, too (a priori, it is only guar-
anteed to be a Riesz basis). The inducing multipulse is given
by

(
Zpg〈α〉

)
(η, θ) = √

pMg(η, θ)G−1/2+αg (η, θ), (38)

that is, the mth pulse of g〈α〉(t) is obtained as inverse PZT of
the mth column of Mg(η, θ)G−1/2+αg (η, θ). The correspond-
ing MPMCmodulator/demodulator matrices are

M〈α〉
g (η, θ) =Mg(η, θ)G−1/2+αg (η, θ),

D〈α〉g (η, θ) = [
M〈α〉

g (η, θ)
]H = G−1/2+αg (η, θ)Dg(η, θ).

(39)

The biorthogonality of {g〈α〉l,k (t)} and {g〈−α〉l,k (t)} is reflected
by the PZT domain relation

D〈−α〉g (η, θ)M〈α〉
g (η, θ)

= G−1/2−αg (η, θ)Dg(η, θ)Mg(η, θ)G−1/2+αg (η, θ) = I.
(40)

We note that D〈−α〉g (η, θ) is the Moore-Penrose pseudoinverse
ofM〈α〉

g (η, θ).
For a multipulse Gabor Riesz basis with prescribed

multipulse g〈α〉(t), the canonical biorthogonal multipulse
is g〈−α〉(t). Similarly to the general case described in
Section 4.2, the biorthogonal multipulse is not unique, that
is, any multipulse of the form g〈−α〉(t) + u(t) also induces a
biorthogonal multipulse Gabor Riesz basis provided that the
elements of u(t) lie in the nullspace of Dg. The latter can be
efficiently computed in the Zak-Fourier domain via singular
value decompositions of Dg(η, θ) for each (η, θ).

Finally, we remark that among all multipulses inducing
orthogonal and biorthogonal multipulse Gabor Riesz bases
for prescribed g(t), g〈0〉(t) and g〈1/2〉(t) are closest to g(t) in
L2-distance. A proof of this statement is provided in the ap-
pendix.

5.3. Rational TF lattice

In Section 3.3, we saw that an MPMC system with M×1
multipulse and rational TF lattice TF = p/q, p, q∈N can
equivalently be viewed as MPMC system with multipulse
g̃(t) = [gT(t) gT(t − T) · · · gT(t − (q − 1)T)]T of length

M̃ = qM and integer TF lattice T̃F = p, T̃ = qT . The
underlying multipulse Gabor Riesz basis is of course the
same in both cases. Calculation of the sequences g̃〈α〉l,k (t)
for the equivalent system according to (37) yields a mul-
tipulse Gabor Riesz basis for the integer lattice. How-
ever, it remains to check whether the sequence g̃〈α〉l,k (t)
also is a multipulse Gabor Riesz basis with respect to
the original rational TF lattice, that is, whether g̃〈α〉(t) =
[[g〈α〉(t)]T [g〈α〉(t − T)]T · · · [g〈α〉(t − (q − 1)T)]T]T .

To this end, we note that due to (11), the demodulator
matrix for g̃(t) equals

Dg̃(η, θ)

=
[
DT

g (η, θ) DT
g

(
η−p

q
, θ
)
· · · DT

g

(
η−(q−1) p

q
, θ
)]T

.

(41)

This can be shown to be equivalent to

ΨDg̃(η, θ) = ΦDg̃

(
η +

p

q
, θ
)
, (42)

where Ψ is a unitary qM × qM shift matrix with entries
[Ψ]i, j � δ(i− j−Mmod qM) that performs row-shifts by M po-

sitions and Φ � diag{e− j2πpθIM×M , IM×M , . . . , IM×M} is also
unitary. To show that g̃〈α〉l,k (t) is a multipulse Gabor Riesz ba-
sis with respect to the original rational TF lattice, we need to
verify that the demodulator matrix D〈α〉g̃ (η, θ) satisfies (42),
too:

ΨD〈α〉g̃ (η, θ) = ΨG−1/2+αg̃ (η, θ)Dg̃(η, θ)

= Ψ
(
Dg̃(η, θ)DH

g̃ (η, θ)
)−1/2+α

ΨHΨDg̃(η, θ)

=
(
ΨDg̃(η, θ)DH

g̃ (η, θ)Ψ
H
)−1/2+α

ΨDg̃(η, θ)

=
(
ΦDg̃

(
η +

p

q
, θ
)
DH

g̃

(
η +

p

q
, θ
)
ΦH

)−1/2+α

×ΦDg̃

(
η +

p

q
, θ
)

= Φ
(
Dg̃

(
η +

p

q
, θ
)
DH

g̃

(
η +

p

q
, θ
))−1/2+α

×Dg̃

(
η +

p

q
, θ
)

= ΦD〈α〉g̃

(
η +

p

q
, θ
)
.

(43)

Here we used (39), Gg̃(η, θ) = Dg̃(η, θ)DH
g̃ (η, θ), (42), and

the unitarity of Ψ and Φ.

6. PERFORMANCE ANALYSIS

While we restricted to ideal channels in the previous sections,
we next provide a performance analysis forMPMC transmis-
sions over wireless channels. This will yield benchmark fig-
ures for comparing different MPMC (and SPMC) systems.

6.1. Channel model

We assume that the received signal equals

r(t) = (Hs)(t) + n(t), (44)

where n(t) is zero-mean additive white Gaussian noise
with variance σ2n and H denotes the random time-varying
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multipath channel with input-output relation

(Hs)(t) =
∫

τ
h(t, τ)s(t − τ)dτ + n(t)

=
∫

τ

∫

ν
SH(τ, ν)s(t − τ)e j2πνt dτ dν.

(45)

Here, h(t, τ) is the channel’s time-varying impulse response
and SH(τ, ν) �

∫
t h(t, τ)e

− j2πνtdt is the spreading function
[30, 31] (τ and ν denote time delay and Doppler frequency,
resp.). We furthermore assume that the channel satisfies the
assumption of wide-sense stationary uncorrelated scattering
(WSSUS) [28, 30, 31], which can be formulated as7

E
{
SH(τ, ν)S∗H

(
τ′, ν′

)} = CH(τ, ν)δ
(
τ − τ′

)
δ
(
ν− ν′

)
. (46)

The second-order channel statistics are completely charac-
terized by the scattering function (delay-Doppler spectrum)
CH(τ, ν) [28, 30, 31]. Practical wireless channels are under-
spread [28, 31], that is, the support of CH(τ, ν) is confined
to a small region [−τmax, τmax] × [−νmax, νmax] of area ρH �
4τmaxνmax � 1. We will refer to ρH as channel spread.

6.2. Input-output relation

For the overall MPMC system including modulator (4),
channel (44), and demodulator (5), the input-output rela-
tion can be written as

xl,k =
∞∑

l′=−∞

K−1∑

k′=0
Hl,k; l′,k′al′,k′ + zl,k, (47)

with theM ×M channel matrices

Hl,k; l′ ,k′ =
∫

t
γ∗l,k(t)

(
HgTl′,k′

)
(t)dt (48)

and the noise vector

zl,k =
∫

t
γ∗l,k(t)n(t)dt. (49)

Here, the terms with l′ �= l and k′ �= k correspond to in-
tersymbol and intercarrier interference (ISCI). Furthermore,
the off-diagonal elements in Hl,k; l,k correspond to interpulse
interference (IPI), which is specific to MPMCmodulation.

Conventional multicarrier designs typically aim at min-
imizing all interference (ISCI), such that an approximate
scalar input-output relation is obtained. For large channel
spreads ρH, that is, for severe delay and Doppler spread, this
requires a significant amount of redundancy, which in turn
reduces spectral efficiency. The MPMC framework suggests
a more general design approach which we call interference
shaping. Here, IPI is partially tolerated at the receiver in or-
der to allow further ISCI reduction. Mathematically, this can

7 E{·} denotes expectation (ensemble averaging).

H̃l,k el,k

al,k ×
x̃l,k

+ xl,k

Figure 6: Equivalent vector model for MPMC transmissions.

be expressed via the equivalent input-output relation (see
Figure 6)

xl,k = x̃l,k + el,k, with x̃l,k = H̃l,kal,k, (50)

where the channel matrix corresponding to the “desired” re-
ceive sequence x̃l,k is given by8

H̃l,k �
[
Hl,k; l,k �D

]
. (51)

The 0/1-valued matrix D characterizes the intended inter-
ference shaping by defining the IPI to be tolerated. All un-
desired interference (ISCI, undesired IPI) and the noise are
subsumed in the interference vector el,k. If the receiver targets
at simple scalar equalization and thus tolerates no IPI, then
D = I. Tolerating all IPI by using more sophisticated matrix
equalizers corresponds to D = 1 (the all-one matrix). Note
that, according to (50), ISCI and noise are always undesired.

6.3. Interference analysis

For the statistical analysis of (50), we assume that the num-
ber of subcarriers is infinite (hence, our results provide up-
per bounds on the interference power for systems with fi-
nite number of subcarriers). Furthermore, we assume zero-
mean i.i.d. transmit symbols al,k with correlation matrix
Ca � E{al,kaHl,k}. Together with the WSSUS assumption,
this implies that the actual receive sequence xl,k , the de-
sired sequence x̃l,k, and the interference sequence el,k are
i.i.d. sequences with respective correlation matrices Cx �
E{xl,kxHl,k}, Cx̃ � E{x̃l,kx̃Hl,k}, and Ce � E{el,keHl,k}. These ma-
trices are related as

Ce = Cx − Cx,x̃ − CH
x,x̃ + Cx̃, (52)

where Cx,x̃ � E{xl,kx̃Hl,k}. To obtain compact explicit expres-
sions for the above correlation matrices, we introduce the
matrix cross-ambiguity function (cf. [32])

Aγ,g(τ, ν) �
∫

t
γ(t)gH(t − τ)e− j2πνtdt (53)

of the multipulses g(t) and γ(t), and the periodized scatter-
ing function

CH(τ, ν) �
∞∑

l=−∞

∞∑

k=−∞
CH(τ − lT , ν− kF). (54)

8 � denotes the Hadamard product.
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Note that CH(τ, ν) depends on the TF lattice parameters T
and F. With these definitions, it can be shown that

Cx̃ =
∫

τ

∫

ν
CH(τ, ν)

[
A∗γ,g(τ, ν)�D

]

× Ca
[
Aγ,g(τ, ν)�D

]T
dτ dν,

Cx =
∫

τ

∫

ν
CH(τ, ν)A∗γ,g(τ, ν)CaAT

γ,g(τ, ν)dτ dν

+ σ2n

∫

t
γ∗(t)γT(t)dt,

Cx,x̃ =
∫

τ

∫

ν
CH(τ, ν)A∗γ,g(τ, ν)Ca

[
Aγ,g(τ, ν)�D

]T
dτ dν.

(55)

These expressions depend on the channel statistics (i.e., scat-
tering function CH(τ, ν) and noise variance σ2n), the multi-
pulses g(t) and γ(t), and on the TF lattice parameters T , F.
The multipulses and the lattice parameters can be designed
to optimize system performance measures like the overall in-
terference power E{eHl,kel,k} = tr{Ce} [17].

6.4. Spectral efficiency

Instead of interference power, we aim at using spectral effi-
ciency as performance measure. Based on the vector model
(50), the mutual information of al,k and xl,k assuming that
H̃l,k is known at the receiver can be calculated as [33]

Il,k = log2 det
(
I + H̃l,kCaH̃H

l,kCe
−1), (56)

where we made the simplifying assumptions that al,k and el,k
are independent and Gaussian. Although al,k and el,k in prac-
tice are correlated, our independence assumption is relevant
for receivers that do not exploit these correlations. Further-
more, al,k and el,k will be approximately Gaussian if linear
precoding is used.

Due to the WSSUS assumption, the ergodic mutual in-
formation E{Il,k} is independent of l, k. The (ergodic) spec-
tral efficiency in (bit/s/Hz) is obtained by normalization with
TF, ζ � 1/(TF)E{Il,k}. The expectation involved in ζ cannot
be evaluated explicitly. Since log2 det(·) is convex, an upper
bound is obtained from Jensen’s inequality [33],

ζ = 1
TF

E
{
log2 det

(
I + H̃l,kCaH̃H

l,kCe
−1)} ≤ ζmax

� 1
TF

log2 det
(
I + E

{
H̃l,kCaH̃H

l,k

}
Ce

−1).
(57)

Since x̃l,k = H̃l,kal,k , we have

E
{
H̃l,kCaH̃H

l,k

}
= E

{
H̃l,kal,kaHl,kH̃

H
l,k

}
= Cx̃, (58)

and thus

ζmax = 1
TF

log2 det
(
I + Cx̃Ce

−1). (59)

This expression can be easily evaluated for a channel with
given scattering function by computing Cx̃, Ce using the re-
sults from the previous subsection. In our simulations, we

observed that ζmax typically is close to ζ . The spectral effi-
ciency measure ζmax has the advantage that it allows for fair
comparisons of MPMC (SPMC) systems with different lat-
tice parameters T , F and pulse numberM.

We caution the reader that the TF lattice constants T and
F enter (59) twice: explicitly in front of the log and implicitly
via the SINR matrix Cx̃Ce

−1 (cf. (52) and (55)). While large
T , F reduce the pre-log, it simultaneously increases the SINR.

7. NUMERICAL EXAMPLES

In this section, we provide design examples for MPMC sys-
tems, analyze how MPMC system parameters and channel
statistics influence spectral efficiency, and compare MPMC
systems with conventional SPMC systems.

7.1. Simulation setup

The channel used in the simulations had a flat scattering
function CH(τ, ν) = 1/ρH for (τ, ν) ∈ [−τmax, τmax]×[−νmax,
νmax] and CH(τ, ν) = 0 else. Here, τmax, νmax, and ρH are the
maximum delay, maximumDoppler, and channel spread, re-
spectively.

The pulse designs presented are based on the methods
introduced in Section 5. In all simulations, the prescribed
multipulse g(t) consisted of the first M = 4 Hermite func-
tions (the SPMC system considered for comparison used the
first Hermite function, that is, a Gaussian pulse). This choice
was motivated by the fact that these pulses possess the best
possible TF localization, that is, their average time-bandwith
product9 TgFg achieves the minimum value of TgFg/M =
1/(4π) [32]. Good TF localization is known to be benefi-
cial for reduced ISCI [9, 11, 19]. The scaling of the Her-
mite functions was matched to the MPMC lattice parame-
ters, Tg/Fg = T/F. The design of the MPMC system used
M = 4 and targets at interference shaping with D = 1.

Based on the prescribed Hermite multipulse, biorthogo-
nal multipulses g〈α〉(t) and g〈−α〉(t) were calculated accord-
ing to (38). The resulting MPMC multipulses are depicted
in Figures 7(a)–7(c) for α = 1/2 (prescribed Hermite mul-
tipulse, TgFg/M = 1/(4π)), α = 0 (orthogonalized multi-
pulse, TgFg/M = 1.13/(4π)), and α = −1/2 (biorthogonal-
to-Hermite multipulse, TgFg/M = 1.73/(4π)). Figures 7(d)–
7(f) similarly depict the corresponding SPMC pulses which
are much poorer localized10 (their average time-bandwidth
product TgFg equals 1/(4π), 1.74/(4π), and 6.38/(4π) for
α = 1/2, α = 0, and α = −1/2, resp.).

7.2. TF lattice parameters

We first investigate the dependence of ζmax on the redun-
dancy TF/M and the lattice ratio T/F for an orthogonal
MPMC with transmit/receive multipulse g〈0〉(t).

9 T2
g � ∫

t t
2gH (t)g(t)dt/

∫
t g

H (t)g(t)dt, F2g � ∫
f f 2GH ( f )G( f )df /

∫
f G

H ( f )G( f )df , where G( f ) denotes the Fourier transform of g(t).

10 For proper comparison of Figures 7(a)–7(c) and 7(d)–7(f), it should be
kept in mind that the symbol period T and subcarrier spacing F of the
MPMC system are twice as large as that of the SPMC system.
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Figure 7: MPMC multipulse for (a) α = 1/2, (b) α = 0, (c) α = −1/2, and SPMC pulse for (d) α = 1/2, (e) α = 0, (f) α = −1/2.

In Figure 8(a), ζmax is plotted versus TF/M ∈ [1.0125,
1.2] for different SNRs and channel spreads. In all cases, the
lattice ratio was T/F = τmax/νmax. As expected, large redun-
dancy, low SNR, and large channel spreads degrade spec-
tral efficiency. The degradation due to channel dispersion
is particularly pronounced for large SNR. The optimum re-
dundancy that maximizes ζmax (marked with ×) is seen to
range from ≈ 1.0125 (for low SNR or low channel spread) to
≈ 1.0375 (for large SNR and large channel spread).

Spectral efficiency versus the normalized lattice ratio
(T/F)/(τmax/νmax) with fixed redundancy TF/M = 17/16 =
1.0625 is shown in Figure 8(b), again for various SNRs and
channel spreads. The simulation confirms that for all chan-
nel spreads and SNRs, the optimum TF lattice ratio equals
T/F = τmax/νmax, although the dependence of ζmax on T/F is
weak for low ρH. The same result, not shown, was obtained
for the SPMC system using an orthogonalized Gaussian.

7.3. Biorthogonalization parameter

Next, we analyze how spectral efficiency depends on the pa-
rameter α used to calculate the biorthogonal transmit and
receive multipulses. Here, TF/M = 1.0625, T/F = τmax/νmax,
and ρH = 0.0083.

The spectral efficiency ζmax for the MPMC system
and the SPMC system is shown in Figures 9(a) and 9(b),
respectively, for several SNR values. For low SNR, the spectral
efficiency of the MPMC and the SPMC system is maximized
by choosing α = 0, that is, orthogonal pulses amounting to
matched filtering. For larger SNRs (i.e., interference-limited
situations), however, the optimum α for the MPMC system
tends to −1/2, corresponding to a Hermite multipulse at the
receiver and its biorthogonal multipulse at the transmitter.

This is intuitive since the localization of the transmit pulses is
destroyed by the channel anyway, and hence the perfect local-
ization of the Hermite multipulse is best exploited at the re-
ceiver. With the SPMC system, the optimum α for large SNR
is slightly above 0. However, α = 0 is close to optimum for all
SNRs.

7.4. System comparison

Finally, we compare the spectral efficiencies of the MPMC
system with orthogonalized Hermite multipulse, the SPMC
system with orthogonalized Gaussian, and a conventional
CP-OFDM system. All systems had redundancy TF/M =
17/16 and lattice ratio T/F = τmax/νmax. The SNR was 30 dB
andmaximum delay andDoppler were varied in a range such
that

√
F/Tτmax ∈ [0, 0.1], and

√
T/Fνmax ∈ [0, 0.1].

We note that pulse optimization procedures exist both
for SPMC systems [11, 34] and MPMC systems [17]. Fur-
thermore, [18, 34, 35] discuss the practically relevant design
and optimization of finite-duration pulses. System compar-
isons using optimized pulses are, however, beyond the scope
of this paper.

Figure 10 shows that for all channel parameters, the
MPMC system outperforms the SPMC system. In almost all
cases, the MPMC and SPMC systems have larger ζmax than
the CP-OFDM system. The latter is advantageous only for
small Doppler and for delays below the CP duration. For
ρH = 0.01, the SPMC system and the CP-OFDM system
loose 0.9 bit/s/Hz and 1.7 bit/s/Hz in spectral efficiency com-
pared to the MPMC system. We finally note that the MPMC
system is much more robust to larger channel spreads, that
is, the spectral efficiency at ρH = 0.01 is only 1.2 bit/s/Hz
less than at ρH = 0. The corresponding decrease in spectral
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Figure 8: Spectral efficiency ofMPMC systemwithM = 4 orthogo-
nalized Hermite pulses (a) versus redundancy TF/M and (b) versus
normalized lattice ratio (T/F)/(τmax/νmax).

efficiency for the SPMC system and the CP-OFDM system is
2.1 bit/s/Hz and 2.9 bit/s/Hz, respectively.

8. CONCLUSIONS

We introduced and analyzed multipulse multicarrier
(MPMC) modulation, a generalization of traditional
multicarrier modulation that uses multiple transmit and
receive pulses in parallel. It was shown that multipulse
Gabor Riesz bases constitute the theoretical foundation of
MPMC systems. Both multipulse Gabor Riesz bases and
MPMC systems can be efficiently analyzed and designed
in the Zak-Fourier domain via tools that have previously
successfully been used in the context of multiwindow Gabor
frames. The construction of biorthogonal multipulse Gabor
Riesz bases received special attention as it allows to design
MPMC systems with perfect symbol recovery. Numerical

18

16

14

12

10

8

6

4

2

ζ m
ax
(b
it
/s
/H

z)

−0.5 −0.25 0 0.25 0.5

α

∞

60

45

35
30
25
20

15

10
SNR = 5 dB

(a)

8

7

6

5

4

3

2

1

ζ m
ax
(b
it
/s
/H

z)

−0.4 −0.2 0 0.2 0.4

α

∞
35

30

25

20

15

10

SNR = 5 dB

(b)

Figure 9: Spectral efficiency ζmax versus α obtained with (a) the
MPMC system and (b) the SPMC system for different SNRs
(TF/M = 1.0625 and ρH = 0.0083). The vertical trajectories in-
dicate the α values that maximize ζmax at the various SNRs.

examples were presented that illustrated the MPMC pulse
design and showed that MPMC systems offer significant
spectral efficiency gains compared to traditional single-pulse
multicarrier systems. These gains are partly due to the
fact that the MPMC design tolerates a certain amount
of “interpulse” interference. This comes at the price of
slightly increased receiver complexity (matrix equalizers,
etc.). We note that an efficient implementation of MPMC
systems augmented by precoding and channel estimation is
presented in [18]. Methods for multipulse optimization have
been proposed in [17].

APPENDIX

In this appendix, we show that for a given multipulse g(t) =
g〈1/2〉(t), the multipulses g〈0〉(t) and g〈−1/2〉(t) are the closest
to g(t) among all multipulses inducing (bi)orthogonal mul-
tipulse Gabor Riesz bases. A similar proof for canonical tight
Gabor frames was given in [36]. The underlying (squared)
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distance of a multipulse γ(t) from the prescribed multipulse
g(t) is

d2(g, γ) �
M∑

m=1

∫

t

∣∣g(m)(t)− γ(m)(t)
∣∣2dt =

M∑

m=1

∥∥g(m) − γ(m)
∥∥2

=
M∑

m=1

[∥∥g(m)
∥∥2 − 2Re

{〈
g(m), γ(m)〉} +

∥∥γ(m)
∥∥2].

(A.1)

Consider first the case where γ(t) is required to induce
an orthonormal multipulse Gabor Riesz basis. This im-
plies that

∑M
m=1 ‖γ(m)‖22 = M. Since

∑M
m=1 ‖g(m)‖22 is fixed,

minimization of (A.1) is equivalent to maximization of∑M
m=1 Re{〈g(m), γ(m)〉}. The unitarity of the PZT yields

M∑

m=1

〈
g(m), γ(m)〉 =

M∑

m=1

〈
Zg(m),Zγ(m)

〉

=
∫ 1

0

∫ 1/p

0
tr
{
MH

g (η, θ)Mγ(η, θ)
}
dθ dη.

(A.2)

The orthonormality constraint for {γl,k(t)} is equivalent to
Mγ(η, θ) ∈ O � {Mγ(η, θ) : MH

γ (η, θ)Mγ(η, θ) = I}. It can
be shown that [37]

max
Mγ(η,θ)∈O

tr
{
MH

g (η, θ)Mγ(η, θ)
}

= tr
{(

MH
g (η, θ)Mg(η, θ)

)1/2}
,

(A.3)

where the (real-valued) maximum is achieved with

Mγ(η, θ) =M〈0〉
g (η, θ)

=Mg(η, θ)
(
MH

g (η, θ)Mg(η, θ)
)−1/2

.
(A.4)

This proves that γ(t)=g〈0〉(t) maximizes Re{∑M
m=1〈g(m),

γ(m)〉}, and hence minimizes (A.1).
Next consider the case where γ(t) is constrained to in-

duce a multipulse Gabor Riesz basis biorthogonal to that
induced by the fixed multipulse g(t). This implies that∑M

m=1〈g(m), γ(m)〉 = M, such that minimization of (A.1) is
equivalent to minimization of

M∑

m=1

∥∥γ(m)
∥∥2 =

M∑

m=1

〈
Zγ(m),Zγ(m)〉

=
∫ 1

0

∫ 1/p

0
tr
{
MH

γ (η, θ)Mγ(η, θ)
}
dθ dη.

(A.5)

The biorthogonality constraint for {γl,k(t)} is equivalent to
Mγ(η, θ) ∈ B � {Mγ(η, θ) : MH

g (η, θ)Mγ(η, θ) = I}. It can
be shown that [38]

min
Mγ(η,θ)∈B

tr
{
MH

γ (η, θ)Mγ(η, θ)
}

= tr
{(

MH
g (η, θ)Mg(η, θ)

)−1}
,

(A.6)

where the minimum is achieved with

Mγ(η, θ) =M〈−1/2〉
g (η, θ)

=Mg(η, θ)
(
MH

g (η, θ)Mg(η, θ)
)−1

.
(A.7)

Thus, among all biorthogonal multipulses γ(t), the canon-
ical biorthogonal multipulse γ(t) = g〈−1/2〉(t) minimizes∑M

m=1 ‖γ(m)‖2 and therefore d2(g, γ).
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