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Abstract We extend the investigation of the generalized
parton distribution for a charged pion within a fully covari-
ant constituent quark model, in two respects: (1) calculating
the tensor distribution and (2) adding the treatment of the
evolution, needed for achieving a meaningful comparison
with both the experimental parton distribution and the lattice
evaluation of the so-called generalized form factors. Distinct
features of our phenomenological covariant quark model are:
(1) a 4D Ansatz for the pion Bethe–Salpeter amplitude, to
be used in the Mandelstam formula for matrix elements of
the relevant current operators, and (2) only two parameters,
namely a quark mass assumed to be mq = 220 MeV and
a free parameter fixed through the value of the pion decay
constant. The possibility of increasing the dynamical content
of our covariant constituent quark model is briefly discussed
in the context of the Nakanishi integral representation of the
Bethe–Salpeter amplitude.

1 Introduction

The present theory of strong interaction, the Quantum
ChromoDynamics (QCD), should in principle allow one to
achieve a complete 3D description of hadrons, in terms of the
Bjorken variable xB and the transverse momenta of the con-
stituents. As it is well known, the needed non-perturbative
description still represents a challenge, which motivates a
large amount of valuable efforts, both on the experimental
side (gathering new accurate data, that in turn impose strin-
gent constraints on theoretical investigations) and the theo-
retical one (performing more and more refined lattice calcu-
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lations and elaborating more and more reliable phenomeno-
logical models).

Heuristically, while the short-distance behavior of the
hadronic state has been well understood, given the possibility
of applying a perturbative approach, entailed by the asymp-
totic freedom, the long-range part of the hadronic state, which
is governed by the confinement, requests non-perturbative
tools, suitable for a highly non-linear dynamics. Coping with
the difficult task to gain information on the hadronic state,
in the whole range of its extension, has been the main moti-
vation for elaborating phenomenological models, which in
general play a helpful role in shedding light onto the non-
perturbative regime.

Among the phenomenological approaches, covariant con-
stituent quark models (CCQMs) represent an important step
forward, since they exploit a quark–hadron vertex fulfilling
the fundamental property of covariance with respect to the
Poincaré group. Moreover, CCQM’s based on the Light-front
(LF) framework, introduced by Dirac in 1949 [1], with vari-
ables defined by a± = a0 ± a3 and a⊥ ≡ {ax , ay}, appear to
be quite suitable for describing relativistic, interacting sys-
tems, like hadrons. Indeed, the LF framework has several
appealing features (see, e.g., [2]), quite useful for explor-
ing nowadays issues in hadronic phenomenology. Beyond
the well-known fact that the dynamics onto the light-cone is
naturally described in terms of LF variables, one should men-
tion: (1) the straightforward separation of the global motion
from the intrinsic one (related to the subgroup property of
the LF boosts), (2) the largest number of kinematical (i.e. not
affected by the interaction) Poincaré generators, (3) the large
extent of triviality of the vacuum, within a LF field theory [2]
(with the caveat of the zero-mode contributions). In particu-
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lar, for the pion, one can construct the following meaningful
Fock expansion onto the null-plane:

|π〉 = |qq̄〉 + |qq̄ qq̄〉 + |qq̄ g〉 . . .

where |qq̄〉 is the valence component. It has to be recalled that
an appealing feature of our approach, based on a covariant
description of the quark–pion vertex (see [3,4] and refer-
ences quoted therein), is the possibility of naturally taking
into account contributions beyond the valence term.

The experimental efforts are very intense for singling out
quantities that are sensitive to the dynamical features of the
hadronic states. In particular, in the last decade, it has been
recognized that a wealth of information on the 3D partonic
structure of hadrons is contained in the Generalized Parton
Distributions (GPDs) (see, e.g., Ref. [5] for a general pre-
sentation), as well as in the Transverse-Momentum Distribu-
tions (TMDs) (see, e.g., Ref. [6] for a detailed discussion).
GPDs can be experimentally investigated through the deeply
virtual Compton scattering, while TMDs can be studied
through semi-inclusive deep inelastic scattering processes,
which notably involve polarization degrees of freedom.

Our aim, is to provide a phenomenological model, that
has the following main ingredients: (1) a 4D Ansatz for the
pion Bethe–Salpeter amplitude, and (2) the generalization of
the Mandelstam formula [7] for matrix elements of the rel-
evant current operators (notice that the pion Bethe–Salpeter
amplitude is needed in this formula). Remarkably, we intro-
duce only two parameters, namely a constituent quark mass
and a free parameter fixed through the value of the pion decay
constant. Through our model, we investigate the pion state
by thoroughly comparing the results with both experimental
and lattice data relevant for the 3D description of the pion. In
this paper, we complete the evaluation of the leading-twist
pion GPDs, calculating the so-called tensor GPD (see Ref.
[3] for the vector GPD and Ref. [8,9] for preliminary calcu-
lations of the tensor one). Moreover, in order to accomplish
the previously mentioned comparisons, we consider the evo-
lution of quantities that can be extracted from the GPDs, like
the parton distribution function (PDF) and the generalized
form factors (GFFs). We anticipate that only the leading-
order (LO) evolution has been implemented by using the
standard code of Ref. [10]. In particular, the comparison has
been performed between our LO results and the experimental
pion PDF extracted in Ref. [11] (see Ref. [12] for the NLO
extraction) and the available lattice calculations of GFFs as
given in Refs. [13–16].

The paper is organized as follows. In Sect. 2, the general
formalism and the definitions are briefly recalled. In Sect.
3, our Covariant Constituent Quark Model is presented. In
Sect. 4, the LO evolution of the quantities we want to com-
pare is thoroughly discussed, with a particular care to the
determination of the initial scale of our model. In Sect. 5, the
comparison of our results with both the experimental PDF

and the available lattice calculations is presented. Finally in
Sect. 6, the Conclusion are drawn.

2 Generalities

In this section, the physical quantities, GPDs and TMDs,
that allow us to achieve a detailed 3D description of a pion
are shortly introduced, since they represent the target of the
investigation within our CCQM (for accurate and extensive
reviews on GPDs, see, e.g., [5] and on TMDs, see, e.g., [6]).
For the pion, given its null total angular momentum, one has
two GPDs and two TMDs, at the leading twist.

2.1 Generalized Parton distributions

As is well known, GPDs are LF-boost-invariant functions,
and they allow one to parametrize matrix elements (between
hadronic states) involving quark and gluon fields. In particu-
lar, GPDs are off-diagonal (with respect to the hadron four-
momenta, i.e. p f �= pi ) matrix elements of the quark–quark
(or gluon–gluon) correlator projected onto the Dirac basis
(see, e.g., Ref. [17] for a thorough investigation of the pion
case). The appealing feature of GPDs is given by the abil-
ity of summarizing in a natural way information contained
in several observables investigated in different kinematical
regimes, like electromagnetic (em) form factors (FFs) or
PDFs.

The pion has two leading-twist quark GPDs: (1) the vector,
or no spin-flip, GPD, H I

π (x, ξ, t), and (2) the tensor, or spin-
flip, GPD, E I

π,T (x, ξ, t) (where I = IS,IV labels isoscalar
and isovector GPDs, respectively). In order to avoid Wilson-
line contributions, one can choose the light-cone gauge [5]
and get

2

(
H IS

π (x, ξ, t)
H IV

π (x, ξ, t)

)
=

∫
dk−dk⊥

2

×
∫

dz−dz+dz⊥
2(2π)4 ei[(x P+z−+k−z+)/2−z⊥·k⊥]

× 〈p′|ψ̄q(−1

2
z)γ +

(
1
τ3

)
ψq(

1

2
z)|p〉 =

∫
dz−

4π

× ei(x P
+z−)/2 〈p′|ψ̄q(−1

2
z)γ +

(
1
τ3

)
ψq(

1

2
z)|p〉∣∣z̃=0

(1)

and

P+� j − P j�+

P+mπ

(
E IS

πT (x, ξ, t)
E IV

πT (x, ξ, t)

)
=

∫
dz−

4π

× ei(x P
+z−)/2 〈p′|ψ̄q(−1

2
z) iσ+ j

(
1
τ3

)
ψq(

1

2
z)|p〉∣∣z̃=0

(2)
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where z̃ ≡ {z+ = z0 + z3, z⊥}, ψq(z) is the quark-field
isodoublet and the standard GPD variables are given by

x = k+

P+ , ξ = − �+

2P+ , t = �2,

� = p′ − p, P = p′ + p

2
, (3)

with the initial LF momentum of the active quark equal to
{k+ −�+/2,k⊥ −�⊥/2}. The factor of two multiplying the
vector GPD is chosen for normalization purpose, so that for
a charged pion one has

Fπ (t) =
∫ 1

−1
dx H IV

π (x, ξ, t) =
∫ 1

−1
dx Hu

π (x, ξ, t) (4)

where Hu
π = H IS

π + H IV
π , and H IS

π is odd in x while H IV
π is

even (see, e.g. [3]). Finally, it is useful for the following to
recall the relation with the parton distributions, q(x), viz.

Hu
π (x, 0, 0) = θ(x)u(x) − θ(−x)ū(−x). (5)

At the present stage, only a few moments of the pion GPDs
have been evaluated within lattice QCD, but they represent
a valuable test ground for any phenomenological model that
aspires to yield meaningful insights into the pion dynam-
ics. In view of the numerical results discussed below, we
briefly recall how the Mellin moments can be covariantly
parametrized through the GFFs, which are the quantities
adopted for comparing lattice calculations and phenomeno-
logical results.

The relation between the non-spin flip GPD and the em
FF given in Eq. (4) for a charged pion can be in some sense
generalized, if one considers Mellin moments of both vector
and tensor GPDs. Then one obtains the corresponding GFFs.
For instance, one can write the following Mellin moments of
both vector and tensor GPDs for the u-quark (see [5,18] for
a review)

∫ 1

−1
dx xnHu

π (x, ξ, t) =
[(n+1)/2]∑

i=0

(2ξ)2i Au
n+1,2i (t), (6)

∫ 1

−1
dx xnEu

π,T (x, ξ, t) =
[(n+1)/2]∑

i=0

(2ξ)2i Bu
n+1,2i (t), (7)

where the symbol [...] indicates the integer part of the argu-
ment. In Eqs. (6) and (7), Au

n+1,2i (t) is a vector GFF for
a u-quark and Bu

n+1,2i (t) a tensor GFF, respectively. It is
worth noting that one can introduce a different decomposi-
tion in terms of isoscalar and isovector components instead of
a flavor decomposition. In particular, if n + 1 is even (odd)
one has an isoscalar (isovector) GFF. A striking feature is
shown by the rhs of Eqs. (6) and (7), the so-called polino-
miality, i.e. the dependence upon finite powers of the vari-
able ξ . This polynomiality property follows from completely

general properties like covariance, parity, and time-reversal
invariance; for this reason it can be a good test for any model.

By considering the first vector and tensor moments one
gets the following important relations:
∫ 1

−1
dx Hu

π (x, ξ, t) = Au
1,0(t) = Fπ (t) (8)

and∫ 1

−1
dx Eu

π,T (x, ξ, t) = Bu
1,0(t) (9)

where Bu
1,0(0) �= 0 is the tensor charge for n = 0, also called

tensor anomalous magnetic moment (see Ref. [18]). Notably,
Eq. (7) leads to the following relation, involving the Mellin
moments of the PDF and Au

n+1,0(0), viz.:

〈xn〉u =
∫ 1

−1
dx xnHu

π (x, 0, 0) = Au
n+1,0(0). (10)

A physical interpretation of GFFs (see, e.g., [19–21]) can
be achieved by properly generalizing the standard interpre-
tation of the non-relativistic em FFs to a relativistic frame-
work. Non-relativistically, the em FFs are the 3D Fourier
transforms of intrinsic (Galilean-invariant) em distributions
in the coordinate space (e.g., for the pion, one has the charge
distribution, while, for the nucleon, one has both charge and
magnetic distributions). In the relativistic case, one should
consider Fourier transforms of GPDs, which depend upon
variables invariant under LF boosts. Indeed, only the trans-
verse part of �μ can be trivially conjugated to variables in
the coordinate space, while for x and ξ (proportional to �+)
this is not possible. Therefore, keeping the description invari-
ant for proper boosts (i.e. LF boosts), one can introduce 2D
Fourier transforms with respect to �⊥. Such a Fourier trans-
form allows one to investigate the spatial distributions of the
quarks in the so-called impact-parameter space (IPS). In par-
ticular, from Eqs. (6) and (7), it straightforwardly follows
that, for ξ = 0, only Au

n+1,0(�
2) and Bu

n+1,0(�
2) survive.

Due to the LF-invariance of ξ , one has an infinite set of frames
(Drell–Yan frames) where ξ = 0. In these frames, where
�+ = 0 and �2 = −�2⊥, one can introduce the above men-
tioned 2D Fourier transforms in a boost-invariant way (recall
that, for a given reaction, the final state or both final and initial
states have to be boosted). One can write

Ãq
n(b⊥) =

∫
d�⊥
(2π)2 ei�⊥·b⊥ Aq

n,0(�
2),

B̃q
n (b⊥) =

∫
d�⊥
(2π)2 ei�⊥·b⊥ Bq

n,0(�
2), (11)

where b⊥ = |b⊥| is the impact parameter. In general, the
Fourier transform of GFFs, for ξ = 0, yield quark densities
in the IPS [19–21]. In particular, Ãn(b⊥) represents the prob-
ability density of finding an unpolarized quark in the pion at a
certain distance b⊥ from the transverse center of momentum.
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In addition, if one considers the polarization degrees of free-
dom, then one introduces the probability density of finding
a quark with a given transverse polarization, s⊥ in a certain
Drell–Yan frame. In the IPS, such a probability distribution
is

ρ
q
n (b⊥, s⊥) = 1

2

[
Ãq
n(b⊥) + siεi j b j

b⊥
�
q
n (b⊥)

]
(12)

where

�
q
n (b⊥) = − 1

2mπ

∂ B̃q
n (b⊥)

∂ b⊥
. (13)

It is worth noting that the quark longitudinal (or helicity)
distribution density is given only by the first term in Eq. (12),
since the pion is a pseudoscalar meson and the term γ5/sL in
the quark density operator has a vanishing expectation value,
due to the parity invariance [16,22].

Equation (12) is quite rich of information and clearly indi-
cates the pivotal role of GPDs for accessing the quark distri-
bution in the IPS. Moreover, as a closing remark, one could
exploit the spin-flip GPD Eq

πT to extract more elusive infor-
mation on the quasi-particle nature of the constituent quarks,
like their possible anomalous magnetic moments, once the
vector current that governs the quark–photon coupling is suit-
ably improved (see Sect. 5.4 and Ref. [23] for a discussion
within the lattice framework).

2.2 Transverse-momentum distributions

TMDs are diagonal (in the pion four-momentum1) matrix
elements of the quark–quark (or gluon–gluon) correlator
with the proper Wilson-line contributions (see, e.g., Ref.
[17]) and suitable Dirac structures. Moreover, TMDs depend
upon x and the quark transverse momentum, k⊥, that is, not
the conjugate of b⊥. It should be pointed out that in gen-
eral the Wilson-line effects must be carefully analyzed, due
to the explicit dependence upon k⊥ (recall that for GPDs
such dependence is integrated out). At the leading twist,
one has two TMDs, for the pion: the T-even f q1 (x, |k⊥|2),
that yields the probability distribution to find an unpolarized
quark with LF momentum {x,k⊥} in the pion, and the T-odd
hq⊥

1 (x, |k⊥|2, η), related to a transversely polarized quark
and called a Boer–Mulders distribution [24].

The two TMDs allow one to parametrize the distribution
of a quark with given LF momentum and transverse polar-
ization, i.e. (see, e.g., Ref. [15,17])

ρq(x,k⊥, s⊥, η)

= 1

2

[
f q1 (x, |k⊥|2) + siεi j k j

⊥
mπ

hq⊥
1 (x, |k⊥|2, η)

]
(14)

1 Notice that �μ = (pπ
f − pπ

i )μ = 0 leads to ξ = t = 0.

where the dependence upon the variable η in h⊥
1 is gener-

ated by the Wilson-line effects, whose role is essential for
investigating a non-vanishing h⊥

1 (see e.g. [24]).
At the lowest order, the unpolarized TMD f q1 , is given by

the proper combination of the isoscalar and isovector com-
ponents, that are defined by

2

(
f IS
1 (x, |k⊥|2)
f IV
1 (x, |k⊥|2)

)
=

∫
dz−dz⊥
2(2π)3 ei[x P+z−/2−k⊥·z⊥]

×
〈
p
∣∣∣ψ̄q(−1

2
z)γ +

(
1
τ3

)
ψq(

1

2
z)

∣∣∣p
〉 ∣∣

z+=0. (15)

After integrating over k⊥, one gets the standard unpolarized
parton distribution q(x), viz

q(x) =
∫

dk⊥ f q1 (x, |k⊥|2) = Hq
1 (x, 0, 0). (16)

The T-odd TMD, h⊥
1 (x, |k⊥|2, η) needs a more careful anal-

ysis, since it vanishes at the lowest order in perturbation the-
ory. As a matter of fact, it becomes proportional to the matrix
elements

〈p|ψ̄q(−1

2
z) i σ+ j

(
1
τ3

)
ψq(

1

2
z)|p〉∣∣z+=0, (17)

which are equal to zero, due to the time-reversal invariance.
In order to get a non-vanishing Boer–Mulders distribution,
one has to evaluate at least a first-order correction, involving
Wilson lines (see, e.g., Refs. [17] and [25]). Moreover, by
adopting the light-cone gauge and the advanced boundary
condition for the gauge field, the effect of the Wilson lines
(final state interaction effects) can be shifted into complex
phases affecting the initial state (see, e.g., Ref. [26]).

3 The covariant constituent quark model

The main ingredients of our covariant constituent quark
model are two: (1) the extension to the GPDs and TMDs
of the Mandelstam formalism [7], originally introduced for
calculating matrix elements of the em current operator when
a relativistic interacting system is investigated, and (2) a
model of the 4D quark–hadron vertex, or equivalently the
Bethe–Salpeter amplitude, necessary for applying the Man-
delstam approach. In particular, we have assumed a pion
Bethe–Salpeter amplitude (BSA) with the following form:

�(t, p) = − m

fπ
S (t + p/2) �(t, p) S (t − p/2) (18)

where p = pq + pq̄ is the total momentum, t = (pq −
pq̄)/2 the relative momentum of the qq̄ pair (by using the
four-momenta k, � and P previously introduced, one has
t + p/2 = k − �/2, and t − p/2 = k − P). In Eq. (18),
S(pq) = 1/(/pq − mq + ıε) is the fermion propagator and
�(t, p) the quark–pion vertex. In the present work, only the
dominant Dirac structure has been assumed, viz.
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�(t, p) = γ5 �π(t, p) (19)

with�(t, p) a suitable momentum-dependent scalar function
that contains the dynamical information (see the following
subsections for more details). Indeed, Dirac structures con-
tributing to �(t, p) beyond γ 5 should be taken into account,
but they have a minor impact on the pion BSA, as thoroughly
discussed in Ref. [27].

For the sake of completeness, let us recall that the quark–
pion vertex fulfills the homogeneous BS equation that reads
as follows:

�(t, p)

=
∫

d4t ′

(2π)4 K(t, t ′) S
(
t ′ + p/2

)
�(t ′, p) S

(
t ′ − p/2

)
(20)

where K(t, t ′) is the kernel given by the infinite sum of irre-
ducible diagrams (see, e.g., [28]).

Finally, it is important to emphasize that our investigation,
based on a covariant description of the quark–pion vertex,
naturally goes beyond a purely valence description of the
pion [3,4].

3.1 The Mandelstam formula for the electromagnetic
current

The Mandelstam formula allows one to express the matrix
elements of the em current of a composite bound system,
within a field theoretical approach [7]. It has been applied
for evaluating the FFs of both pion [29–31] and nucleon [32],
obtaining a nice description of both space- and timelike FFs.
Furthermore, it has been exploited for calculating the vector
GPD of the pion [3,4] and for a preliminary evaluation of the
tensor GPD [8,9].

For instance, in the case of the em spacelike FF of the
pion, the Mandelstam formula, where the quark–pion vertex
given in Eq. (19) is adopted, reads (see, e.g., Ref. [29–31])

jμ = −ıe R

×
∫

d4k

(2π)4 �π(k + �/2, p′)�π(k − �/2, p)

× Tr [S(k − P)γ 5S(k + �/2)Vμ(k, q)

×S(k − �/2)γ 5] (21)

whereR = 2Ncm2
q/ f

2
π , fπ is the pion decay constant Nc = 3

the number of colors, mq the CQ mass and Vμ(k, q) the
quark–photon vertex, which we have simplified to γ μ in the
spacelike region. In presence of a CQ, one could add to the
bare vector current a term proportional to an anomalous mag-
netic moment, namely a term like

i
κq

2mq
σμν�ν,

as in Ref. [23] (where an improved vector current within a
lattice framework has been adopted). It should be pointed
out that the above mentioned anomalous magnetic moment
is not used in the present work.

Within CCQM, the expression of the decay constant in
terms of �π reads (cf Ref. [29])

fπ = −i
mq

fπ

Nc

m2
π

∫
d4k

(2π)4 �π(k − �/2, p)

× Tr
[
/pγ5S(k − �/2)γ5S(k − P)

]

= i
m2

q Nc

(2π)2 fπ

∫
dκ+

κ+ (κ+ − mπ )

∫
d2κ⊥�(κ+, κ⊥)

(22)

where κ = k − �/2 = k − P + p (recall p2 = m2
π ),

κ⊥ = |κ⊥| and

�(κ+, κ⊥) = κ+ (κ+ − mπ )

∫
dκ−

2π

× �π(κ, p)[
κ2 − m2

q + iε
] [

(κ − p)2 − m2
q + iε

] (23)

is the valence wave function. It should be recalled that �,
properly integrated on κ⊥, yields the pion distribution ampli-
tude (DA) (see Eq. (60) and, e.g., Ref. [5] for a general dis-
cussion of the DAs and their evolution). The generalization
of Eq. (21) to the case of GPDs can be found in Ref. [3,4]
for the vector GPD, and in [8,9] for the tensor one, but for
the sake of completeness, let us give the expression of both
vector and tensor GPDs for the u quark, viz

2 Hu(x, ξ, t) = −ıR
∫

d4k

(2π)4 δ[P+x − k+]
× �(k − P, p′) �(k − P, p)

× Tr
[
S (k − P) γ 5S (k + �/2) γ +S (k − �/2) γ 5

]
(24)

and

P+� j − P j�+

P+mπ

Eu
πT (x, ξ, t)

= iR
∫

d4k

(2π)4 δ[P+x − k+] �(k − P, p′) �(k − P, p)

×Tr [S(k − P)γ 5S(k + �/2)γ +γ j S(k − �/2)γ 5]
(25)

where j = 1, 2. The δ function allows one to have the correct
support for the active quark, i.e. when |ξ | ≤ x ≤ 1. This
kinematical region corresponds to the so-called Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) region [33–35],
or valence region. Moreover, CCQM is able to address also
kinematical region beyond the valence one, i.e. −ξ ≤ x ≤
ξ , given the covariance property. This region is called the
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Efremov–Radyushkin–Brodsky–Lepage (ERBL) region [36,
37], or non-valence region. If one adopts a Breit frame with
�+ = −�− ≥ 0, then the ERBL region can be investigated.
As a matter of fact, in such a frame one can access the whole
range of the variable ξ , i.e. −1 ≤ ξ ≤ 1, and analyze both
valence and non-valence regions within the same approach.
This allows one to shed light on the interesting topic of the
smooth transition from the DGLAP (valence) regime to the
ERBL (non-valence) one.

The expression of the unpolarized TMD f q1 (x, |k⊥|2) [3]
can easily be obtained from the integrand of the vector GPD,
Eq. (24), by recalling the relation in Eq. (16).

3.2 The four-momentum dependence of the Bethe–Salpeter
amplitude

As above mentioned, in our CCQM we focus on the main
contribution to the pion BSA, i.e. the term containing the
Dirac matrix γ5. This implies that we have to consider only
one scalar function for describing the dependence upon the
four-momenta present in the problem. Unfortunately, solu-
tions of the homogeneous BSE for hadrons are still lack-
ing in Minkowski space given the extraordinary complexity
of QCD, nonetheless very relevant investigations have been
carried out in Euclidean space, within the lattice framework
[13–16] or combining BSE and Dyson–Schwinger equation
(DSE) (see, e.g., [38] and references quoted therein) or by
exploiting a 3D reduction of the BSE itself (see, e.g., [39]).
On the other hand, since we would carry on a comparison
with a wide set of data, from both experiments and lat-
tice, we resort to adopt a phenomenological Ansatz, which
depends remarkably upon only two parameters. This allows
us to explore the potentiality of the Mandelstam approach in
capturing the main features of the physical quantities under
consideration, while having a reasonable predictive power,
given the small set of free parameters.

The following analytic covariant Ansatz for the momen-
tum dependence of the BSA has been adopted

�(t, p)

= C
1[

(t + p/2)2 − m2
R + ıε

] 1[
(t − p/2)2 − m2

R + ıε
]

(26)

where the parameter mR is adjusted to fit fπ , while the
constants C are fixed through the charge normalization,
Fπ (t = 0) = 1, which amounts to the standard normal-
ization of the BSA, but in impulse approximation.

It is worth noting that the expression in Eq. (26) can be cast
(see below) in a form suggested by the integral representation
of the 4D n-leg transition amplitudes (we are actually inter-
ested to the 3-leg amplitude, i.e. the vertex π → qq̄) elabo-
rated by Nakanishi in the 1960s [40], within a perturbation-

theory framework. To quickly illustrate the appealing fea-
tures of this integral representation, one should consider the
n-leg transition amplitude for a many-scalar interacting sys-
tem, and the infinite set of Feynman diagrams contributing to
determine the amplitude itself. In this case, it turns out that
the amplitude is given by the folding of a weight function
(called the Nakanishi weight function) and a denominator
(with some exponent) that contains all the independent scalar
products obtained from the n external four-momenta. It has
to be pointed out that the analytic behavior of the amplitude
is fully determined by such a denominator, and this clearly
makes the Nakanishi integral representation a valuable tool
for investigating 4D transition amplitudes. For n = 3, one
can apply the integral representation to the vertex function
for a system composed of two constituents, and we explic-
itly discuss the analytic structure, i.e. the core of the physical
content. Another pivotal motivation that increases the inter-
est on the Nakanishi framework is given by the following
computational finding: even if the Nakanishi integral repre-
sentation has been formally established by considering the
whole infinite set of the Feynman diagrams contributing to
an amplitude, i.e. a perturbative regime, it has been numer-
ically shown that also in a non-perturbative framework, like
the homogeneous BSE (relevant for describing bound sys-
tems), the Nakanishi representation plays an essential role for
obtaining actual solutions for the vertex function or, equiv-
alently, for the BSA. Applying the Nakanishi representation
as an Ansatz for the solution of the BSE one can determine
the unknown Nakanishi weight function and achieve a gen-
uine numerical solution of the BSE in Minkowski space. This
approach has been applied to the ladder BSE for two-scalar
and two-fermion systems (see, e.g., Refs. [41–45] for the
Nakanishi approach in Minkowski space and, for the sake of
comparison, Refs. [46,47] for two-fermion systems within
the Euclidean hyperspherical approach), opening a viable
path for phenomenological studies within a non-perturbative
regime.

Within the Nakanishi approach, the vertex function (or
three-leg amplitude) can be written as follows:

�(t, p) =
∫ ∞

0
dγ

∫ 1

−1
dz

g(γ, z; κ2)[
γ + κ2 − t2 − z p · t − iε

]2

(27)

where κ2 = m2
q − p2/4 and g(γ, z; κ2) is called Nakanishi

weight function. If we take g(γ, z; κ2) = δ(γ −m2
R +m2

q),
one obtains Eq. (26). It should be pointed out that while
waiting for numerical solutions of the two-fermion system
with more refined phenomenological kernels (for the ladder
approximation see Ref. [42]), one could perform an inter-
mediate step, still in the realm of Ansatzes, substituting Eq.
(26) with Eq. (27), but adopting a different choice of the
Nakanishi weight function, e.g. by substituting the simple
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delta-like form with more realistic functions (see e.g. [44]
for the Nakanishi weight functions of a two-scalar system
obtained by actually solving the homogeneous BSE in the
ladder approximation). In order to set the reference line for
the next steps in the elaboration of our CCQM (presented
elsewhere), we will adopt the very manageable form given
in Eq. (26), in the following comparisons with the experi-
mental and lattice results (see below, Sect. 5).

4 Evolution of Mellin moments and GFF’s

In order to compare our results for PDF and GFFs with exper-
imental data and lattice calculations, it is fundamental to suit-
ably evolve the CCQM outcomes, from the unknown scale
μCCQ to the needed ones, namely μexp and μLAT.

Our strategy for determining an acceptable μCCQ is to
study the evolution of the non-singlet PDF Mellin within a
LO framework, considering flavor numbers up to Nf = 4. It
should be pointed out that the choice to adopt the LO frame-
work seems to be well motivated by the phenomenological
nature of the CCQM, and by the present uncertainties still
affecting both experimental and lattice GFFs.

Let us shortly summarize our procedure for assigning a
scale μ to our calculations. The main ingredient to be consid-
ered are the Mellin moments of the non-singlet distribution
fNS(x, μ), viz

MNS(n, μ) =
∫ 1

0
dx xn fNS(x, μ) (28)

where fNS is related to the unpolarized GPD, as follows:

fNS(x, μCCQ) = 2H I=1(x, 0, 0). (29)

Mellin moments evolve from a scale μ0 to the scale μ through
very simple expressions (see, e.g., [48]), which for the non-
singlet, singlet, and gluon moments read

dMNS(n, μ)

dlnμ2 = αLO
s (μ, Nf)

2π

γ
(0)
qq (n)

2β0
MNS(n, μ), (30)

d
−→
M (n, μ)

dlnμ2 = αLO
s (μ, Nf )

2π

�(0)(n)

2β0

−→
M (n, μ), (31)

where

−→
M (n, μ) =

(
MS(n, μ)

MG(n, μ)

)
. (32)

In Eqs. (31) and (30), the LO anomalous dimensions are
indicated by γ

(0)
ab while the 2 × 2 matrix �(0)(n) is given by

�(0)(n) =
⎛
⎜⎝

γ
(0)
qq (n) γ

(0)
qG (n)

γ
(0)
Gq (n) γ

(0)
GG(n)

⎞
⎟⎠ . (33)

Let us recall that each anomalous dimension γ
(0)
ab (n) is

obtained from the corresponding LO splitting function. In
particular, for the unpolarized case, one has (see, e.g., [48])

γ (0)
qq (n) = −8

3

[
3 + 2

(n + 1)(n + 2)
− 4

n+1∑
k=1

1

k

]
, (34)

γ
(0)
qG (n) = −2

[
n2 + 3n + 4

(n + 1)(n + 2)(n + 3)

]
, (35)

γ
(0)
Gq (n) = −16

3

[
n2 + 3n + 4

n(n + 1)(n + 2)

]
, (36)

γ
(0)
GG(n, Nf) = −6

[β0(Nf)

3
+ 8

n2 + 3n + 3

n(n + 1)(n + 2)(n + 3)

−4
n+1∑
k=1

1

k

]
, (37)

where

β0(Nf) = 11 − 2

3
Nf . (38)

By taking into account the eigenvalues of �(0)(n), given by
(see [49] for details)

γ±(n) = 1

2

[
γ (0)
qq (n) + γ

(0)
GG(n)

±
√

(γ
(0)
qq (n) − γ

(0)
GG(n))2 + 4γ

(0)
qG (n)γ

(0)
Gq (n)

]
, (39)

one can write the 2 × 2 matrix in terms of projectors and
eigenstates as follows:

�(0)(n) = γ+(n)P+(n) + γ−(n)P−(n) (40)

with

P±(n) = ±1

γ+(n) − γ−(n)
[�(0)(n) − γ∓(n) I]. (41)

They fulfill the usual projector properties, i.e.

P+ + P− = 1,

P2± = P±,

P+P− = P−P+ = 0. (42)

Solutions of Eqs. (31) and (30) are given by

MNS(n, μ) =
[

αLO
s (μ, Nf)

αLO
s (μ0, Nf)

][γ (0)
NS (n)/2β0(Nf )]

× MNS(n, μ0), (43)

−→
M (n, μ) =

[
αLO
s (μ, Nf )

αLO
s (μ0, Nf)

][�(0)(n)/2β0(Nf )]

× −→
M (n, μ0). (44)

Notably, Eq. (44) can be put in a more simple form by using
the eigenvalues, γ±, and the corresponding projectors P±,
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viz. [49]

−→
M (n, μ) =

{[ αLO
s (μ, Nf )

αLO
s (μ0, Nf)

][γ+(n)/2β0]P+

+
[ αLO

s (μ, Nf )

αLO
s (μ0, Nf)

][γ−(n)/2β0]P−
} −→
M (n, μ0). (45)

Indeed, we are interested to actually evolve only the moment
n = 1 of fNS, since for this moment we can find several lat-
tice calculations (but using different approximations; cf Sect.
5). Our procedure requests to backward-evolve the lattice
MLAT

NS (1, μLAT), down to a scale μ0 where MLAT
NS (1, μ0) =

MCCQM
NS (1) (notice the absence of the unknown scale depen-

dence in the CCQM first moment). This value of the scale
is taken as μCCQ. From Eq. (43), one recognizes the neces-
sity to first determine αLO

s (μLAT, Nf). This can be accom-
plished starting from a reasonable value of αs(μi , 3), like
αs(μi = 1 GeV, 3) = 0.68183 given in Ref. [50] (see also
Sect. 5 for the quantitative elaboration). To perform this step
we have used the well-known expression

αLO
s (μ, Nf ) = αLO

s (μi , Nf)

1 + αLO
s (μi ,Nf )

4π
β0(Nf) ln

(
μ2/μ2

i

) (46)

It should be pointed out that, as explicitly shown in Eqs. (38)
and (46), αs(μ, Nf ) depends upon the number of flavors Nf ,
at a given scale. Indeed, one has to be particularly careful
about the energy scales involved, when one moves from a
relatively low μi = 1 GeV to μLAT = 2 GeV, large enough
to produce a new quark flavor, so that Nf increases from
3 to 4. In practice, a two-step procedure has been adopted
for moving from αs(μi , Nf = 3) to αs(μLAT, Nf = 4), by
properly changing β0(Nf), at the threshold μ = mc, i.e. the
mass of the charm.

In the following, it is also useful to define, at a given energy
scale and number of flavors,

ln(�
Nf
QCD) = ln(μ) − 2π

β0(Nf) αLO
s (μ, Nf)

. (47)

4.1 QCD evolution of GFFs

Similarly to the more familiar case of PDFs, where the QCD
interaction among partons lead to ultraviolet divergences
which are factored out and absorbed into a dependence upon
the energy scale, also in the case of GPDs one has to deal
with the issue of finding and solving evolution equations. As
a matter of fact, GPDs do not depend on three variables but on
four, namely H(x, ξ, t, μ) and E(x, ξ, t, μ). However, the
evolution kernel does not depend on t , so that the relevant
variables for the evolution are x , ξ , and μ. One should keep
in mind that the evolution of GPDs is produced by the com-
bination of two regimes: (1) the one pertaining to the valence
region (|x | > |ξ |) and (2) the one pertaining to the non-

valence region (|x | < |ξ |). One could roughly say that the
evolution of GPDs interpolates [5] between the two regions
and therefore the evolution kernel has to take into account the
suitable physical content. In particular, in the valence region a
kernel acts with a structure like the one present in the DGLAP
equations, while in the non valence region a modified ERBL
kernel is involved (see Refs. [51] and [52] for details on the
evolution of vector and tensor GPDs, respectively).

In our actual comparison, we do not consider the full
GPDs, but rather their Mellin moments, since they can be
in principle addressed by the lattice calculations. As a matter
of fact, GFFs covariantly parametrize the Mellin moments
of GPD (see Eqs. (7) and (6)), and evolve through a suitable
generalization of Eqs. (43) and (44) (see Refs. [49,53–58]).
Let us recall, however, that GFFs are the coefficients of poly-
nomials in ξ that yield the Mellin moments of GPDs and not
the Mellin moments themselves: for this reason in general the
equations describing GFFs evolution are more complicated
than Eqs. (43) and (44). Indeed one can find some notable
exceptions where the equations have a simple multiplicative
structure.

For the vector GFFs AI
ni (t, μ

2), one should recall that the
evolution of the isoscalar (singlet) GPD, and consequently
the evolution of the corresponding Mellin moments, is cou-
pled with the evolution of the gluonic component. This leads
one to separate the evolution of GFFs with even and odd n,
since for symmetry reasons the even GFFs come from the
isoscalar GPDs, while the odd ones come from the isovec-
tor GPDs. By repeating the main steps given in Ref. [54]
(see also [55,56] where general discussions are presented)
for obtaining the evolution equation of both non singlet and
singlet vector GFFs, we can express the results in Ref. [54]
also as follows:

A2k+1,2�(t, μ) = �(2k + 1)

2

k∑
j=k−�

22( j−k)

×
k∑

m= j

(4m + 3)L2m+1
(−1)m− j �( j + m + 3/2)

�(2 j + 1)

× A2 j+1,2( j−k+�)(t, μ0)

�(m − j + 1)�(k − m + 1)�(k + m + 5/2)
(48)

with 0 ≤ � ≤ k and

L2m+1 =
(

αs(μ, Nf)

αs(μ0, Nf)

)[γ (0)
qq (2m)/2β0(Nf )]

. (49)

For the singlet vector GFFs we get
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A2k+2,2�(t, μ) = �(2k + 2)

k∑
j=k−�

22( j−k)−1

×
k∑

m= j

(4m + 5)L2m+2
(−1)m− j �( j + m + 5/2)

�(2 j + 2)

× A2( j+1),2( j−k+�)(t, μ0)

�(m − j + 1)�(k − m + 1)�(k + m + 7/2)
(50)

with 0 ≤ � ≤ k + 1, A00 = 0 and

L2m+2 =
(

αs(μ, Nf )

αs(μ0, Nf)

)[�(0)
V (2m+1)/2β0(Nf )]

(51)

where �
(0)
V is the same 2×2 matrix as defined in (33), which

depends upon Nf through γ
(0)
GG . In Eqs. (48) and (50), �(k)

is the usual Euler function. Notice that the dependence upon
t in the GFF is not involved in the evolution. Some example
of explicit evolution equations are

An0(t, μ) = Ln An0(t, μ0)

A22(t, μ) = L2 A22(t, μ0) (52)

where A22(t, μ) is a 2D vector, with quark and gluon compo-
nents, and L2 a 2×2 matrix. For An0(t, μ) the evolution equa-
tions become exactly equal to Eqs. (43) and (44) for the odd
and even n’s, respectively. Moreover, since γ

(0)
qq (n = 0) = 0

then L1 = 1. This is expected since A10(t = 0) is the charge
(A10(t) is the em form factor), namely a measurable quantity
and therefore it cannot evolve.

For the tensor GFF BI
ni (t, μ), analogous arguments can

be carried out, but with a great simplification. In fact, at LO
the gluon–quark and quark–gluon transition amplitudes that
lead to the corresponding splitting functions are vanishing for
the helicity conservation (recall that ET (x, ξ, t) is related to
an expectation value with a transversely polarized quark and
describes helicity-flip transitions), therefore the anomalous

dimension matrix �
(0)
T (n) is diagonal. Consequently, at LO it

is not necessary to separate the case of even and odd n, since
there is no mixing between quark and gluon evolutions, and
one can eventually write the evolution equation in a form
analogous to Eq. (48). In particular, the quark component
of the transverse GFFs, Bq

n0(t, μ), evolves multiplicatively
(see, e.g., [49,57–59]), viz

Bq
n0(t, μ) = LqT

n Bq
n0(t, μ0). (53)

where

LqT
n =

(
αs(μ, Nf )

αs(μ0, Nf)

)[γ (0)
qqT (n−1)/2β0(Nf )]

(54)

with a transverse anomalous dimension (notice a factor of
2 difference with [49], due to the different normalization)
given by

γ
(0)
qqT (�) = − 8

3

[
3 − 4

�+1∑
k=1

1

k

]
. (55)

For the sake of completeness, the gluon transverse LO
anomalous dimension reads

γ
(0)
ggT (�) = − 6

[β0(Nf)

3
− 4

�+1∑
k=1

1

k

]
. (56)

5 Numerical results

The reliability of the quark–pion vertex (26), introduced for
obtaining the Bethe–Salpeter amplitude (18), has been first
checked by comparing our results for a charged pion with
the most accurate experimental data not affected by the evo-
lution, i.e. the spacelike em form factor. Theoretically, the
em form factor, Fπ (t), is given by the GFF A10(t). In Fig.
1 the results obtained by different models for the em FF are
shown as a function of (−t), together with the experimental
data. To avoid the use of a log plot, which prevents a detailed
analysis, the FF has been divided by the monopole function

Fmon(t) = 1

1 + |t |/m2
ρ

(57)

where mρ = 0.770 GeV. Interestingly, in order to test the
dependence upon the CQ mass, the results of our CCQM
evaluated for quark masses mq = 0.200, 0.210, 0.220 GeV,
have also been shown, together with (1) the results from a

0.01 0.1 1 10

-t  (GeV/c)2

0.4

0.6

0.8

1

1.2

1.4

F π(t)
/F

m
on

(t)

Fig. 1 Charged pion form factor vs. −t . Solid lineLF constituent quark
model with mq = 0.265 GeV [30,31]. Dashed line monopole fit to
lattice data extrapolated to mπ = 0.140 GeV as obtained in [23], arbi-
trarily extended in this figure from −4 to −10 GeV2. Dot-dashed line
CCQM, cf Eq. (26), corresponding to a CQ mass mq = 0.220 GeV
and mR = 1.192 GeV in the vertex (26) (recall that mR is obtained by
fitting f exp

π = 0.0922 GeV [60]). Dotted line as the dot-dashed one,
but with mq = 0.210 GeV and mR = 1.320 GeV. Double-dot-dashed
line as the dot-dashed one, but with mq = 0.200 GeV and mR = 1.453
GeV. Experimental data: as quoted in [3]
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LF CQM where mq = 0.265 GeV and a dressed quark–
photon vertex were adopted [30,31]; (2) a fit to the lattice
data obtained in [23]. It has to be pointed out that the fit to
the lattice data was presented in [23] itself, and it has the
following monopole expression:

FLAT
π (t) = 1

1 − t/M2(mphys
π )

(58)

with M(mphys
π ) = 0.727 GeV. The lattice results were actu-

ally obtained for a pion mass mπ = 0.600 GeV and then
extrapolated to the physical pion mass mphys

π = 0.140 GeV,
up to t = −4 GeV2 (see [23]). In Fig. 1, for the sake of presen-
tation, the monopole fit (58) has been arbitrarily extended up
to t = −10 GeV2. Once the CQ mass is assigned, our CCQM
model depends upon only one free parameter, the regulator
mass mR in Eq. (26). The value of mR is fixed by calculating
the pion decay constant fπ (cf Eq. (22)), while the constantC
is determined through Fπ (0), as already mentioned in Sect.
3.2. The PDG experimental value f exp

π = 0.0922 GeV [60]
has been adopted. In particular, for mq = 0.200, 210, 220
GeV, we got mR = 1.453, 1.320, 1.192 GeV, respectively.

The following comments are in order: (1) a nice agree-
ment between the CCQM results and the experimental FF at
low momentum transfer leads to reproduce the experimen-
tal value of the charge radius, 〈r2

exp〉 = 0.67 ± 0.02 fm; (2)

beyond −t = 0.5 GeV2, CCQM results begin to reveal an
interesting sensitivity upon the CQ mass, since if one changes
the CQ mass by a 5 % then the corresponding CCQM FF
changes by 10–15 %, at high momentum transfer; (3) the
CCQM FFs seem to have a similar curvature of the data at
high momentum transfer, but in order to draw reliable conclu-
sions, useful for extracting information (and then improving
the CCQM), it is necessary to have more accurate data, for
−t ≥ 1 GeV2.

Another interesting data set to be compared with is given
by the photon–pion transition form factor, F∗

π (−t), measured
in the process γ γ ∗ → π0 [61,62]. Within CCQM, only the
LO asymptotic value of such transition FF can be evaluated
without adding new ingredients (see for a wide discussion,
e.g., Ref. [63] and references quoted therein). As a matter of
fact, one gets for high (−t), at LO in pQCD,

(−t) F∗
π (−t) → 2 fπ

3

∫ 1

0
dξ

φπ(ξ, |t |)
ξ

(59)

where φπ(ξ, |t |) is the pion DA evaluated at the scale |t |. The
CCQM result (with an undetermined scale for the moment,
see the next subsection) is given by

φπ(ξ, μ2
CCQM) = i

m2
q Nc

f 2
πmπ (2π)2

× 1

ξ(1 − ξ)

∫ ∞

0
d2κ⊥ �(ξmπ , κ⊥) (60)

where �(ξmπ , κ⊥) is defined in Eq. (23). The normalization
of φπ follows from Eq. (22). It should be anticipated that
CCQM results, both non-evolved and evolved, as shown in
Fig. 3, resemble the asymptotic pion DA obtained within the
pQCD framework, i.e. φ

asy
π (ξ) = 6ξ(1 − ξ), which in turn

yields (−t) F∗
π (−t) → 2 fπ ; see Refs. [64,65].

In the following, the values mq = 0.220 geV and mR =
1.192 GeV will be adopted.

5.1 Looking for the CCQM energy scale

As is well known, the em FF is not affected by the issue of
the evolution, while the other quantities we are interested in,
namely the PDF and the GFFs [as well as the DA; see Eq.
(60)], have to be properly evolved.

A necessary step for going forward is to assign a res-
olution scale to CCQM. In order to perform this step, we
have taken lattice estimates of the first Mellin moment of
fNS(x, μ), whose evolution is determined only by the quark
contribution, as normalization of our CCQM (roughly speak-
ing). The starting point is the calculation of both the unpolar-
ized GPD, fNS(x) = 2H I=1(x, 0, 0), and the correspond-
ing Mellin moments, within our CCQM. In particular, these
quantities are shown in Table 1 up to n = 3. To emphasize
that there is no direct way to gather information as regards
the energy scale μ0, a question mark is put in the table.

In the literature there are various lattice results for the first
moment at the energy scale of μ = 2 GeV, and we have
exploited the ones shown in Table 2. It is worth noticing that
the lattice results are not too far from a phenomenological
estimate, 〈x〉phe(μ = 2 GeV), that one can deduce by apply-
ing a LO backward-evolution to the value given in Ref. [12],
〈x〉phe(μ = 5.2 GeV) = 0.217(11), obtained after a NLO

Table 1 Mellin moments of fNS(x) up to n = 3, evaluated within the
CCQM with the quark–pion vertex given in Eq. (26), mq = 0.220 GeV,
and mR = 1.192 GeV. The energy scale, μ0 has to be determined (see
text)

μ0 〈x〉 〈x2〉 〈x3〉
? 0.471 0.276 0.183

Table 2 Recent lattice results for the first Mellin moment of the non-
singlet fNS(x), at the energy scale μLAT = 2 GeV. The first and the
second lines are the results obtained from unquenched lattice QCD cal-
culations [14,66], while the third result has been obtained in quenched
lattice QCD [67]

Ref. μLAT[GeV ] 〈x〉LAT

Lat. 07 [14] 2.0 0.271(10)

South [66] 2.0 0.249(12)

χLF [67] 2.0 0.243(21)
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re-analysis of the Drell–Yan data of Ref. [11]. In particular,
the phenomenological value at μ = 2 GeV is

〈x〉phe(μ = 2 GeV) = 0.260(13).

For the sake of completeness, it is interesting to quote two
other lattice calculations: (1) the quenched one of Ref. [68]
that amounts to a value 〈x〉LAT(μ = 2 GeV) = 0.246(15),
i.e. falling between the results of Refs. [66,67] and (2) a very
recent lattice estimate, remarkably at the physical pion mass,
giving 〈x〉LAT(μ = 2 GeV) = 0.214(19) [69].

After establishing the set of lattice data, we need the value
of αLO

s at μ = 2 GeV where Nf = 4. This value has
been obtained starting from αLO

s (μ = 1 GeV) = 0.68183
obtained in Ref. [50]. Notice that at the scale μ = 1 GeV
only three flavors are active. Then, by using mc = 1.4 GeV
[50] and Eq. (46), with the proper β0(Nf), one determines
αLO
s (μ = 2 GeV, 4) = 0.413 (see also Refs. [60,70,71],

where the crossing of the flavor threshold has been dis-
cussed). Finally, paying attention to the flavor threshold,
the lattice evaluations of the first moment MLAT

NS (1, μLAT)

have to be backward-evolved up to a scale μ0, where they
match our CCQM value, i.e. we look for μ0 such that
MLAT

NS (1, μ0) = 0.471 = MCCQM
NS (1, ?).

In detail, we calculate first (cf. Eq. (43)) the lattice result
at the charm mass scale, viz

MNS(1,mc) =
[

αLO
s (mc, 4)

αLO
s (μLAT, 4)

]γ
(0)
qq (1)/(2β0(4))

× MNS(1, μLAT) (61)

where γ
(0)
qq (1) = 64/9, β0(4) = 25/3, αLO

s (mc, 4) =
0.513 (corresponding to �QCD(Nf = 4) = 0.322 GeV)
and MNS(1, μLAT) are the values shown in Table 2. Once
MNS(1,mc) is obtained, αLO

s (μ0) can be evaluated through
(cf. Eq. (43))

αLO
s (μ0, 3) = αLO

s (mc, 3)

×
[
MNS(1, μ0)

MNS(1,mc)

]−γ
(0)
qq (1)/(2β0(3))

, (62)

where MNS(1, μ0) corresponds to our CCQM calculation
and β0(3) = 9. After determining αLO

s (μ0, 3), μ0 is easily
found through

ln

(
μ0

μ = 1 GeV

)
= 2π

β0(3)

×
[ 1

αLO
s (μ0, 3)

− 1

αLO
s (μ = 1 GeV, 3)

]
. (63)

The results for μCCQ obtained from the above procedure,
applied to the three lattice data, are shown in Table 3 formq =
0.220 GeV and mR = 1.192 GeV. In particular, the values
in the third column of Table 3 are used in the next sections
as starting values for the evolution of both the non-singlet
PDF and the GFFs. The difference between the three values

Table 3 Energy scale of CCQM, μ0, as determined from (1) the first
Mellin moments calculated within a lattice framework in Refs. [14,66,
67] and (2) the CCQM result, 〈x〉 = 0.471, calculated withmq = 0.220
GeV and mR = 1.192 GeV. For all the three calculations shown in the
table, one gets �

Nf =3
QCD (μ0) = 0.359 GeV from Eqs. (47) and (63).

Ref. 〈x〉LAT μ0 [GeV] αLO
s (μ0, 3)

Lat. 07 [14] 0.271 0.549 1.64

South [66] 0.249 0.506 2.04

χLF [67] 0.243 0.496 2.17

Table 4 Comparison for the second and third Mellin moments of the
non-singlet fNS(x), at the energy scale μLAT = 2 GeV, between the
unquenched lattice results of Ref. [14] and the evolved CCQM, where
the theoretical uncertainty is generated by the three values for the
CCQM initial scale shown in Table 3

〈x2〉 〈x3〉
Lat. 07 [14] 0.128(18) 0.074 (27)

CCQM 0.105(11) 0.055 (7)

of μ0 in the Table 3 is assumed as a theoretical uncertainty
of our results. To complete this subsection, in Table 4, the
comparison with the lattice calculation of Ref. [14] for the
second and the third Mellin moments is presented.

5.2 The evolution of the non-singlet PDF and the
comparison with the experimental data

The non-singlet PDF, as already explained, is the simplest
to be evolved since one does not need information on the
gluon distribution. The evolution has been performed using
the FORTRAN code described in [10] that adopts a brute-
force method to solve the LO DGLAP equation for the dis-
tribution x fNS(x), and it requests as input the values of (1)
μ, the final scale, and (2) the initial �

Nf
QCD and μ0, as given

in Table 3. An important detail in our calculations should be
pointed out. For all the values of μ0, the evolution has been
performed in two steps: first x f CCQM

NS (x) has been evolved
from μ0 up to mc = 1.4 GeV and then from mc up to μ = 4
GeV, the energy scale of the experimental data [11]. This is
necessary for taking into account the variation of Nf , �QCD

(recall that �
Nf=4
QCD (μ = 2 GeV ) is 0.322 GeV) and conse-

quently αLO
s (μ).

In Fig. 2, the dashed line is the non-evolved CCQM cal-
culation with mq = 0.220 GeV and mR = 1.192 GeV, while
the solid and the dot-dashed lines correspond to our evolved
CCQM starting from the initial scales μ0 = 0.549 GeV
and μ0 = 0.496 GeV, respectively. The differences between
the evolved calculations can be interpreted as the theoretical
uncertainty of our calculations. However, it is very interest-
ing that our LO-evolved calculations nicely agree with the
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Fig. 2 Evolution of the non-singlet parton distribution. Dashed line
non-evolved PDF obtained from CCQM H I=1(x, 0, 0) with a CQ mass
mq = 0.220 GeV and mR = 1.192 GeV in the vertex (26). Solid line
PDF LO-evolved at μ = 4 GeV from μ0 = 0.549 GeV. Dot-dashed
line PDF LO-evolved at μ = 4 GeV from μ0 = 0.496 GeV. For details
on the values of μ0 see text and Table 3. Full dots experimental data at
the energy scale μ = 4 GeV, as given in Ref. [11]

experimental data of Ref. [11] for x > 0.5 (see also the
same agreement achieved within the chiral quark model of
Ref. [53]). On the other hand, it has to be pointed out that
refined calculations, like (1) the ones of Refs. [72,73] based
on the Euclidean Dyson–Schwinger equation for the self-
energy and (2) the NLO calculation of Ref. [74] based on a
soft-gluon resummation, underestimate the PDF tail of the
experimental data from Ref. [11], while agree with the anal-
ysis of the same experimental data carried out in Ref. [12],
within a NLO framework. The reanalysis of the experimen-
tal data leads to a tail for large x that has a rather different
derivative with respect to the original data from Ref. [11].

For the sake of completeness, in Fig. 3, the CCQM pion
DA is presented together with the results at the energy scale
μ = 1 GeV and μ = 6 GeV. It is worth noticing that
our CCQM evolves toward the pQCD asymptotic pion DA
φπ(ξ) = 6 ξ (1 − ξ) (see, e.g., [64,65]) as the energy scale
increases. Analogous results are obtained within the chiral
quark model of Ref. [75].

5.3 The tensor GPD

We have extended to the tensor GPD our CCQM model
already applied to the vector GPD in Refs. [3,4], and in Fig.
4, our final results are shown for some values of the vari-
able ξ and t , but for 0 ≤ x ≤ 1 (preliminary results were
presented in Refs. [8,9]). The GPD for negative values of x
can be obtained by exploiting the fact that E IS

πT (x, ξ, t) is
antisymmetric if x → − x , while E IV

πT (x, ξ, t) is symmet-
ric (see, e.g., Ref. [5] for details). It has to be pointed out
that for ξ → 0 the valence component is dominant (DGLAP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 ξ

0

0.5

1

1.5

 φ
π (ξ

,μ
)

Fig. 3 Evolution of the pion distribution amplitude. Solid line non-
evolved DA obtained from our CCQM with mq = 0.220 GeV and
mR = 1.192 GeV in the vertex (26) (see Eqs. (23) and (60)). Dashed
line DA LO-evolved at μ = 1 GeV. Dot-dashed line PDF LO-evolved
at μ = 6 GeV. Dotted line pQCD asymptotic DA, given by φπ (ξ) =
6ξ(1 − ξ)

regime) while for ξ → 1 the non-valence term is acting
(ERBL regime). In view of that, a peak is expected around
x ∼ 1 for ξ → 1, as discussed in Refs. [3,4] for the vector
GPD.

It is worth mentioning that both isoscalar and isovector
tensor GPD calculated within the chiral quark model of Ref.
[58] qualitatively show the same pattern (see also Ref. [8]
and references therein, quoted for a comparison with results
obtained within the LF Hamiltonian dynamics framework).

5.4 The evolution of the GFFs and the comparison with
lattice data

The first vector GFF Aq
10, i.e. the em FF, is experimen-

tally known, while the other GFFs can be investigated only
from the theoretical side. In particular, Aq

20(t, μ), Aq
22(t, μ),

Bq
10(t, μ) and Bq

20(t, μ) have been calculated within the lat-
tice framework at the scale μ = 2 GeV [13,15,16]. In this
subsection, the comparison between our CCQM predictions
and the above mentioned lattice evaluations is presented. It
is important to notice that other model calculations of both
vector and tensor GFFs are available in the literature (see,
e.g., [57–59,75–77]).

To proceed, we have calculated both vector and tensor
GPDs, and then we have extracted the relevant GFFs, by
exploiting the polynomiality shown in Eqs. (7) and (6) (see
also [3]). The main issue to be addressed in order to perform
the mentioned comparison with the lattice data is the evolu-
tion of our calculations up to μLAT = 2 GeV. In the simpler
case, represented by the tensor GFFs, the LO evolution of the
quark contribution is uncoupled from the gluon one. In partic-
ular, the two-step procedure μCCQ → mc → μLAT has been
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Fig. 4 Isoscalar and isovector tensor GPDs for a charged pion, within
CCQM, for positive x . The behavior for negative values of x can be
deduced from the antisymmetry of E IS

πT (x, ξ, t) and the symmetry of
E IV

πT (x, ξ, t), respectively. Thick solid line ξ = 0 and t = 0. Thick

dotted line ξ = 0 and t = −0.4 GeV 2. Thick dashed line ξ = 0 and
t = −1GeV 2. Thin dotted line ξ = 0.96 and t = −0.4 GeV 2. Thin
dashed line ξ = 0.96 and t = −1GeV 2

adopted for evolving the two transverse GFFs, Bq
10(t, μ0) and

Bq
20(t, μ0), through Eq. (53). The needed transverse anoma-

lous dimensions are given by (cf. Eq. (55))

γ
(0)
qqT (0) = 8

3
, γ

(0)
qqT (1) = 8. (64)

Then for μCCQ ≤ μ < mc one has Nf = 3 and gets

Bq
10(t,mc) = Bq

10(t, μCCQ)

[
αLO
s (mc, 3)

αLO
s (μCCQ, 3)

]4/27

, (65)

Bq
20(t,mc) = Bq

20(t, μCCQ)

[
αLO
s (mc, 3)

αLO
s (μCCQ, 3)

]4/9

. (66)

For mc ≤ μ ≤ μLAT, the flavor number is Nf = 4 and one
has

Bq
10(t, μLAT) = Bq

10(t,mc)

[
αLO
s (μLAT, 4)

αLO
s (mc, 4)

]4/25

, (67)

Bq
20(tμLAT) = Bq

20t, (mc)

[
αLO
s (μLAT, 4)

αLO
s (mc, 4)

]12/25

. (68)

In the case of A20(t, μ) and A22(t, μ) the evolution equa-
tion is more complicated, since both GFFs evolve through
the following expression:

−→
A 2i (t, μ) = L2

−→
A 2i (t, μ0) (69)

where, for both scales, one has

−→
A 2i =

(
Aq

2i
AG

2i

)
. (70)

From the definition (51), the exponent in L2 is a 2×2 matrix
(see also Eqs. (33), (35), (36), (37) and (34)) that for Nf = 3
reads

�
(0)
V (1) =

⎛
⎜⎝

γ
(0)
qq (1) γ

(0)
qG (1)

γ
(0)
Gq (1) γ

(0)
GG(1)

⎞
⎟⎠ =

⎛
⎝

64
9 − 2

3

− 64
9 4

⎞
⎠ (71)

with eigenvalues (see Eq. (39))

γ± = 50 ± 2
√

145

9
. (72)

At the valence scale, the gluon contribution is vanishing, and
therefore one has 〈x〉q = 1/2. Indeed, the CCQM result
amounts to 〈x〉(μCCQ) = 0.47, namely the momentum sum
rule is not completely saturated by the valence component
at the CCQM scale μCCQ. This difference originates from
the fact that we have a covariant description of the pion ver-
tex, and therefore we have not only a contribution from the
valence LF wave function (i.e. the amplitude of the Fock
component with the lowest number of constituents), but also
from components of the Fock expansion of the pion state
beyond the constituent one, like |qq̄; qq̄〉. Without the gluon
term at the initial scale (the assumed valence one), Aq

2i (t,mc)

is given by (cf. Eqs. (40) and (41))

Aq
2i (t,mc) = 1

2
√

145
Aq

2i (t, μCCQ) R25/81
3

×
[
(7 + √

145) R
√

145/81
3 − (7 − √

145) R−√
145/81

3

]
,

(73)

where

R3 = αLO
S (mc, 3)

αLO
s (μCCQ, 3)

, (74)

and AG
2i (t,mc) reads
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AG
2i (t,mc) = − 16√

145
Aq

2i (t, μCCQ) R25/81
3

×
[
R

√
145/81

3 − R−√
145/81

3

]
. (75)

For Nf = 4, Eq. (73) changes, since both β0 and γ
(0)
GG(1)

depend on the flavor number. Therefore �
(0)
V (1) becomes

�
(0)
V (1) =

⎛
⎝

64
9 − 2

3

− 64
9

16
3

⎞
⎠ (76)

with eigenvalues

γ± = 56 ± 8
√

7

9
(77)

Then the evolution in the second step from mc → μLAT = 2
GeV reads

Aq
2i (t, μ) = R28/75

4

2
√

7

×
{
Aq

2i (t,mc)
[
(1+√

7)R4
√

7/75
4 −(1 − √

7)R−4
√

7/75
4

]

−3

4
AG

2i (t,mc)
[
R4

√
7/75

4 − R−4
√

7/75
4

]}
(78)

where

R4 = αLO
S (μ, 4)

αLO
s (mc, 4)

. (79)

It should be pointed out that the GFFs Aq
2i evolve multi-

plicatively (recall that the evolution is not influenced by the
value of t), given the absence of the gluon contribution at the
valence scale, viz

Aq
2i (t, μ) = Aq

2i (t, μCCQ) F(μCCQ,mc, μ). (80)

From Eq. (80), one realizes that the ratio

Aq
2i (t, μ)/Aq

2i (t = 0, μ)

(Aq
2i (t = 0, μ) is also called a charge) can be compared with

the same ratio obtained at a different scale, e.g. at μCCQ.
It is understood that the same holds for the tensor GFF. In
Figs. 5 and 6, the tensor GFFs Bq

10(t) and Bq
20(t), normal-

ized to their own charges, are shown for both the CCQM
model, with mq = 0.220 GeV and mR = 1.192 GeV, and
the lattice framework [13,16]. In particular the lattice data
are represented by a shaded area, generated by the envelope
of curves that fit the lattice data with their uncertainties. In
Refs. [13,16], the lattice data have been first extrapolated to
the physical pion mass through a simple quadratic (in mπ )
expression, and then fitted by the following pole form:

GFFLAT
j (t)

GFFLAT
j (0)

= 1[
1 + t/(p j M2

j )
]p j

(81)
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Fig. 5 The tensor GFF Bq
1,0(t), an isovector one, normalized to its own

charge. Dashed line CCQM result, corresponding to mqmq = 0.220
GeV andmR = 1.192 GeV in the vertex (26). The shadedarea indicates
the lattice data [16] extrapolated to the pion physical mass mπ = 0.140
GeV (see text)
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Fig. 6 The same as in Fig. 5 but for the tensor GFF Bq
2,0(t)

where p j and Mj are pairs of adjusted parameters, shown in
Table 5, for the sake of completeness.

In Figs. 7 and 8, the CCQM A2,0(t) and A2,2(t) (with
CCQM parameters different from the ones adopted in Ref.
[3]) are presented together with the corresponding lattice
results.

Table 5 Adjusted parameters for describing the extrapolated lattice
data through Eq. (81), as given in Refs. [13,16]

GFF p j M j

Aq
20(t) 1 1.329 ± 0.058

Aq
22(t) 1 0.89 ± 0.25

Bq
10(t) 1.6 0.756 ± 0.095

Bq
20(t) 1.6 1.130 ± 0.265
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Fig. 7 The vector GFF Aq
2,0(t), an isoscalar one, normalized to its own

charge. Dashed line CCQM result, corresponding to mq = 0.220 GeV
and mR = 1.192 GeV in the vertex (26). The shaded area indicates
the lattice data [13] extrapolated to the pion physical mass mπ = 0.140
GeV (see text)
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Fig. 8 The same as in Fig. 7 but for the vector GFF Aq
2,2(t).

Table 6 Values at t = 0 of the CCQM GFFs, Aq
2,0(0), Aq

2,2(0), Bq
1,0(0)

and Bq
2,0(0)

Aq
2,0(0) Aq

2,2(0) Bq
1,0(0) Bq

2,0(0)

0.4710 −0.03308 0.1612 0.05827

If one is interested in a comparison that involves the full
GFFs, then it is necessary to specify the scale and, accord-
ingly, to evolve our CCQM results. In particular, since we
have a multiplicative evolution, it is sufficient (1) to evolve
only the value at t = 0, namely the ones collected in Table
6, through Eqs. (66), (66), (67), (68), (73) and (78) and
then (2) to use Eq. (80). As in the case of the evolution
of the PDF, we considered the three possible values of μ0

listed in Table 3. The results are shown in Table 7, together
with lattice data [13,16,78] and model calculations, obtained

from a chiral quark model [57,76] and an instanton vacuum
model [59]. It should be pointed out that within the chi-
ral perturbation theory (see Ref. [79]) one should have the
following relation between the so-called gravitational FFs:
Aq

22(t) = −Aq
20(t)/4 + O(m2

π ). This relation is verified by
the lattice results, while CCQM does not. Moreover, one
should observe that Aq

20(0) slightly differs from 〈x〉 at μLAT

(see Table 2), which contains both quark and gluon contri-
butions.

To have a better understanding of the quality of the com-
parison between our CCQM results and the lattice data shown
in Table 7, we have added our calculation, at t = 0, in
Fig. 9, where the lattice results from [13], extrapolated at
the physical pion mass, are presented for Aq

2,0(t, μLAT) and
Aq

2,2(t, μLAT). In Fig. 9, the stars at t = 0 represent the
CCQM values evolved at the lattice scale (the size of the sym-
bols is roughly proportional to the uncertainties of the initial
μCCQ (cf Sect. 5.1), while the shaded area is the uncertainties
produced by the fits to the lattice data, as elaborated in Ref.
[13]. It is clear that in order to have a conclusive comparison a
more wide lattice data set is necessary, but on the other hand it
is impressive that a small quantity, like Aq

2,2(t, μLAT), can be
extracted with a quite reasonable extent of reliability. In Figs.
10 and 11, analogous comparisons for Bq

1,0(t = 0, μLAT) and
Bq

2,0(t = 0, μLAT) are shown. In particular, Fig. 10 contains
both B1,0(t = 0, μLAT) and Bq

2,0(t = 0, μLAT), evaluated
within CCQM (stars) and within the chiral quark model of
Ref. [57] with different mπ . In the figure the lattice data of
Ref. [16] are also present. Again, the comparison between
values at t = 0 and physical pion mass appears non trivial.
In Fig. 11, a recent lattice calculation of Bq

1,0(t = 0, μLAT)

[78] is compared with our CCQM (triangles). In general, one
has an overall agreement, a little bit better for Bq

2,0(0).
The knowledge of GFFs allows one to investigate the

probability density ρn(b⊥, s⊥) for a transversely polarized
u-quark (cf Eq. (12)). In particular, one can address the 3D
structure of the pion in the impact parameter space. For
instance, one can calculate the average transverse shifts when
the quark is polarized along the x-axis, i.e. s⊥ ≡ {1, 0}. The
shift for a given n is given by [16]

〈by〉n =
∫

db⊥ by ρn(b⊥, s⊥)∫
db⊥ ρn(b⊥, s⊥)

= 1

2mπ

Bq
n,0(t = 0)

Aq
n,0(t = 0)

. (82)

From the CCQM values evolved at μLAT, shown in Table 7,
one can construct the shifts for n = 1, 2, and then compare
with the corresponding lattice results, as given in Ref. [16].
In Table 8, the comparison is shown (recall that Aq

1,0(t =
0) = 1). Obviously, the same observations relevant for Table
7 can be also repeated for Table 8, since it contains the same
information but presented in a different context.

The values shown in Table 8 indicate that even the simple
version of a CCQM is able to reproduce a distortion of the
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Table 7 GFFs for t = 0 at a scale μLAT = 2 GeV. The first three rows
contain the evolved (see text) CCQM results for mq = 0.220 GeV and
mR = 1.192 GeV. The fourth and fifth rows show the lattice extrapo-
lations at the pion physical mass obtained in Refs. [13,16] and in Ref.
[78], respectively. The sixth and seventh rows present the calculations

from the chiral quark model of Refs. [57,76] and from the instanton
vacuum model of Ref. [59], respectively. Notice that the results from
[57,76] were not explicitly written in the works, so that they have been
extrapolated by the plots presented there

Aq
2,0(t = 0, μ = 2GeV) Aq

2,2(t = 0, μ = 2GeV) Bq
1,0(t = 0, μ = 2GeV) Bq

2,0(t = 0, μ = 2GeV)

CCQM

μ0 = 0.496 0.2485 −0.0175 0.1258 0.0277

μ0 = 0.506 0.2542 −0.0179 0.1269 0.0285

μ0 = 0.549 0.2752 −0.0193 0.1310 0.0313

Lattice

Refs. [13,16] 0.261 ± 0.004 −0.066 ± 0.008 0.216 ± 0.034 0.039 ± 0.010

Ref. [78] – – 0.195 ± 0.010 –

Chiral models

χQM [57,76] 0.278 ± 0.015 – 0.149 0.0287

IVM [59] – – 0.216 0.032

Fig. 9 The lattice GFFs Aq
2,0(t, μLAT) and Aq

2,2(t, μLAT) of Ref. [13]

and the CCQM Aq
2,0(t = 0, μLAT) and Aq

2,2(t = 0, μLAT).StarsCCQM
result evolved at μLAT = 2 GeV (the size of the symbols is roughly
proportional to the uncertainties on CCQM initial scale μCCQ). Shaded
area uncertainties of the fits to the lattice data, as estimated in Ref. [13]
(see text) (Adapted from Ref. [13])

transverse density in a direction perpendicular to the quark
polarization, and in turn they demonstrate the presence of a
non-trivial correlation between the orbital angular momenta
and the spin of the constituents inside a pseudoscalar hadron,
which attracts a great interest from both experimental and
theoretical side (see, e.g., [20]).

6 Conclusions

A simple, but fully covariant constituent quark model has
been exploited for investigating the phenomenology of the
leading-order generalized parton distributions of the pion.

Fig. 10 Comparison between the CCQM Bq
1,0(t = 0, μLAT) and

Bq
2,0(t = 0, μLAT), divided by mπ and the corresponding results from

the chiral quark model of Ref. [57] and the lattice data of Ref. [16].
Stars CCQM results evolved at μLAT = 2 for Bq

1,0(0) (upper one) and

for Bq
2,0(0) (lower one) (the size of the symbols is roughly proportional

to the uncertainties on our initial scale μCCQ as illustrated in Sect. 5.1).
Solid lines results from the chiral quark model of Ref. [57], vs m2

π . Data
points: lattice calculations from Ref. [16]. The vertical line corresponds
to the physical pion mass (Adapted from Ref. [57])

The main ingredients of the approach are (1) the general-
ization of the Mandelstam formula, applied in the seminal
work of Ref. [7] to matrix elements of the em current oper-
ator between states of a relativistic composite system, and
(2) an Ansatz of the Bethe–Salpeter amplitude for describ-
ing the quark–pion vertex. Their combination produces a very
effective tool that allows a careful phenomenological investi-
gation of the pion, as shown in detail through the evaluation
of both vector and tensor pion GPDs. We have also taken
into account, at the leading order, the evolution for obtain-
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Fig. 11 Comparison between the CCQM Bq
1,0(0) evolved at μLAT = 2

GeV and the lattice calculation from Ref. [78]. Circles lattice data from
[78] for different values of mπ . Square extrapolation of the previous
lattice data to the physical pion mass, mphys

π , as it has been carried out
in Ref. [78]. Triangle CCQM result evolved at μLAT = 2 GeV (the
size of the symbols is roughly proportional to the uncertainties on our
initial scale μCCQ, as illustrated in Sect. 5.1) (Adapted from Ref. [78])

Table 8 Mean shifts along the direction perpendicular to the u-quark
transverse polarization, s⊥ ≡ {1, 0}, for n = 1, 2 (cf Eq. (82)). The
CCQM results have been constructed from the values in Table 7 (notice
that the uncertainties originate with the three values listed there)

CCQM - mπ =
140 MeV

Lattice [16] Lattice [78]

〈by〉1 0.0901 ± 0.0015 fm 0.151 ± 0.024 fm 0.137 ± 0.007 fm

〈by〉2 0.0796 ± 0.001 fm 0.106 ± 0.028 fm

ing a meaningful comparison with both experimental data
(see Fig. 2 for the comparison with the PDF extracted from
the Drell–Yan data in Ref. [11]) and lattice calculations of
generalized form factors.

Summarizing, the CCQM proves to be quite satisfactory
in describing the pion phenomenology, especially consider-
ing that the model involves relatively simple calculations and
actually admits only one really free parameter (the mass mq

of the constituent quark, since mR is constrained by fπ ). It
is worth noting that the CCQM is elaborated in Minkowski
space, and the overall agreement we have shown with the
lattice data, obtained in Euclidean space, could be an inter-
esting source of information on the interplay of calculations
performed in the two spaces, with a particular attention to
the issue of the analytic behavior. In the future the present
model could be substantially improved by enriching the ana-
lytic structure of the pion BS amplitude through a dynamical
approach based on the solution of the BSE via the Nakan-
ishi integral representation [40] (cf. Sect. 3.2), supplemented
with a phenomenological kernel. In perspective, given the
simplicity and the effectiveness of the approach, one could

aim at applying the same model to more complex hadrons
than the pion, e.g. to the nucleon within a quark–diquark
framework.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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