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1 Introduction

The first runs of the LHC at 7 and 8 TeV have not provided us with any signal for new

physics beyond the Standard Model. However, these runs have proven to be very effective

in excluding regions in parameter space of many BSM theories using direct searches. On

the other hand, model independent methods like effective operators have been used to set

limits on the same parameter spaces. For example, fermionic contact interactions have been

probed in dijet events by ATLAS [1–3] and CMS [4–7]. For evaluating the full exclusion

potential from LHC, limits from direct searches and effective operator bounds need to
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be combined for BSM theories. The translation of effective operator limits to parameter

regions of BSM theories is the subject of this study.

The experimental analyses consider a set of effective operators and set upper limits

on the size of their coefficients, parametrising the deviation from the Standard Model.

Typically the coefficient is written as 2π/Λ2 for dimension six operators and a lower bound

on Λ is quoted. BSM theories generically have heavy particles that generate effective

operators of the types constrained by experiment when integrated out [8, 9]. To translate

the bound on the effective operator to the full theory — the BSM theory — two ingredients

are necessary: the analytic expression for the effective operator in terms of full theory

parameters and the domain of validity for the effective theory. Then exclusion limits for

the parameter space of the full theory can be derived from the experimental results.

As a benchmark for this analysis the most explored channel for contact interactions at

the LHC is used: the dijet angular analysis constraining four-quark operators of dimension

six. Beyond the Standard Model theories that can be constrained by limits on four-quark

operators are typically strongly coupled models. These models contain particles similar

to the heavy partners of the Z boson or the gluon, known as Z ′ or G′ bosons. A non-

exhaustive list contains colour octets from compositeness [10–12], flavoured Z ′ models [13]

and explanations for the top forward backward asymmetry [14] using axigluons [15]. In

appendix A a toy model is constructed based on Z ′ or G′ models. The relevant parameters

are the mass of the particle and the coupling strength to quarks. For these toy models the

width of the Z ′ and G′ depends solely on the mass and the coupling strength, therefore

not introducing any additional parameters. However, for other BSM theories this may be

different and the width must be considered independently.

The translation of effective operator bounds to BSM theories is an important method

to constrain full theory parameter spaces. In this study the errors made in the aforemen-

tioned translation are quantified and are connected with the kinematic parameters of the

experiment and the theoretical model. An important quantity is the effective theory ex-

pansion parameter which is the ratio of the transfer energy in the events and the mass scale

of the full theory. The non-negligible effect of this expansion parameter on the exclusion

regions in the full theory parameter space is scrutinised. Conclusively, it is shown that

these effects are crucial and should be taken into account.

Outline. This work is based on a toy model which is described in appendix A and

the relevant cross sections calculated in appendix B. These details are not needed for a

basic understanding of the work, but are added to ease understanding and usage of the

results. First some general aspects of effective operators at hadron colliders are discussed

in section 2. Then in section 3 the existing experimental analyses for constraining four-

quark effective operators are reviewed and applied to the toy models. For these analyses

the exclusion potential is compared between the full and the effective descriptions of the

toy models in section 4. Finally, in section 5 conclusions are drawn and recommendations

are made for using effective operators at hadron colliders.
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2 Effective operators

In this section effective operators are discussed in general. First hadron colliders are dis-

cussed, identifying which kind of effective operators might be constrained. After that

beyond the Standard Model physics is connected to these operators, justifying a certain

class of toy models. Effective field theories only work at low energies compared to the en-

ergy scale of the full theory. The errors introduced in the effective approach are quantified

by an expansion in energy scales, which forms the basis of the work. This section is then

concluded with a first comparison between the full and effective theory description, when

the translation of effective theory limits to the full theory parameter space is discussed.

2.1 Bounds from hadron colliders

For an analysis of constraining effective operators at a hadron collider it is first useful to

make the comparison with lepton colliders. Lepton colliders are generally known for their

very precise measurements and therefore harsh limits on precision observables and effective

operators. Precise measurements and high luminosities lead to strong limits on effective

operators compared to the centre of mass energy of the collider. For example, the limit

from LEP for the four-fermion operator eedd equals 26 TeV [16]. Hadron colliders are very

different, first of all composite particles like protons are being collided and therefore not all

and also an unknown amount of the centre of mass energy of the collider is passed to the

partons. These partons — quarks and gluons — then interact to produce mostly hadronic

final states, presenting another source of imprecision. However, what hadron colliders lack

in precision they compensate in centre of mass energy. Hence, they possibly provide a

source for constraining effective operators to high energy scales, as well.

The essential difference when looking at effective field theories in both types of colliders

is the difference in energy scales between the limits set on the operators and the processes

involved at the collider. For a lepton collider nowadays the centre of mass energy is typically

around 250 GeV and the limits reach up to more than 10 TeV. The energy scale of the full

theory behind the effective theory must roughly be in the same ballpark as the limits on

the effective theory. The reasoning being that full theories operating at lower energy scales

would have been excluded by these limits. Therefore, we know that the effective theory

provides a good description of the physics at centre of mass energy at a lepton collider.

For a hadron collider the typical centre of mass energies are around 10 TeV, resulting in

possible partonic centre of mass energies around 2 to 4 TeV. The typical limits set by the

LHC — the most energetic hadron collider — are around 10 TeV. We see that the scale

separation is much lower1 and the validity of the effective description should be subject

to investigation.

In hadron colliders usually protons or antiprotons are collided and these collisions

produce a range of Standard Model particles. However, the range of particles is severely

dominated by QCD production and therefore jet final states, which are hadronised light

quarks or gluons. Therefore, if we are looking into what kind of effective operators can be

1This issue is even more urgent if we take into account that the typical scales of BSM physics range

from 1 to 5 TeV.
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constrained by hadron colliders, the first that come to mind are those involving quarks or

gluons. Indeed, from the dimension six operators that parametrise BSM physics [8, 9], the

most investigated effective operators at the LHC are four-quark operators of the type

2πζ

Λ2
(q̄Lγ

µqL) (q̄LγµqL) . (2.1)

In here ζ = ±1 accounts for destructive and constructive interference, respectively, and Λ

is the energy scale of the effective theory. The scope of this article is limited to four-quark

operators. These operators form a direct contribution to the dijet cross section pp → jj

at hadron colliders. Then, if one measures distributions of dijet cross sections at hadron

colliders, these can be compared with theoretical predictions for the background (QCD)

and the signal (effective operators). The comparison, in absence of any deviations from

the background, then leads to exclusion limits on coefficients of the effective operators.

The experimental collaborations ATLAS [1–3] and CMS [4–7] have been pursuing

this strategy and have set limits on the effective operators like the one in equation (2.1).

Currently, the highest limits are set by CMS from analysing the pT spectrum of the leading

jet [7]. These limits are

Λ+ = 9.9 TeV and Λ− = 14.3 TeV (2.2)

for destructive and constructive interference, respectively. Although not relevant for this

work, the experimental collaborations also constrain effective operators using monojet plus

missing transverse energy final states [17, 18]. These analyses constrain operators consisting

of two quarks and two invisible particles, and are relevant for dark matter searches. The

validity of the effective description for these experimental results has been discussed in a

series of papers [19–22] and has been compared to specific models in [23–25]. Moreover, in

the Higgs sector similar analyses have been performed in references [26, 28].

2.2 BSM physics

In general, new physics beyond the Standard Model produces quarks rather than gluons, so

in that sense the four-quark operator already matches topologies in BSM physics. Gener-

ically, strongly coupled theories are susceptible to effective operator limits, due to their

relatively large couplings. High values for the couplings of new resonances to quarks auto-

matically generate large effective operators coefficients. Moreover, the parameter space of

these models can not be fully probed by direct resonance searches. A fact caused by the

large couplings of these particles, making them very wide and reducing the effectiveness of

resonance searches. Therefore, effective operators are a vital method to constrain strongly

coupled BSM models.

For example, in composite Higgs models with partial compositeness, Standard Model

quarks are a mixture of elementary and composite quarks. Some flavour implementations

allow for large mixing with the composite sector and then the SM quarks have large cou-

plings to a heavy partner of the gluon — in these models called the colour octet [10–12].

The colour octet — being sufficiently heavy — can be integrated out to obtain a four-quark

effective operator. Analogously, models explaining the Standard Model flavour using Z ′
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bosons lead to the same four-quark effective operator [13]. Another example is the intro-

duction of an axigluon to explain the top forward-backward asymmetry [15]. This model

predicts a new resonance, which when integrated out produces the four-quark operator,

as well. Finally, these operators can constrain the dark matter to mediator coupling [27],

using the fact the mediator must couple to quarks for significant dark matter production

in monojet plus missing transverse energy searches.

In summary, typically strongly coupled BSM theories predict bosonic resonances with

couplings to Standard Model quarks. These resonances are in most cases heavy copies of

the electroweak gauge bosons or the gluon. For that purpose two toy models are introduced:

a Z ′ boson which is a heavy partner of the Z boson and a G′ boson which is the gluon’s

partner. Both partners couple universally to the Standard Model quarks governed by a

single coupling constant.2 This coupling constant g and the mass m are the fundamental

parameters of the model, the details for both toy models can be found in appendix A.

The coefficients of the effective operators corresponding to the full theory are obtained in

section A.3 and also depend on m and g. Then when translating the experimental limits

on effective operators to the full theory it is most conveniently done in the mass versus

coupling plane, since this allows for a direct interpretation in many BSM models. Here the

focus is on the validity of the EFT description and not in particular on constraining Z ′

and G′ bosons, see references [29, 30] for constraints from LHC on these types of models.

2.3 EFT expansion

An effective field theory is the low-energy description of some full theory with heavy parti-

cles. The effective description is in general valid if it describes processes involving energies

much smaller than the energy scale of the full theory. This energy scale of the full theory

is determined by the masses of the particles in that theory. The higher dimensional opera-

tors in the effective theory are obtained if heavy particles in the full theory are integrated

out. This can be done through diagrammatic matching and a detailed example is given in

appendix A.3. Generically in the full theory the propagators of the massive particles are

expanded around zero transfer momenta q = 0 to obtain the EFT expansion

g2

q2 −m2
= − g2

m2

[
1 +

q2

m2
+O

(
q4

m4

)]
. (2.3)

A coupling g has been introduced and the particle in the full theory has mass m. It is shown

in appendix A.3 and specifically in equation (A.18) that the width of the particle does not

play a role if the transfer energy q2 goes to zero. The first term in the expansion will be

the coefficient in front of a dimension six operator and the other terms in the expansion

will be the coefficients for higher dimensional operators involving derivatives.

In the EFT expansion from equation (2.3) q2 is the energy transferred by the heavy

particle in the diagram. For four-quark operators that can be in all channels, so q2 = ŝ,

t̂ or û. Usually the EFT description is considered valid or applicable if q2 is smaller than

2Universal couplings to Standard Model quarks is of course not a general feature of BSM physics and

depends heavily on the flavour implementation. However, for the purpose of determining the validity of the

effective description simplicity prevails over completeness.
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Figure 1. Estimation of the exclusion potential of effective operators in the full theory mass versus

coupling parameter space. The effective theory description naively breaks down in the part of

parameter space covered by the dashed grey region, where m2 <
〈
q2
〉
. In reality the error of the

effective description is given by the light blue area which scales as
〈
q2
〉
/m2. This figure is just an

indication of the effects and actual results are derived in later sections.

m2, since then a converging series is ensured. However, experiments only probe the leading

order operator and are neglecting terms of the order of q2/m2. This introduces large errors

when translating back from effective to full theory if the energy at which the experiments

operate are close to the mass scale of the full theory.

The experimental results, in the absence of new physics, constrain dimension six op-

erators like in equation (2.1). Comparing these limits to the coefficient in front of the

effective operator will constrain the full theory parameter space

g2

m2
<

2π

Λ2
. (2.4)

A graphical representation of this limit is given in figure 1 and the sign indicating interfer-

ence effects has been absorbed in Λ. It is to be noted that the naive EFT limit constrains a

region above a straight diagonal line in the mass versus coupling plane. Naively the effec-

tive description is valid if m2 >
〈
q2
〉
, however, more realistically the EFT limit will have an

error which scales as
〈
q2
〉
/m2. The realistic exclusion can only be obtained by performing

the actual analysis and depends on whether the effective theory is over or underestimating

the cross section relevant for the analysis compared to the full theory.

For hadron colliders, however, due to the composite nature of the proton the transfer

energy is not an exactly known quantity and is not the same for all events used in the
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experimental analysis. The transfer energy depends on the kinematic requirements of

the analysis, see [19–21] for a detailed discussion. Therefore, in an experimental context

the average transfer energy should be used as a measure for the expansion parameter.

This average is an analysis dependent quantity and further discussion is postponed until

section 4.1. To allow for a good estimation of the validity of the effective description it

is recommendable that experimental analyses quote the average transfer energies in the

events used for setting limits on effective operators.3

Beyond the Standard Model theories may predict Z ′ or G′ like particles which have

additional couplings beyond the usual couplings to SM quarks. These additional couplings

may be to other heavy particles and increase the width of the Z ′ or G′ like particle.

However, these couplings will not affect the production cross section of the dijet final state

considered in the experimental analyses. Hence, the effect of these couplings is solely

through an additional contribution to the width of the particle, which can be parametrised

as ΓBSM. Then, if we look at the scaling of ΓBSM with the transferred momentum q2 it is

expected to have the same scaling as in equation (A.12) with mq replaced by the mass of

the heavy particle decayed into. From this it immediately follows that also the effect of

additional widths can be neglected when looking at the first term of the effective operator

expansion, as q2 goes to zero.

3 Experimental analyses

In this section the analyses for obtaining limits on the four-quark effective operators are

discussed. Both the full and the corresponding effective theory are analysed according

to the ATLAS and CMS prescriptions in order to find out the differences in exclusion

potential. Therefore, the experimental analyses are discussed first and then the theoretical

application to the limit setting is reviewed in the next section. The understanding of

the experimental analyses begins with the calculation of differential dijet cross sections

for QCD, the full theory and the effective theory. These cross sections are calculated

differentially with respect to t̂ in appendix B and we base this analysis on

dσ

dt̂

(
ŝ, t̂, û, α

)
, (3.1)

where α denotes the collection of the relevant theory parameters for either QCD, the full

theory or the effective theory. The results in appendix B are obtained at leading order in

αs, however, next-to-leading order QCD corrections are important as well [31–33]. Unfor-

tunately, inclusion of these effects is beyond the scope of this work, since the focus is on

the validity of the effective field theory expansion. In the experimental setting, the par-

tonic cross sections need to be transformed to realistic cross sections using parton density

functions. Moreover, to apply kinematic cuts, the cross sections should be differential in

certain kinematic variables. These steps are discussed in the rest of this section for the

different experimental analyses.

3A similar recommendation has been proposed in reference [26] where running and mixing effects for

effective operators have been discussed.
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3.1 Differential cross sections

For four-quark effective operators there have been two types of analyses to date at the

LHC: dijet angular distributions [1–6] and leading jet pT spectrum [7]. The first type

and the necessary kinematics are discussed in this section. However, the first step from

partonic cross sections to an actual analysis in a hadron collider is folding with parton

density functions. For the partonic cross sections differential in t̂ the identification

d3σ

dx1dx2dt̂
(pp→ 34) = f1(x1) f2(x2)

dσ

dt̂
(12→ 34) (3.2)

gives the full cross section. In this formula 12→ 34 denotes the partonic process and x1, x2

are the momentum fractions for partons 1 and 2. However, this is still differential in t̂ and

not in the variables used in experiments like the rapidity of the dijet system Y = 1
2(y3 +y4)

and the invariant mass of the dijet system m2
jj = ŝ. The momentum fractions in terms of

these variables are

x1 =

√
ŝ

s
eY x2 =

√
ŝ

s
e−Y , (3.3)

where s is the centre of mass energy of the pp collider. From this the differential cross

section in terms of the variables defined previously is derived to be

d3σ

dY dŝdt̂
= x1f1(x1)x2f2(x2)

dσ

dt̂

1

ŝ
. (3.4)

The integration limits on Y and ŝ are determined by the individual experimental analysis

and the variable t̂ might still be converted to an experimental observable. Note that the

limits on Y are also influenced by the limits on the momenta fraction 0 < x < 1, which give

|Y | < 1

2
log

s

ŝ
. (3.5)

By construction the partonic centre of mass energy is limited by the collider’s centre of

mass energy ŝ < s, providing an upper limit for the ŝ integration.

3.2 Angular distribution

In the CMS analyses [4–6] based on the angular distribution, events are selected by cuts on

the total rapidity of the system Y and are grouped in bins of invariant mass ŝ. This can be

reconstructed by integrating equation (3.4) over these kinematic variables. The remaining

data is then binned in the variable

χ ≡ e|y3−y4| = −
(

1 +
ŝ

t̂

)
, (3.6)

which represents the angular distribution of the dijet system. It is therefore necessary

to obtain the cross section differential in χ rather than t̂. Calculating the Jacobian from

equation (3.6) — finding dσ
dχ = dσ

dt̂
dt̂
dχ = dσ

dt̂
t̂2

ŝ — and inserting it in to equation (3.4)

one obtains
dσ

dχ
=

∫ ŝmax

ŝmin

dŝ

∫ Ymax

Ymin

dY x1f1(x1)x2f2(x2)
dσ

dt̂

t̂2

ŝ2
. (3.7)
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Figure 2. Reconstruction of the experimental angular distributions for QCD, for the Z ′ model

(left) and the G′ model (right) with parameters mZ′ = mG′ = 2 TeV and gZ′ = gG′ = π
2 . This

distribution has been obtained for the centre of mass energy integration from
√
ŝmin = 3 TeV to√

ŝmax = 5 TeV. The bands around the different distributions represent for QCD the theory error

(inner band) and statistical error (outer band). For the full and effective theory the bands represent

the theory error, for which more details are given in section 3.4.

The most recent CMS angular analysis [6] sets the integration limits to |Y | < 1.1. Then

the data is binned in ŝ, where the most significant bin in the CMS analysis is ŝ > 3 TeV.

This analysis then looks for differences between QCD and the effective operator in the 1
σ
dσ
dχ

distribution. These distributions are shown in figure 2 for QCD, the toy models and their

corresponding effective theories.

3.3 Fχ variable

The ATLAS analyses [1–3] use a single parameter which measures the isotropy of the dijet

events. This is defined as

Fχ ≡
Ncentral

Ntotal
, (3.8)

where Ncentral is the number of events in the central region with 1 < χ < χcentral and Ntotal

is the total number of events with 1 < χ < χmax. This parameter can depend on ŝ, for

that purpose we explicitly write the ŝmin and ŝmax in equation (3.7) and define the integral

over χ as

σ (χint, ŝmin, ŝmax) =

∫ χint

1
dχ
dσ

dχ
(ŝmin, ŝmax) . (3.9)

The total cross section thus depends on three integration boundaries, from which we can

formally define Fχ as

Fχ (ŝmin, ŝmax) =
σ (χcentral, ŝmin, ŝmax)

σ (χmax, ŝmin, ŝmax)
. (3.10)

In the most recent ATLAS analysis [3] the event selection criteria |Y | < 1.1 and ŝ >

800 GeV are used. The boundaries for the χ limits are χcentral = 3.32 and χmax = 30.0, the

Fχ parameter is then binned in the dijet invariant mass mjj =
√
ŝ. Example distributions

are shown in figure 3 for QCD, the toy models and their corresponding effective theories.
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Figure 3. Reconstruction of the experimental Fχ distributions for QCD, for the Z ′ model (left)

and the G′ model (right) with parameters mZ′ = mG′ = 2 TeV and gZ′ = gG′ = π
2 . The bands

around the different distributions represent for QCD the theory error (inner band) and statistical

error (outer band). For the full and effective theory the bands represent the theory error, for which

more details are given in section 3.4.

3.4 Error analysis

In the next section the comparison between the background — pure QCD — and a possible

signal is made. For these types of comparisons a detailed account for the different errors

affecting the angular distributions is needed. The distributions discussed in sections 3.2

and 3.3 depend on ratios of number of events in certain kinematic regions. The error on

the specific variable in either of the considered distributions is obtained by propagating

the error on the number of events. In the following we describe the error on the number of

events coming from different sources and their effect on the distributions discussed in the

two previous sections.

In the theoretical limit setting procedure the data is assumed to equal the background

prediction including the total error on the background coming from statistic and system-

atic uncertainties. For the QCD background we consider statistical errors on the number

of events to be Poisson distributed. The systematic errors originate from experimental

effects and from theoretical uncertainties. The systematic uncertainties from experimental

effects are described in the respective analyses [3, 6] and range up to 15% for the highest

mass bin in the angular distribution. For the Fχ distribution, which is used in the limit

setting in the next section, the experimental systematic uncertainties range up to 50%.

Theoretical uncertainties are estimated by varying the renormalisation and factorisation

scales by half and twice their values and by including parton density uncertainties. When

these uncertainties are propagated to the angular variables, this results in errors of at most

a few percent for both distributions.

The limit setting for the signal does not involve any statistical errors and solely depends

on the systematic uncertainties from theory calculations. As for the QCD background

these uncertainties are estimated by varying the renormalisation and factorisation scales

by half and twice their values and by including the parton density uncertainties. We find

resulting errors which agree with uncertainties found in next-to-leading order calculations

for these processes [31–33]. For the signal, which is for each of the two toy models, the

errors are similar to the background and range up to 10% when looking at the angular

– 10 –
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distributions. These distributions, shown in figures 2 and 3, include all the errors discussed

in this section based on events with a centre of mass energy of 7 TeV and using 5 fb−1 of

integrated luminosity. Other theoretical errors for the effective description are introduced

by renormalisation group running and mixing effects [26]. However, these effects have been

estimated to be of the order of 10% for differential dijet cross sections and due to the

fact that we are considering ratios of cross sections these errors can be safely neglected in

our discussion.

4 Results

The goal of this work is to quantify the difference between the full and effective theory

exclusions limits in the mass versus coupling plane analogous to figure 1. For this an

experimental measure based on the angular analyses needs to be introduced. We observe

that there is a significant deviation between the full and effective description for both the

experimental angular distributions 1
σ
dσ
dχ and Fχ presented in figures 2 and 3. The theoretical

measure used in this section is based on the Fχ distribution, similar to the analysis in

reference [3], since this observable is a ratio of the number of events in different angular

regions. For the Fχ distribution many systematic effects cancel, making it a sensitive probe

for deviations from QCD.

In the ATLAS analysis the Fχ data is binned in the ŝ = m2
jj variable as in figure 3

and deviations between experimental data and background predictions are looked for in

these bins. The simplest theoretical measure would be taking a single large bin in ŝ and

performing a χ2 analysis on difference between the theory predictions for the full and

effective theory and the data, see for example reference [34]. However, this implies less

sensitivity to the kinematic details of the distribution and moreover less similarity with

the actual experimental method. Therefore we adopt a more detailed χ2 measure based on

the full set of bins.4 From figure 3 a reasonable binning is determined to be ranging from

1200 GeV to 4000 GeV in
√
ŝ with steps of 400 GeV. Then a χ2 analysis on the Fχ variable

with the errors as described in section 3.4 is repeated for different values of the coupling

and mass of the toy model. These results are then transformed into a 95% confidence level

exclusion contour in the mass versus coupling plane, presented in figure 4.

The results in this section are obtained for a centre of mass energy of 7 TeV and

an integrated luminosity of 5 fb−1. This corresponds roughly to the analysis presented

in reference [3] and therefore allows for a good comparison with limits obtained in there.

Even though the operators corresponding to the Z ′ and G′ models from equation (A.13) are

different from the ones studied in reference [3], a rough comparison can be made. The limits

for the effective description in figure 4 correspond to the limits on the effective operator

coefficients Λ. These equal

ΛZ′ = 13.5+1.1
−0.7 TeV, ΛG′ = 9.4+1.0

−0.6 TeV, (4.1)

4The ATLAS analysis uses a different statistical method to look for deviations, namely the tail hunter

method [35]. However, the deviation between this method and a χ2 analysis is not expected to be significant.
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Figure 4. Comparison of exclusion limits in the mass versus coupling plane between effective

theory (dashed lines) and full theory (solid lines). The region above the lines is excluded at 95%

confidence level based on a binned Fχ theoretical measure as described in this section. The bands

around the lines show the theory errors on the exclusion regions.

and we observe an approximate agreement with the results from the ATLAS analysis when

correcting for the different definitions used for the four-quark effective operators. In the

near future the LHC enters the second phase with a 14 TeV centre of mass energy for

which this analysis is relevant as well. The results for LHC14 are provided in appendix D,

where further details can be found. In the next section the deviation between the full and

effective theory is quantified and compared to the effective field theory expansion.

4.1 EFT expansion check

In this section the error made by using the effective description for excluding the full theory

parameter space is quantified. From a theoretical viewpoint, the error introduced by the

effective expansion is governed by the ratio of the transfer energy and the mass of the

particle being integrated out as presented in equation (2.3). As the series is truncated

after the first term, the deviation of the effective partonic cross section compared with the

full cross section is expected to be given roughly by q2/m2. However, for the limit setting

the difference in the total cross sections is also influenced by the parton density functions,

the kinematic requirements and the statistical analysis being used. Therefore, the scaling

of the deviation in the exclusion limits of the full theory’s parameter space is expected to

be modified by these effects.

Deviation. An interesting quantity to measure is the deviation between the effective and

full description is the difference between exclusions limits for the coupling constant for a
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Figure 5. Deviation of the full theory description with respect to the effective theory for the Fχ
based exclusion. The solid lines show the difference between the full and effective description for

the limits on the coupling constants given in equation (4.2) as a function of the mass. The dashed

lines show the fitted function in equation (4.3) using the fitted result for C. The bands around the

solid lines show the theory errors for the deviation.

given mass of the full theory particle. This deviation can be defined as

∆g ≡ gfull − geff

geff
, (4.2)

and is represented in figure 5 by the solid lines. The figure shows the deviation for the

Fχ based exclusion described in the previous section and presented as in figure 4. From

the interesting observation that the deviation scales to good approximation as 1/m2, it is

conjectured that ∆g can be fitted to the function

∆g ' C2

m2
. (4.3)

This function with a single free parameter C is then fitted to the actual ∆g in figure 5 and

is represented by the dashed lines. For the Fχ based exclusions the free parameter equals

CZ′ = 1.31+0.20
−0.20 TeV, CG′ = 1.37+0.25

−0.21 TeV. (4.4)

The difference between the Z ′ and G′ models is small, which might indicate that the coef-

ficient C is indeed mainly determined by the effects of the parton densities, the kinematics

in the analysis and the statistical method.

Average transfer energy. In section 2.3 the expansion around the energy transfer was

introduced to estimate the validity of the EFT at parton level. In order to gain more insight

in the deviation of the effective expansion, an estimate for the average energy transfer in

the events considered in the analysis is needed. These averages depend on the kinematic

requirements of the angular analyses discussed in the previous section and we present the
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region
√
|〈q2〉| QCD Full Z ′ Eff Z ′ Full G′ Eff G′

total

√
|〈ŝ〉| 1.43+0.16

−0.13 1.45+0.16
−0.13 1.47+0.16

−0.13 1.44+0.16
−0.13 1.45+0.16

−0.13√
|〈̂t〉| 0.43+0.05

−0.04 0.46+0.05
−0.04 0.49+0.05

−0.04 0.45+0.05
−0.04 0.45+0.05

−0.04√
|〈û〉| 1.36+0.15

−0.13 1.37+0.15
−0.12 1.38+0.15

−0.12 1.37+0.15
−0.13 1.37+0.15

−0.13

central

√
|〈ŝ〉| 1.43+0.16

−0.14 1.50+0.15
−0.12 1.58+0.15

−0.12 1.46+0.16
−0.13 1.49+0.16

−0.13√
|〈̂t〉| 0.82+0.10

−0.08 0.88+0.09
−0.07 0.93+0.09

−0.07 0.85+0.09
−0.07 0.87+0.09

−0.08√
|〈û〉| 1.17+0.13

−0.11 1.22+0.12
−0.10 1.28+0.12

−0.10 1.19+0.13
−0.11 1.21+0.13

−0.11

Table 1. Average transfer energies in TeV, which are the hatted Mandelstam variables for both

the total region with χ < χmax and the central region with χ < χcentral. Presented are the absolute

values of the Mandelstam variables, however, they are constrained to ŝ > 0 and t̂, û < 0. The

values correspond to the model parameters mZ′ = mG′ = 2 TeV and gZ′ = gG′ = π
2 . The errors

on these average transfer energies are the theory uncertainties from scale variation and parton

density uncertainties.

average values for all the hatted Mandelstam variables. The expressions read

〈ŝ〉 =
1

σtot

∫ ŝmax

ŝmin

dŝ

∫ χmax

χmin

dχ ŝ
d2σ

dŝdχ〈
t̂
〉

=
1

σtot

∫ ŝmax

ŝmin

dŝ

∫ χmax

χmin

dχ
−ŝ

1 + χ

d2σ

dŝdχ

〈û〉 =
1

σtot

∫ ŝmax

ŝmin

dŝ

∫ χmax

χmin

dχ
−ŝ χ
1 + χ

d2σ

dŝdχ
, (4.5)

with the normalisation factor σtot defined as

σtot =

∫ ŝmax

ŝmin

dŝ

∫ χmax

χmin

dχ
d2σ

dŝdχ
. (4.6)

The theoretical averages for an experimental analysis can then be obtained by integrating

over the ranges given in the analysis for ŝ and χ. For the Fχ based theoretical measure the

results are depicted in table 1 for both the total and the central region in χ.

The experimental collaborations can determine each of the average transfer energies by

using the kinematic information on an event by event basis. For each event the kinematic

variables ŝ and χ are known from measurements on the dijet system. Then, with the use

of equation (3.6) and the sum of Mandelstam variables ŝ+ t̂+ û = 0 (for vanishing quark

masses) the quantities ŝ, t̂ and û can be determined for each event. Finally, averaging over

all events leads to the determination of the average transfer energies in the experiment.

The detailed knowledge of the average transfer energies in the events allows for the

observation that the concept of a sharp cut-off of the effective theory expansion at
〈
q2
〉

=

m2 is not a sensible approach. Even for masses above this cut-off, where the effective

description is generally considered valid [26, 27, 34, 36], from figures 4 and 5 we observe

significant deviations in the bound on the coupling constant. Compared to the usual

theoretical errors, which arise from QCD effects and parton density uncertainties, the
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errors made by applying the effective description dominate up to a mass of roughly 5 TeV.

This exactly corresponds to the mass range of interesting BSM models in the light of LHC

phenomenology. Therefore, it is suggested that errors from employing the effective operator

approach are presented in combination with the resulting bounds. Alternatively, for special

classes of BSM states a rescaling procedure to recast the existing experimental effective

operator limits is described in the next section.

4.2 Limit recast

The ultimate goal of the quantification of the deviation is to re-analyse existing limits from

effective operators. The full theory effects could be included by performing a rescaling

based on the fitted result for the deviation in equation (4.3). These results have been

obtained for Z ′ and G′ toy models and could be applied to similar models as well. This

would then lead to a more reliable exclusion limit in the mass versus coupling plane for these

models, which is crucial for scrutinising a model’s parameter space. In the previous section

the deviation was quantified for the ATLAS analysis in reference [3]. In appendix C we

perform a recast for a colour octet considered in [12], which has been excluded using these

ATLAS limits on four-quark effective operators. This example illustrates how considering

the full theory effects leads to more reliable exclusion limits.

Consequently, experiments are urged to apply their angular dijet analyses to full models

— like the Z ′ and G′ which cover a large class of BSM models — as well. Thereby allowing

for a trustworthy quantification of the deviation between the full and effective description,

which can then be applied to similar BSM models.

5 Conclusions

The interpretation of effective operator limits from hadron colliders for beyond the Standard

Model theories with energy scales around the TeV scale is a delicate matter. It is argued

that effective operator limits for BSM theories at and around the TeV scale should be

more carefully interpreted in the mass versus coupling plane. In this work the pitfalls are

identified and methods to reliably interpret the experimental limits are described.

For a correct interpretation of effective operator limits at the Large Hadron Collider it

is necessary that experimental collaborations provide information on the average transfer

energies in their analyses. In section 4.1 a procedure which achieves this is outlined for

the existing angular analyses. Furthermore, the collaborations are invited to apply the

limit setting procedure to generic models like the Z ′ and G′ as well. This allows for more

accurate limit setting in the mass versus coupling plane for specific BSM models with

similarities to these models. From these results it is deduced that the concept of a sharp

mass threshold above which the effective description is valid is not a sensible approach,

rather a continuous deviation from the effective limit is observed. The error introduced by

this deviation dominates over the standard errors from QCD corrections and parton density

uncertainties for masses of BSM particles up to 5 TeV. Therefore, it is advisable to provide

a detailed account of the errors which arise in effective descriptions at hadron colliders.
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As an alternative, the effective operator limits can be correctly interpreted in the full

theory through a rescaling procedure based on the quantified deviation in section 4.1. This

deviation scales as the inverse square of the mass of the BSM particle considered, and

can be fitted using the experimental analyses for toy models. The observation that the

deviation is not very model dependent implies that this rescaling procedure can be used

for a plethora of BSM particles within a reasonable accuracy. In conclusion, a method

has been presented which allows for a more reliable scrutinising of BSM parameter spaces

while using four-quark effective operator limits.
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A Toy model

The toy model should be as simple as possible while still reproducing the interesting parts

of realistic BSM models. Based on Z ′ models we can construct a single boson which couples

uniformly to quarks, also known as the hadronic Z ′. Equivalently also a partner for the

gluon can be constructed, denoted as G′. These spin-one bosons will be used and their

interactions with the Standard Model quarks are governed by the Lagrangians

LZ′ ⊂ −m2
Z′Z ′µZ ′µ + gZ′ q̄iγ

µδijqj Z
′
µ

LG′ ⊂ −m2
G′G′aµG′aµ + gG′ q̄iγ

µT aijqj G
′a
µ . (A.1)

In here gZ′ and gG′ are the coupling constants and i, j the colour indices. For these toy

models the different transformations under gauge groups and the charges of the quarks are

not taken into account. This is not relevant for the analysis in this work, for a comprehen-

sive description discussing anomalies see [29]. Another relevant property of these particles

are their masses which are denoted as mZ′ and mG′ respectively. Together with the cou-

pling constants they form the fundamental parameters of this toy model. The Feynman

rule for the Z ′q̄q and G′q̄q couplings are

q̄i

qj

Z ′µ = igZ′γµδij

q̄i

qj

G′µ = igG′γµT aij . (A.2)

In the rest of the appendix two additional important properties of the toy model are

discussed. First, in the next two sections the width and its effect in the propagator are

calculated for both the Z ′ and the G′ and secondly in section A.3 the effective operators

generated by this toy model are derived.
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A.1 Widths

A relevant property of any particle in detector based experiments is the width, it influences

the detectability in resonance searches. Though, also the width may have an impact on

the correctness of the effective description. For our simple bosons the partial widths for

decaying into a single qq̄ pair are given by

ΓZ′→qq̄ = αZ′
m2
Z′ + 2m2

q

m2
Z′

√
m2
Z′ − 4m2

q

ΓG′→qq̄ =
αG′

6

m2
G′ + 2m2

q

m2
G′

√
m2
G′ − 4m2

q . (A.3)

Calculation. The starting point for calculating the width of the decay X → qq̄ is the

equation

ΓX→qq̄ =
1

8π

|~p1,2|
m2
X

∫
dΩcm

4π
|MX→qq̄|2 , (A.4)

where for equal quark masses the relevant kinematic variables — assuming incoming mo-

mentum k and outgoing momenta p1 and p2 — in this process are

k2 = m2
X p2

1 = p2
2 = m2

q 2p1 · p2 = m2
X − 2m2

q

2k · p1 = 2k · p2 = m2
X |~p1| = |~p2| =

1

2

√
m2
X − 4m2

q . (A.5)

For the Z ′ decay the amplitude equals

MZ′→qq̄ = igZ′ ūi(p1)γµδijvj(p2)εµ(k), (A.6)

similarly for the G′ decay with the replacements gZ′ → gG′ , δij → T aij and εµ(k) → εaµ(k).

Then square the amplitude and average over initial spin and colour to obtain

∣∣MZ′→qq̄
∣∣2 = g2

Z′

(
−gµν +

kµkν
m2
Z′

)
tr
[
(/p1

+mq)γ
µ(/p2

−mq)γ
ν)
]
. (A.7)

The same can be obtained for G′ with a different factor due to the colour structure and

averaging over initial colour. This leads to the identification
∣∣MG′→qq̄

∣∣2 = 1
6

∣∣MZ′→qq̄
∣∣2

with the obvious Z ′ → G′ replacements. Evaluating the trace

tr
[
(/p1

+mq)γ
µ(/p2

−mq)γ
ν)
]

= 4
[
pµ1p

ν
2 + pν1p

µ
2 − g

µν
(
m2
q + p1 · p2

)]
(A.8)

and using the kinematic expressions from equation (A.5) reduces the averaged matrix

element to ∣∣MZ′→qq̄
∣∣2 = 4g2

Z′
[
m2
Z′ + 2m2

q

]
. (A.9)

Plugging this expression into equation (A.4) leads to final result given in equation (A.3).
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A.2 Propagator

For the calculation of the dijet cross sections in appendix B and for the determination of

the effective operator coefficients in the next section a proper definition for the propagator

including the width is needed. In general for Z ′ like models large widths are a possibility

and the usual Breit-Wigner propagator using the narrow-width approximation is not valid.

Instead we adopt the methods developed in [37, 38], which imply that for the Z ′ case the

propagator equals

ΠZ′
(
q2
)

=
−igµν

q2 −m2
Z′ + i

√
q2 ΓZ′(q2)

. (A.10)

The choice for the role of the width in the propagator is not unique, which stems from our

ignorance about higher order corrections. However, this choice provides a good description

for a large range of transfer energies [38], where the typical Breit-Wigner propagator would

break down.

In this expression the width depends on the transferred momentum in the propagator

q2, which for the dijet cross sections may equal either ŝ, t̂ or û. At leading order the width

is given by

ΓZ′
(
q2
)

=
∑
i

ΓZ′→qiq̄i

(
q2 − 4m2

qi

) 3
2(

m2
Z′ − 4m2

qi

) 3
2

m2
Z′

q2
. (A.11)

The width ΓZ′→qiq̄i is given in equation (A.3) in the previous section and the sum is over

all six quark flavours. The results for the G′ model are exactly the same and are obtained

using the replacement Z ′ → G′. In the rest of the calculations involving the width or the

propagator, the quark masses are neglected, which leads to

ΓZ′
(
q2
)

= 6αZ′
√
q2. (A.12)

A.3 Effective operators

The full theory is given in (A.1) and from this we can obtain an effective theory by in-

tegrating out the Z ′ or G′ boson. Among other higher-dimensional operators these two

are generated

Leff = cZ′ [q̄iγ
µδijqj ]

2 + cG′
[
q̄iγ

µT aijqj
]2
. (A.13)

The Feynman rule for each of the operators reads

qi

qj

qk

ql

= 2 i cZ′ γµ δik γµ δjl, (A.14)

where for the G′ boson δij is replaced by T aij . Note that the combination where k and l are

interchanged also exists. From the calculation below when matching the full theory onto

this effective theory we find that the coefficients equal

cZ′ = −
g2
Z′

2m2
Z′
, cG′ = −

g2
G′

2m2
G′
. (A.15)
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It is important to note here that the effective operator coefficient does not depend on the

width of the Z ′ or G′ particle. The width only enters at non-leading order in the effective

expansion of the transfer energy over the mass of the Z ′ or G′ particle.

Calculation. The starting point for the matching are equation (A.1) for the Z ′ and G′

bosons and equation (A.13) for the effective theory. For the matching procedure the process

qiqj → qiqj is used, this only leaves the t-channel diagram and simplifies the calculation.

In the full theory we have for this amplitude in the case of the Z ′

Mfull
ij→ij = ūk(k3) [igZ′γµδki]ui(k1)

−igµν
q2 −m2

Z′ + i
√
q2 ΓZ′(q2)

ūl(k4) [igZ′γνδkj ]uj(k2).

(A.16)

In the effective theory we find — using the Feynman rule from equation (A.14) — the

amplitude

Meff
ij→ij = 2icZ′ ūk(k3) [γµδki]ui(k1)ūl(k4) [γµδlj ]uj(k2). (A.17)

Expanding the propagator around q2 = 0 in the full theory gives

1

q2 −m2
Z′ + i

√
q2 ΓZ′(q2)

= − 1

m2
Z′

[
1 +

q2

m2
Z′

(
1 + i

ΓZ′

mZ′

)
+ · · ·

]
. (A.18)

Then taking the leading order term from this equation leads to the matched coefficients in

equation (A.15). The calculation for G′ follows exactly the same procedure, however, with

the replacements Z ′ → G′ and δij → T aij .

B Dijet cross sections

In this appendix the partonic cross sections for dijet production at the LHC are calculated

and tabulated for QCD in combination with the toy model from appendix A. Knowing the

exact and analytical expressions for all these cross section is essential for the understanding

of the experimental limits and the transition between effective and full theory. Since the

toy model involves only quarks as external particles for the dijet production, interference

with QCD amplitudes involving external gluons is not present. Therefore these processes

are presented first and can be directly obtained from the literature [34, 39, 40], the analytic

cross sections differential in t̂ are

dσ

dt̂
(gqi → gqi)QCD =

4πα2
s

9ŝ2

[
− û
ŝ
− ŝ

û
+

9

4

ŝ2 + û2

t̂2

]
dσ

dt̂
(gg → qiq̄i)QCD =

πα2
s

6ŝ2

[
û

t̂
+
t̂

û
− 9

4

t̂2 + û2

ŝ2

]
dσ

dt̂
(gg → gg)QCD =

9πα2
s

2ŝ2

[
3− t̂û

ŝ2
− ŝû

t̂2
− ŝt̂

û2

]
. (B.1)

In this work all partonic cross sections will be presented differential in t̂, because of their

simple structure and easy convolution with the parton density functions in the performed

analysis. The relevant production processes only involving external quarks are qiqi → qiqi
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and qiqj → qiqj where i 6= j. These also include interference effects between QCD and the

toy model and therefore need a dedicated calculation. The full details of the calculation

are not presented, but a rigorous outline is given in the paragraphs below. At the end of

this appendix in equation (B.8) the resulting cross sections are presented.

Amplitudes. Now we discuss the production processes qiqi → qiqi and qiqj → qiqj where

i 6= j. The first takes place through t- and u-channel exchange, whereas the second is an

exact copy of the first with only t-channel exchange. Hence the calculation is done only

for the first process and for the second process the contributions from t-channel exchange

are then extracted. As a starting point, all amplitudes relevant for the process are listed

for QCD, the full theory and the effective theory (both t-channel and u-channel)

Mt̂
QCD = i

g2
s

t̂

[
ūi(k3)γµT aijuj(k1)

]
[ūk(k4)γµT

a
klul(k2)]

Mû
QCD = −ig

2
s

û

[
ūi(k4)γµT aijuj(k1)

]
[ūk(k3)γµT

a
klul(k2)]

Mt̂
full = i

g2
Z′

t̂−m2
Z′ + i

√
t̂ΓZ′

(
t̂
) [ūi(k3)γµδijuj(k1)] [ūk(k4)γµδklul(k2)]

Mû
full = −i

g2
Z′

û−m2
Z′ + i

√
ûΓZ′(û)

[ūi(k4)γµδijuj(k1)] [ūk(k3)γµδklul(k2)]

Mt̂
eff = 2icZ′ [ūi(k3)γµδijuj(k1)] [ūk(k4)γµδklul(k2)]

Mû
eff = −2icZ′ [ūi(k4)γµδijuj(k1)] [ūk(k3)γµδklul(k2)] . (B.2)

For the coloured resonance G′ one needs to make the replacements Z ′ → G′ and δij → T aij
in the last four amplitudes. The different colour structure affects the interference terms and

some of those may be non-zero for the G′ where they would vanish for the Z ′. We allow the

effective operator coefficients cZ′ and cG′ from equation (A.15) to be complex, furthermore

the full theory propagators also include imaginary parts proportional to the width.

Definitions. Per process we want to calculate the spin and colour averaged amplitude∣∣M∣∣2 =
1

32

∑
colour

1

22

∑
spin

MXM∗Y , (B.3)

where MX and MY are a combination of any of the amplitudes from equations (B.2).

Some useful traces, where k1 and k2 are incoming momenta and k3 and k4 are outgoing

momenta, are given by

tr [/k3γ
µ/k1γ

ν ] · tr [/k4γµ/k2γν ] = 8
(
ŝ2 + û2

)
tr [/k4γ

µ/k1γ
ν ] · tr [/k3γµ/k2γν ] = 8

(
ŝ2 + t̂2

)
tr [/k3γ

µ/k1γ
ν/k4γµ/k2γν ] = −8ŝ2. (B.4)

Moreover, for this momenta configuration and all initial and final state particles massless

we have the differential cross section

dσ

dt̂
=

∣∣M∣∣2
16πŝ2

. (B.5)
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Squared amplitudes. The calculation of squaring the amplitudes from equation (B.2)

can be split up in a pre-factor and four spinor structures (t-channel colour octet, u-channel

colour octet, t-channel colour singlet and u-channel colour singlet)

Mt̂
(8) =

[
ūi(k3)γµT aijuj(k1)

]
[ūk(k4)γµT

a
klul(k2)]

Mû
(8) =

[
ūi(k4)γµT aijuj(k1)

]
[ūk(k3)γµT

a
klul(k2)]

Mt̂
(1) = [ūi(k3)γµδijuj(k1)] [ūk(k4)γµδklul(k2)]

Mû
(1) = [ūi(k4)γµδijuj(k1)] [ūk(k3)γµδklul(k2)] . (B.6)

To calculate all contributions from equation (B.2) to the qiqi → qiqi process all possible

sixteen contractions from equation (B.3) are needed. These are summarised as∣∣∣Mt̂
(8)

∣∣∣2 =
4

9

(
ŝ2 + û2

) ∣∣∣Mû
(8)

∣∣∣2 =
4

9

(
ŝ2 + t̂2
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û
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t̂
(8)

∗
=

4

27
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∗
=Mt̂
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∗
= 0 Mû
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û
(1)

∗
=Mû

(1)M
û
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∗
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û
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∗
=Mû

(1)M
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∗
= −8

9
ŝ2 Mû

(8)M
t̂
(1)

∗
=Mt̂

(1)M
û
(8)

∗
= −8

9
ŝ2. (B.7)

To obtain the final result for the different cross sections one needs to combine the pre-

factors from equation (B.2) with the results from equation (B.7) and insert them into

equation (B.5).

Results. For the qiqi → qiqi process we then find the following results (with the colour

coding t-channel, u-channel, t-u channel interference)

dσ

dt̂

∣∣∣
QCD

=
4πα2

s

9ŝ2

[
ŝ2 + û2

t̂2
+
ŝ2 + t̂2

û2
− 2

3

ŝ2

t̂û

]
dσ

dt̂

∣∣∣pure

Z′
full

=
2πα2

Z′

ŝ2

[
ŝ2 + û2

(t̂−m2
Z′)2 + t̂Γ2

Z′
(
t̂
) +

ŝ2 + t̂2

(û−m2
Z′)2 + ûΓ2

Z′(û)
+

2

3
ŝ2P

(
t̂, û, Z ′

)]
dσ

dt̂

∣∣∣int

Z′
full

=
16παsαZ′

9ŝ2

[
ŝ2

t̂
Q
(
û, Z ′

)
+
ŝ2

û
Q
(
t̂, Z ′

)]
dσ

dt̂

∣∣∣pure

Z′
eff

=
|cZ′ |2

2π

[
ŝ2 + û2

ŝ2
+
ŝ2 + t̂2

ŝ2
+

2

3

]
dσ

dt̂

∣∣∣int

Z′
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=
8αs Re (cZ′)

9ŝ

[
ŝ
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+
ŝ

û

]
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4πα2
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− 2

3
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(
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9ŝ2

[
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dσ

dt̂

∣∣∣pure

G′
eff

=
|cG′ |2

9π

[
ŝ2 + û2

ŝ2
+
ŝ2 + t̂2

ŝ2
− 2

3

]
dσ

dt̂

∣∣∣int
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=
4αs Re (cG′)

9ŝ

[
ŝ2 + û2

ŝt̂
+
ŝ2 + t̂2

ŝû
− 1

3

ŝ

t̂
− 1

3

ŝ

û

]
. (B.8)

In the above equations the functions P (x̂, ŷ, X) and Q (x̂, X) are defined as

P (x̂, ŷ, X) ≡
(
x̂−m2

X

) (
ŷ −m2

X

)
+
√
x̂ΓX(x̂)

√
ŷ ΓX(ŷ)[(

x̂−m2
X

)2
+ x̂Γ2

X(x̂)
] [(

ŷ −m2
X

)2
+ ŷ Γ2

X(ŷ)
]

Q(x̂, X) ≡
x̂−m2

X(
x̂−m2

X

)2
+ x̂Γ2

X(x̂)
. (B.9)

The results for the qiqj → qiqj process can be directly read of from equation (B.8) and

are given only by the t-channel contributions. In equation (B.9) the assumption has been

made that the combination
√
x̂ΓX(x̂) is real for all values of x̂. Equation (A.12) shows

that this holds for vanishing quark masses. This is assumed in the numerical calculations

as well, since their effect on the differential cross sections is negligible.

Numerical calculations. The analytical results derived in this section have to be trans-

formed from partonic dijet cross sections to realistic angular distributions at the LHC.

This has been done using the Mathematica package of the MSTW 2008 parton density

functions [41]. Furthermore, the integration over angular variables and the extraction of

exclusion limits on parameters has been done using Mathematica. A notebook containing

all partonic cross sections, the interface with the parton densities and the extraction of

limits is available upon request with the author.

C Recast example

Here we outline the recasting of existing limits from effective operators for the full theory

using the original effective operator bound and the quantified deviation between the full and

effective theory. As an example the heavy gluon resonance ρ in a model with right-handed

partial compositeness is used [12]. When the ρ is integrated out, the effective operator

−
g2
ρ

6m2
ρ

sin4 φ (q̄γµq) (q̄γµq) (C.1)

is obtained and was used to constrain the parameter space in the mρ versus sinφ plane.5

With the use of this example we outline the steps needed to rescale this limit to include

the full theory effects.

1. The first step is to obtain the experimental limit on either one of the toy models

using the effective operator coefficient and compare with the experimental limit

|c| =
∣∣∣∣− g2

2m2

∣∣∣∣ =
2π

Λ2
exp

. (C.2)

5Here we use the simplification of removing the handedness of the Standard Model quarks.
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Figure 6. Recasting of existing effective operator limits using the quantified deviation between

effective and full theory for the example of partial right-handed compositeness [12]. A detailed

description of the procedure is provided in the text. The dashed lines represent the naive limits

from effective operator constraints, whereas the solid lines show the more reliable rescaled limits.

The theoretical errors introduced by the rescaling procedure are shown by the bands around the

solid lines.

In this case this is the Z ′ operator and it establishes the exclusion contour in the

mass versus coupling plane.

2. Convert the exclusion contour to a limit on the coupling g as a function of the mass

m and then use equation (4.3) with the fitted parameter CZ′ from equation (4.4)

to rescale the exclusion limit. A realistic limit on the full theory behind the Z ′ toy

model using the experimental limit is then obtained.

3. Compare the effective operator coefficients and express the parameters of the model

under consideration in terms of the toy model parameters. For the example at hand

we obtain

g =
√

1
3gρ sin2 φ, (C.3)

where m equals mρ by definition and drops out.

4. Express the exclusion limits on the toy model in terms of the model parameters using

equation (C.3) to obtain realistic exclusion limits for the considered model. For the

model considered the limits are expressed in the mass versus sinφ plane, using gρ = 3

for the identification.
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Figure 7. Equivalent of figure 2 for the 14 TeV LHC run with an integrated luminosity of 100 fb−1.

This distribution has been obtained for a centre of mass energy integration from
√
ŝmin = 4 TeV to√

ŝmax = 7 TeV.

Following these steps for the model with right-handed compositeness results for the ad-

justed exclusion limits are presented in figure 6. We observe that the exclusion limits

are significantly reduced.6 However, it is noted that the exclusion limits quoted in ref-

erence [12] remain unchanged due to overlap between the excluded regions from effective

operators and dijet resonance searches.

D Results for LHC14

The results presented in the main body of this work all have been obtained for the LHC

operating at a centre of mass energy of 7 TeV with an integrated luminosity of 5 fb−1.

However, it is even more interesting to see the effects at a centre of mass energy of 14 TeV,

since the partonic centre of mass energy significantly increases. With a higher partonic

centre of mass energy the average transfer energy will increase and the effective expansion

will be less reliable for the same points in the full theory parameter space. On the other

hand, when the Large Hadron Collider operates at 14 TeV it will gather more data, resulting

in an increased integrated luminosity and producing more precise results. For this purpose

the results presented in this appendix are based on an integrated luminosity of 100 fb−1 for

the 14 TeV run. In figures 7 and 8 the angular distributions used in the CMS and ATLAS

experiments are presented.

The theoretical measure based on the Fχ distribution from section 4 needs to be

modified. Based on figure 8 the binning for the χ2 analysis is changed to
√
ŝ ranging from

2000 GeV to 7200 GeV with steps of 400 GeV. This allows for a more thorough scanning

of the full kinematic reach of the 14 TeV LHC run. The resulting exclusion limits for the

full and effective descriptions of the toy models are presented in figure 9. The limits in

figure 9 correspond to values

ΛZ′ = 28.3+2.4
−1.4 TeV, ΛG′ = 19.9+2.1

−1.2 TeV. (D.1)

6The deviation between full and effective theory limits has been obtained based on the ATLAS analysis

and has also been applied to the CMS limits. Therefore, the rescaled limits should be seen as an indication

and a more detailed analysis of the deviation is required.
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Figure 8. Equivalent of figure 3 for the 14 TeV LHC run with an integrated luminosity of 100 fb−1.

Figure 9. Equivalent of figure 4 for the 14 TeV LHC run with an integrated luminosity of 100 fb−1.

The deviation between the full and the effective descriptions is given in figure 10. The

fitted values for the C parameter in this case are given by

CZ′ = 2.14+0.21
−0.20 TeV, CG′ = 2.39+0.27

−0.22 TeV. (D.2)

As expected, we observe that the deviation is larger for any chosen mass of the particle in

the full theory compared to the 7 TeV result from figure 5. This is explained by the higher

average transfer energies, which are presented in table 2. Therefore, one should be even

more careful when extracting limits on BSM models from four-quark effective operator

bounds when using 14 TeV data.
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Figure 10. Equivalent of figure 5 for the 14 TeV LHC run with an integrated luminosity of

100 fb−1.

region
√
|〈q2〉| QCD Full Z ′ Eff Z ′ Full G′ Eff G′

total

√
|〈ŝ〉| 2.42+0.24

−0.21 2.52+0.23
−0.20 2.78+0.23

−0.20 2.48+0.24
−0.20 2.55+0.24

−0.20√
|〈̂t〉| 0.73+0.07

−0.06 0.87+0.08
−0.06 1.15+0.09

−0.08 0.79+0.07
−0.06 0.88+0.08

−0.07√
|〈û〉| 2.31+0.23

−0.20 2.36+0.22
−0.18 2.53+0.21

−0.18 2.35+0.22
−0.19 2.39+0.22

−0.19

central

√
|〈ŝ〉| 2.42+0.25

−0.21 2.66+0.20
−0.17 3.17+0.21

−0.18 2.53+0.22
−0.19 2.81+0.23

−0.19√
|〈̂t〉| 1.39+0.14

−0.12 1.56+0.12
−0.10 1.90+0.13

−0.11 1.47+0.13
−0.11 1.66+0.13

−0.11√
|〈û〉| 1.97+0.20

−0.17 2.15+0.16
−0.14 2.54+0.17

−0.15 2.06+0.18
−0.15 2.27+0.18

−0.15

Table 2. Equivalent of table 1 for the 14 TeV LHC run with an integrated luminosity of 100 fb−1.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Search for quark contact interactions in dijet angular distributions in

pp collisions at
√
s = 7 TeV measured with the ATLAS detector, Phys. Lett. B 694 (2011)

327 [arXiv:1009.5069] [INSPIRE].

[2] ATLAS collaboration, Search for new physics in dijet mass and angular distributions in pp

collisions at
√
s = 7 TeV measured with the ATLAS detector, New J. Phys. 13 (2011) 053044

[arXiv:1103.3864] [INSPIRE].

[3] ATLAS collaboration, ATLAS search for new phenomena in dijet mass and angular

distributions using pp collisions at
√
s = 7 TeV, JHEP 01 (2013) 029 [arXiv:1210.1718]

[INSPIRE].

[4] CMS collaboration, Search for quark compositeness with the dijet centrality ratio in pp

collisions at
√
s = 7 TeV, Phys. Rev. Lett. 105 (2010) 262001 [arXiv:1010.4439] [INSPIRE].

– 26 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2010.10.021
http://dx.doi.org/10.1016/j.physletb.2010.10.021
http://arxiv.org/abs/1009.5069
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5069
http://dx.doi.org/10.1088/1367-2630/13/5/053044
http://arxiv.org/abs/1103.3864
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3864
http://dx.doi.org/10.1007/JHEP01(2013)029
http://arxiv.org/abs/1210.1718
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.1718
http://dx.doi.org/10.1103/PhysRevLett.105.262001
http://arxiv.org/abs/1010.4439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4439


J
H
E
P
0
3
(
2
0
1
5
)
0
9
5

[5] CMS collaboration, Measurement of dijet angular distributions and search for quark

compositeness in pp collisions at
√
s = 7 TeV, Phys. Rev. Lett. 106 (2011) 201804

[arXiv:1102.2020] [INSPIRE].

[6] CMS collaboration, Search for quark compositeness in dijet angular distributions from pp

collisions at
√
s = 7 TeV, JHEP 05 (2012) 055 [arXiv:1202.5535] [INSPIRE].

[7] CMS collaboration, Search for contact interactions using the inclusive jet pT spectrum in pp

collisions at
√
s = 7 TeV, Phys. Rev. D 87 (2013) 052017 [arXiv:1301.5023] [INSPIRE].

[8] W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor

conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

[9] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the

standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

[10] R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology

simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

[11] M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011)

108 [arXiv:1106.6357] [INSPIRE].

[12] M. Redi, V. Sanz, M. de Vries and A. Weiler, Strong signatures of right-handed

compositeness, JHEP 08 (2013) 008 [arXiv:1305.3818] [INSPIRE].

[13] A.J. Buras, F. De Fazio and J. Girrbach, ∆I = 1/2 rule, ε′/ε and K → πνν̄ in Z ′(Z) and G′

models with FCNC quark couplings, Eur. Phys. J. C 74 (2014) 2950 [arXiv:1404.3824]

[INSPIRE].

[14] J.A. Aguilar-Saavedra, D. Amidei, A. Juste and M. Pérez-Victoria, Asymmetries in top
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