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Abstract We study the refined topological string partition
function of a class of toric elliptically fibered Calabi–Yau
threefolds. These Calabi–Yau threefolds give rise to five
dimensional quiver gauge theories and are dual to config-
urations of M5-M2-branes. We determine the Gopakumar–
Vafa invariants for these threefolds and show that the genus
g free energy is given by the weight 2 g Eisenstein series.
We also show that although the free energy at all genera
are modular invariant, the full partition function satisfies the
non-perturbative modular transformation property discussed
by Lockhart and Vafa in arXiv:1210.5909 and therefore the
modularity of free energy is up to non-perturbative correc-
tions.

1 Introduction

In this paper we study the refined topological string partition
function of a class of toric elliptically fibered Calabi–Yau
threefolds which are dual to a set of parallel M5-branes with
a transverse direction compactified to a circle. The size of
the circle is related to the Kähler parameter of the elliptic
curve class on the Calabi–Yau threefolds. We determine the
Gopakumar–Vafa invariants for all curve classes and also
show that for these Calabi–Yau threefolds the genus g free
energy takes a particularly simple for and is given by the
Eisenstein series. We also study the modular properties of the
refined partition function and show that it satisfies the non-
perturbative modular transformation discovered in [1]. As
was shown in [1] for the case of N = 1, N being the number
of M5-branes, the partition function is not modular invariant
but satisfies a more involved transformation which maps the
gs to 1

gs
where gs is the topological string coupling constant—

hence the name non-perturbative modular transformation.
This note is organized as follows. In Sect. 2 we discuss

the Calabi–Yau geometry and the dual brane configuration.
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In Sect. 3 we use the refined topological vertex formalism to
express the partition function as a trace of an operator act-
ing on the fermionic Fock space. In Sect. 4 we determine
the Gopakumar–Vafa invariants for all curve classes and the
genus g fee energy. In Sect. 5 we express the partition func-
tion in terms of double elliptic gamma functions and show
that it satisfies the non-perturbative modular transformation
property.

2 Elliptic CY3fold and dual brane configuration

The class elliptic Calabi–Yau threefolds we are interested
in are dual to certain brane configurations which arose in
the study of M-strings [2]. These Calabi–Yau threefolds are
birationally equivalent ̂AN−1 × f C where ̂AN−1 is affine
AN−1 space blown up at N points and it is fibered over C
to obtain the Calabi–Yau threefold. We will denote these by
XN .

The affine AN−1 space has N P
1’s corresponding to the

simple roots of affine SU (N ). We denote these curve classes
by Ca with a = 1, 2, . . . , N . The blow-up introduces N new
curve classes, which we denote by Ma with a = 1, 2, . . . , N .
The class of the elliptic curve E is given by

E = C1 + C2 + · · · + CN . (2.1)

The complexified Kähler parameters associated with these
curves are given by the Kähler form ω:

ta =
∫

Ca

ω, ρ =
∫

E
ω, m=

∫

Ma

ω, a = 1, 2, . . . , N .

(2.2)

Because of Eq. (2.1) ρ is given by

ρ = t1 + t2 + · · · + tN . (2.3)

The (p, q) 5-brane web dual to XN and the Newton polygon
are given by Fig. 1a, b, respectively.
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Fig. 1 a The (p, q) brane
configuration dual to XN . The
web lives on R × S1 and the
horizontal lines are glued
together. b The Newton polygon
of XN

(a)

· · ·

(b)

The Calabi–Yau threefolds XN are dual to certain M5-
brane configurations. Consider N M5-brane with worldvol-
ume coordinates X A, A = 0, 1, 2, 3, 4, 5. The transverse
space is R5 with coordinates X I , I = 6, 7, 8, 9, 10. We con-
sider the X6 direction and separate the N M5-branes along
this direction and then compactify this direction to a circle so
that M5-branes are sprinkled on the X6 circle. The transverse
space to the M5-branes is R

4⊥ × S1 and one can introduce
a deformation by fibering this transverse space over the X6

circle so that as one goes around the X6 circle there is an
SO(4) action on R

4⊥ given by [2],

(w1, w2) �→ (e2π imw1, e
−2π imw2). (2.4)

The deformation m breaks the maximal supersymmetry of
the brane configuration. In the type IIB picture the theory
living on the (p, q) brane web is five dimensional quiver
gauge theory with eight supercharges. The partition func-
tion of this gauge theory can be calculated using Nekrasov’s
instanton calculus or by applying the refined topological ver-
tex formalism to the (p, q) brane web of Fig. 1a.

3 The partition function from topological vertex

The partition function of the (p, q) brane web shown in Fig.
1 can be calculated by applying refined topological vertex
formalism to the web. The refined vertex requires a choice of
preferred direction [3] which determines the form of the par-
tition function as a sum over Young diagrams but the partition
function itself is invariant under the change in the preferred
direction. In this case the simplest choice for the preferred
direction is vertical and, as we will see below, in this case the
sum can be carried out exactly and partition function becomes
an infinite product. We denote the topological string partition
function of this Calabi–Yau threefold by ZN and it is given
by [4]

ZN :=
∑

�λ

N−1
∏

a=0

[

(−Qa)
|λ(a)|

×
(

∑

μ

(−Qm)|μ| Cλt
(a)

μ∅(t, q)Cλ(a+1)μ
t∅(q, t)

)]

,

(3.1)

where

Cλμ∅(t, q) =
(q

t

)
|λ|−|μ|

2

×
∑

η

(q

t

)
|η|
2
sλt/η(t

−ρ) sμ/η(q
−ρ) (3.2)

is the refined topological vertex. The length of the slanted
lines in Fig. 1 are all equal to m and we have defined Qm =
e−m , similarly the length of the horizontal lines is Ta and
we have defined Qa = e−Ta such that ta = Ta + m is the
distance between the two vertical lines. λ, μ and η are Young
diagrams and sλ/μ(x1, x2, . . .) is the skew-Schur polynomial
in the variables x1, x2, . . .. t−ρ denotes the following set of
variables: t−ρ = {t1/2, t3/2, . . .}.

Using repeatedly the identity

∑

λ

sλt/η(x)sλ/σ (y) =
∏

i, j

(1 + xi y j )
∑

τ

sσ t/τ (x) sηt/τ t (y)

(3.3)

and the following properties of the skew-Schur functions:

sλt/σ t (q−ρ) = sλ/σ (−qρ),
∑

η

sλ/η(x) sη/σ (y) = sλ/σ (x, y), (3.4)

the partition function in Eq. (3.1) can be written as

ZN = 	(Qm)N
∑

λ,τ

Q
|λ(0)|
ρ

×
N−1
∏

a=0

sλ(a)/τ(a+1)
(xa+1) sλ(a+1)/τ(a+1)

(ya+1), (3.5)

where

Qρ =
N−1
∏

a=0

(QaQm), Q1,a+1 = (Q1Q2 . . . Qa)Q
a
m

xa+1 = Q−1/2
m Q1,a+1

{

Qm

√

q

t
tρ, t−ρ

}

,

ya+1 = Q−1/2
m Q−1

1,a+1

{

Qm

√

t

q
q−ρ, qρ

}

,
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and

	(x) =
∞
∏

i, j=1

(

1 − x q−ρi t−ρ j
)

. (3.6)

In the above equations −log(Qρ) is the Kähler parameter
associated to the elliptic curve which is dual to the circle
transverse to the M5-branes. The form of the partition func-
tion given in Eq. (3.5) was obtained in [4] where it was related
to the periodic Schur process of period N .

3.1 Product representation of partition function using free
fermions

In this section we express the partition function given in
Eq. (3.5) as an infinite product. To do this, following [5] we
introduce the free fermion Fock space spanned by creation
and annihilation operators (ψa, ψ

∗
a ) satisfying the relations

{ψa, ψb}={ψ∗
a , ψ∗

b }=0, {ψa, ψ
∗
b }=δab, a, b ∈ Z + 1

2 .

(3.7)

With these we can construct the operators

�±(z) = exp

( ∞
∑

n=1

zn Jn
n

)

, where

Jn =
∑

k∈Z+ 1
2

ψk+nψ
∗
k , n = ±1,±2, . . . . (3.8)

These operators satisfy the following commutation relation:

�+(z)�−(w) = (1 − zw)�−(w)�+(z). (3.9)

The fermionic Fock space is spanned by states which are in
a one-to-one correspondence with partitions. For a partition
λ = (λ1, λ2, . . .) we have the state

|λ〉 = ψλ1− 1
2
ψλ2− 3

2
ψ

λ3− 5
2
. . . |0〉. (3.10)

The ground state |0〉 is annihilated by ψk for k < 0. The
operators defined in Eq. (3.8) are useful when working with
symmetric polynomials due to the following:
∏

i

�+(xi )|λ〉 =
∑

μ

sμ/λ(x1, x2, . . .)|μ〉
∏

i

�−(xi )|λ〉 =
∑

μ

sλ/μ(x1, x2, . . .)|μ〉. (3.11)

To simplify the equations we will use the following notation:
∏

i �±(xi ) = �±(x). Using Eqs. (3.5) and (3.11) we can
write ̂ZN := ZN/	(Qm)N as a trace, over the free fermionic
Fock space, of an infinite product of operators:

̂ZN = Tr
(

(Q1Qm)L0O(Q2Qm)L0O . . . (QN Qm)L0O
)

,

(3.12)

with the operator insertions O being built from �±,

O =
∞
∏

i=1

(

�+
(

Q−1
m t−i+ 1

2

)

�+
(√

q

t
t i−

1
2

)

×
∞
∏

j=1

(

�−
(

q j− 1
2

)

�−
(

Qm

√

t

q
q− j+ 1

2

))

. (3.13)

In the above equations L0 is such that L0|λ〉 = |λ| |λ〉. Using
the commutation relations of �±(x), we can write Eq. (3.12)
as

̂ZN = Tr

(

QL0
ρ

k
∏

a=1

�+
(

Q1Q2 . . . QaQ
a
mx

)

× �−
(

Q−1
1 Q−1

2 . . . Q−1
a Q−a

m y
)

)

, (3.14)

where

x =
{

Q−1
m t−i+ 1

2 ,

√

q

t
t i−

1
2 | i = 1, 2, . . .

}

,

y =
{

qi−
1
2 , Qm

√

t

q
q−i+ 1

2 | i = 1, 2, . . .

}

. (3.15)

Using the commutation relation of �±(x) repeatedly we get

̂ZN =
⎛

⎝

∏

1≤a<b≤k

Fab

⎞

⎠Tr
(

QL0
ρ �+(X)�−(Y)

)

, (3.16)

where we have denoted

X =
{

Q1Qmx, Q1Q2Q
2
mx, . . . , Q1Q2 . . . QN QN

m x
}

, (3.17)

Y =
{

Q−1
1 Q−1

m y, Q−1
1 Q−1

2 Q−2
m y, . . . , Q−1

1 Q−1
2 . . . Q−1

N Q−N
m y

}

,

(3.18)

Fab =
∞
∏

i, j=1

(

1 − QabQ−1
m ti− 1

2 q j− 1
2

) (

1 − QabQmti−
1
2 q j− 1

2

)

(1 − Qabti q j−1)(1 − Qabti−1q j )
,

(3.19)

Qab = Qa+1 . . . QbQ
b−a
m . (3.20)

The trace appearing in Eq. (3.16) can be written in the form
of a product [6],

Tr
(

QL0
ρ �+(x)�−(y)

)

=
∞
∏

n=1

(

1 − Qn
ρ

)−1 ∏

i, j

(

1 − Qn
ρxi y j

)−1
.

(3.21)
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such that the partition function is given by

̂ZN =
( ∞
∏

n=1

(

1 − Qn
ρ

)−1

)

⎛

⎝

∏

1≤a<b≤N

Fab

⎞

⎠

⎛

⎝

N
∏

a,b=1

Hab

⎞

⎠ ,

(3.22)

where

Hab =
∞
∏

n,i, j=1

(

1 − Qn
ρ
˜QabQ−1

m ti− 1
2 q j− 1

2

) (

1 − Qn
ρ
˜QabQm ti− 1

2 q j− 1
2

)

(

1 − Qn
ρ
˜Qabti q j−1

) (

1−Qn
ρ
˜Qabti−1q j

) ,

˜Qab = Q1Q2 . . . QaQ
−1
1 . . . Q−1

b Qa−b
m . (3.23)

4 Free energy and Gopakumar–Vafa invariants

Using the refined topological string partition function we can
calculate the free energy and the Gopakumar–Vafa invariants
[7,8] for the different curve classes. The free energy is given
by

FN (ρ, t1, . . . , tN−1,m) = ln ZN

= N ln 	(Qm) + ln̂ZN , (4.1)

where 	(Qm) is given by Eq. (3.6) and ̂ZN is given by
Eq. (3.22). After some simplification FN can be written as

FN (ρ, t1, . . . , tN−1,m)

= −N
∞
∑

k=1

Qk
m

k

⎡

⎣

1
(

q
k
2 − q− k

2

) (

t
k
2 − t− k

2

)

⎤

⎦ +
∞
∑

n=1

∞
∑

k=1

Qn k
ρ

k

+
∑

1≤a<b≤N

∞
∑

k=1

Qk
ab

k

⎡

⎣

(t/q)
k
2 + (q/t)

k
2 − (

Qk
m + Q−k

m

)

(

q
k
2 − q− k

2

) (

t
k
2 − t− k

2

)

⎤

⎦

+
∞
∑

n=1

N
∑

a,b=1

∞
∑

k=1

Qn k
ρ

˜Qk
ab

k

⎡

⎣

(t/q)
k
2 +(q/t)

k
2 −(

Qk
m+Q−k

m

)

(

q
k
2 − q− k

2

) (

t
k
2 − t− k

2

)

⎤

⎦ .

(4.2)

From Eq. (4.2) we can see that the SU (2)L × SU (2)R spin
content of various curve classes is given by

Curve
∑

jL , jR N jL , jR
C ( jL , jR)

n E + Cab, n ≥ 0, 1 ≤ a < b ≤
N , c = a − 1, b + 1

(0, 1
2 )

n E + Cab + Mc, n ≥ 0, 1 ≤ a < b ≤
N , c = a − 1, b + 1

(0, 0)

n E + Cab − Mc, n ≥ 0, 1 ≤ a < b ≤
N , c = a + 1, b − 1

(0, 0)

n E − Cab, n ≥ 1, 1 ≤ a < b ≤ N (0, 1
2 )

n E − Cab + Mc, n ≥ 1, 1 ≤ a < b ≤
N , c = a − 1, b + 1

(0, 0)

n E − Cab − Mc, n ≥ 1, 1 ≤ a < b ≤
N , c = a + 1, b − 1

(0, 0)

n E, n ≥ 1 ( 1
2 , 0) ⊕ (N − 1)(0, 1

2 )

Here

Cab = Ca + Ca+1 + · · · + Cb.

From Eq. (4.2) we can isolate the contribution of the elliptic
curve E to FN , which we will denote by FE

N , by considering
only those terms which depend only on Qρ and the other
Kähler parameter,

FE
N (ρ, q, t) =

∞
∑

n,k=1

Qn k
ρ

k

[

1 + N

(

tk + qk

(1 − qk)(1 − tk)

)]

.

(4.3)

We will restrict ourselves to the unrefined case so that q = t
and in terms of the topological string coupling constant gs ,

q = t = ei gs . (4.4)

Since

2q

(1 − q)2 = 2

g2
s

− 1

6
− 2

∞
∑

g≥2

g2g−2
s

B2g

(2g)(2g − 2)! , (4.5)

where Bk are the Bernoulli numbers, we have

FE
N (ρ, q) =

∞
∑

g=0

g2g−2
s F E

N ,g(ρ) (4.6)

with

FE
N ,g≥2 = N

B2g B2g−2

2(2g) (2g − 2)!
− 2 N

B2g

(2g) (2g − 2)!
B2g−2

4
E2g−2(ρ),

FE
1 = − 1

12
ln

[ ∞
∏

n=1

(

1 − Qn
ρ

)12−2N

]

,

∂2 FE
0

∂ρ2 = 2N
∞
∑

n=1

n2 ln
(

1 − Qn
ρ

)−1 (4.7)

where E2g(ρ) is the Eisenstein series defined by

E2g(ρ) = 1 − 4

B2g

∑

n≥1

n2g−1

(

Qn
ρ

1 − Qn
ρ

)

. (4.8)

5 Non-perturbative modular transformation

For an elliptic Calabi–Yau threefold with modular parame-
ter ρ one naively would expect the partition function to be
invariant under the modular transformation,

ZN

(

− 1

τ
,
ε1

τ
,
ε2

τ

)

= ZN

(

τ, ε1, ε2

)

(5.1)

whereq = eiε1 and t = e−iε2 . However, quite surprisingly, in
[1] it was shown that the refined topological partition function
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of X1, which is dual to a single M5-brane wrapped on a circle,
satisfies a non-perturbative modular transformation,

Z1

(

− 1

τ
,
ε1

τ
,
ε2

τ

)

= Z1(τ, ε1, ε2)

Z1

(

τ
ε1

,− 1
ε1

, ε2
ε1

)

Z1

(

τ
ε2

, ε1
ε2

,− 1
ε2

) .

(5.2)

Since ε1, ε2 are related to the topological string coupling
constant gs by

ε1ε2 = −g2
s , (5.3)

Equation (5.2) implies that

Z1

(

− 1

τ
,
ε1

τ
,
ε2

τ

)

= Z1(τ, ε1, ε2) + O
(

e− 1
gs

)

, (5.4)

i.e., modularity holds only up to non-perturbative correc-
tions. For this reason the transformation in Eq. (5.2) was
called a non-perturbative modular transformation and it was
argued that this gives the non-perturbative completion of the
topological string partition function for the case of elliptic
Calabi–Yau threefolds.

To show that ZN also satisfies an equation similar to
Eq. (5.2) we write it in terms of double elliptic gamma
functions. Recall that the double elliptic Gamma function
is defined by

G2(x; τ, ε1, ε2) =
∞
∏

k,i, j=1

(

1 − Qk−1
τ qi−1t− j+1x

)

×
(

1 − Qk
τq

i t− j x−1
)

(5.5)

and satisfies the following modular transformation:

G2(z; ρ, ε1, ε2)

= G2

(

z

ρ
;− 1

ρ
,
ε1

ρ
,
ε2

ρ

)

G2

(

z

ε1
; ρ

ε1
,− 1

ε1
,
ε2

ε1

)

× G2

(

z

ε2
; ρ

ε2
,
ε1

ε2
,− 1

ε2

)

exp

(

iπ

12
B44

)

, (5.6)

where B4,4 is given by

B4,4(z; ρ, ε1, ε2)= d4

dx4

x4 ez x

(eρ x−1)(eε1 x−1)(eε2 x−1)
|x=0.

(5.7)

The triple infinite product in Eq. (3.23) can be written
in terms of double elliptic gamma functions so that the full
partition function ZN is given by

ZN = ZN
1

( ∞
∏

n=1

(1 − Qn
ρ)

)N−1

×
∏

1≤a<b≤N

G2
(

QabQm
√
t q; ρ, ε1,−ε2

)

G2
(

Qab Q−1
m

√
t q; ρ, ε1, −ε2

)

G2 (Qab t; ρ, ε1,−ε2)G2 (Qab q; ρ, ε1,−ε2)

= ZN
1

( ∞
∏

n=1

(1 − Qn
ρ)

)N−1

×
∏

1≤a<b≤N

G2 (Qab; ρ, ε1, ε2)G2

(

QρQ
−1
ab ; τ, ε1, ε2

)

G2
(

QabQm
√
t q; ρ, ε1, ε2

)

G2

(

Qab Q
−1
m

√
t q; ρ, ε1, ε2

)

(5.8)

with the explicit expression

Z1 =
( ∞
∏

n=1

(1 − Qn
ρ)−1

)

×
∞
∏

i, j=1

(

1 − Qn−1
ρ Qm qi− 1

2 t j− 1
2

) (

1 − Qn
ρQ

−1
m qi− 1

2 t j− 1
2

)

(

1 − Qn
ρq

i t j−1
) (

1 − Qn
ρq

i−1t j
) .

(5.9)

Using Eq. (5.8) and the modular transformation satisfied
by G2(z; ρ, ε1, ε2) we see that

ZN (τ, ε1, ε2)

ZN

(

τ
ε1

,− 1
ε1

, ε2
ε1

)

ZN

(

τ
ε2

, ε1
ε2

,− 1
ε2

) = ZN

(

− 1

τ
,
ε1

τ
,
ε2

τ

)

.

(5.10)

Thus this class of elliptic Calabi–Yau threefolds do indeed
satisfy the non-perturbative modular transformation of Lock-
hart and Vafa [1].

6 Discussion

In this paper we have shown that there is a simple class of
elliptic Calabi–Yau threefolds for which the product repre-
sentation of the refined topological string partition function
can be determined using the relation between Schur functions
and free fermionic Fock space. The product representation
allows us to study the non-perturbative modular transforma-
tions of [1]. The class of elliptic Calabi–Yau threefolds dis-
cussed in this paper were simplest in the sense that they had
no compact 4-cycles. It would be interesting to see if the
non-perturbative modular transformation holds for an ellip-
tic Calabi–Yau threefold with compact 4-cycles. We hope to
report on this in the future [9].
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