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Abstract We prove a fixed point theorem for a Pata-type

map defined on a complete (normal) cone metric space.

Our results generalize the recent work of M. Chakraborty

and S. K. Samanta. An example demonstrating this fact is

also presented.
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Introduction

The classical Banach fixed point theorem states that if

ðX; dÞ is a complete metric space and T : X ! X is a

contraction map, i.e., T satisfies

dðTx; TyÞ� adðx; yÞ; ð1Þ

for all x; y 2 X and some a 2 ½0; 1Þ, then T has a unique

fixed point. i.e., there exists a unique a 2 X such that

Ta ¼ a.

In [4], Pata considered a map T : X ! X on the com-

plete metric space ðX; dÞ that satisfied the condition: for all

x; y 2 X,

dðTx; TyÞ� ð1 � �Þdðx; yÞ þ K�awð�Þ½1 þ jjjxjjj þ jjjyjjj�b;
ð2Þ

for every � 2 ½0; 1�, fixed constants K� 0, a� 1 and

b 2 ½0; a�, a fixed element x0 2 X, jjjzjjj ¼ dðz; x0Þ and an

increasing function w : ½0; 1� ! ½0;1Þ which vanishes at

and is continuous at 0. He proved that the map T satisfying

(2) has a unique fixed point. Moreover, he also demon-

strated that if T : X ! X is a contraction map, then T

satisfies condition (2), thereby obtaining a generalization of

the Banach fixed point theorem.

Another fixed point theorem that is widely popular, is

due to Kannan which states that if ðX; dÞ is a complete

metric space and the map T : X ! X is a Kannan con-

traction, i.e., T satisfies

dðTx; TyÞ� c
2
fdðx; TxÞ þ dðy; TyÞg ð3Þ

for all x; y 2 X and some c 2 ½0; 1Þ, then T has a unique

fixed point.

There are several generalizations of the Kannan fixed

point theorem, but the one of particular interest to us is due

to Chakraborty and Samanta in [1]. The authors, in [1],

consider a map T : X ! X defined on the complete metric

space ðX; dÞ that satisfies the condition: for all x; y 2 X,

dðTx; TyÞ� 1 � �

2
fdðx; TxÞ þ dðy; TyÞgþ

K�awð�Þ½1 þ jjjxjjj þ jjjyjjj þ jjjTxjjj þ jjjTyjjj�b;
ð4Þ

for every � 2 ½0; 1�, fixed constants K� 0, a� 1 and

b 2 ½0;1Þ, a fixed element x0 2 X, jjjzjjj ¼ dðz; x0Þ and a

function w : ½0; 1� ! ½0;1Þ which vanishes at and is con-

tinuous at 0. The authors prove that the map T has a unique

fixed point. Moreover, they also demonstrate that if T :
X ! X is a Kannan contraction map, then T satisfies

condition (4).

This article contains a generalization of the main result

in [1]. The setting considered is that of complete cone

S. Balasubramanian (&)

Department of Mathematics and Statistics, Indian Institute

of Science Education and Research, Kolkata, India

e-mail: bsriram@iiserkol.ac.in

123

Math Sci (2014) 8:65–69

DOI 10.1007/s40096-014-0127-4



metric spaces, where the underlying cone is normal (see

[3]). It is shown that for a map T : X ! X defined on the

complete (normal) cone metric space ðX; dÞ, which satisfies

a Pata-type condition, that is an improved version of (4),

there exists a unique fixed point. An example to illustrate

the main result is also provided.

Preliminaries and the main result

Let E be a real Banach space. A non-empty closed subset P

of E is said to be a cone if

(a) aP þ bP � P for all a; b 2 ½0;1Þ.
(b) P \ ð�PÞ ¼ fhg, where h 2 E is the zero vector.

The cone P is said to be solid if the interior of P, which we

will denote by int P, is non-empty.

Examples of solid cones

(1) Let E ¼ R and P ¼ ½0;1Þ.
(2) Let E ¼ R

2 and P ¼ fðx; yÞ : x; y� 0g.

(3) Let E ¼ ‘2 and P ¼ fðxnÞn� 1 : xn � 0g.

The norms on E in the examples above are the usual norms.

A cone P in a real Banach space E, induces the fol-

lowing partial order � on E. For x; y 2 E,

x � y , y � x 2 P:

In the case of a solid cone P, we will use the notation x 	 y

to denote y � x 2 int P.

A cone P is said to be normal if for all x; y 2 P such that

x � y, there exists a constant j� 1 such that kxk� jkyk.

The examples (1), (2) and (3) above are normal cones with

j ¼ 1.

Let X be a nonempty set, E be a real Banach space and

P � E be a solid normal cone with normal constant j� 1.

A map d : X 
 X ! E is said to be a cone metric if for all

x; y; z 2 E,

(a) dðx; yÞ � h, i.e., dðx; yÞ 2 P.

(b) dðx; yÞ ¼ h if and only if y ¼ x.

(c) dðx; yÞ � dðx; zÞ þ dðz; yÞ.
The pair ðX; dÞ is called a cone metric space. It is indeed

the case that every metric space is a cone metric space.

Examples of cone metric spaces

(1) ([3]) Let E and P be as in example (2) above, d :

R
 R ! E be the map dðx; yÞ ¼ ðjx � yj; ajx � yjÞ,
where a� 0 is a constant. The pair ðR; dÞ is a cone

metric space.

(2) ([2]) Let ðX; qÞ be a metric space, E and P be as in

example (3) above, d : X 
 X ! E be the map

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�nqðx; yÞ
p
� �

n� 1
: It can be verified that

ðX; dÞ is a cone metric space.

Let ðX; dÞ be a cone metric space. A sequence ðxnÞ of

points in X is said to be Cauchy if for any given c � 0,

there exists N 2 N such that dðxm; xnÞ 	 c, for all

m; n�N, or equivalently, there exists M 2 N which is

independent of p such that dðxn; xnþpÞ 	 c for all n�M.

The sequence ðxnÞ is said to be convergent, if there

exists x 2 X such that for any given c � 0, there exists

N 2 N such that dðxn; xÞ 	 c for all n�N.

The cone metric space ðX; dÞ is said to be complete if

every Cauchy sequence in X converges.

The proof of the following lemma can be found in [3].

Lemma 1 Let ðX; dÞ be a cone metric space and ðxnÞ be a

sequence in X.

(1) ðxnÞ is Cauchy if and only if kdðxm; xnÞk ! 0 as

m; n ! 1. i.e., Given g [ 0 and p 2 N, there exists

N 2 N which is independent of p such that

kdðxn; xnþpÞk\g, for all n�N.

(2) ðxnÞ is convergent to x if and only if kdðxn; xÞk ! 0

as n ! 1.

(3) If ðxnÞ converges to x; y 2 X, then x ¼ y.

The following is our main result which generalizes

Theorem 2.2 in [1].

Theorem 1 Let ðX; dÞ be a complete cone metric space

with normal constant j� 1, x0 2 X, K� 0, a� 1 and b 2
½0;1Þ be fixed constants and w : ½0; 1� ! ½0;1Þ be such

that lim
�!0þ

wð�Þ ¼ 0. If for every x; y 2 X, the map T : X !
X satisfies

kdðTx; TyÞk� ð1 � �Þ
j

Mðx; yÞ þ K�awð�Þ½1 þ jjjxjjj þ jjjyjjj

þ jjjTxjjj þ jjjTyjjj�b;
ð5Þ

for every � 2 ½0; 1�, where Mðx; yÞ ¼ max kdðx; TxÞk;f
kdðy; TyÞk; 1

2j kdðx; yÞkg and jjjzjjj denotes kdðz; x0Þk, then T

has a unique fixed point.

The proof of the above Theorem is given in Sect. 3. We

point out that there is no loss of generality in choosing any

such x0 in (5), simply because a change in x0 can essen-

tially be absorbed by assigning a different value to K,

thanks to the triangle inequality of the cone metric d and

the sub-additivity of the norm.

Proof of The main result

This section contains a proof of our main result. Although

the proof follows a similar pattern as that of Theorem 2.2 in

[1], the arguments provided here are different and some-

times simpler.
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Proof of Theorem 1 First we prove uniqueness of the

fixed point. Suppose that x; y 2 X are such that x 6¼ y, Tx ¼
x and Ty ¼ y. Letting � ¼ 0 in inequality (5) yields,

kdðx; yÞk� 1
2j kdðx; yÞk, a contradiction to the fact that

x 6¼ y. The uniqueness follows.

To show the existence of a fixed point, consider the

sequence ðTnx0Þ. Without loss of generality, we assume

that Tnx0 6¼ Tnþ1x0, for all n ¼ 0; 1; 2; . . .: Since for each

n 2 N, and � 2 ½0; 1�,
kdðTnþ1x0; Tnx0Þk� ð1 � �ÞMðTnx0; Tn�1x0Þ

þ K�awð�Þ½1 þ 2jjjTnx0jjj þ jjjTn�1x0jjj
þ jjjTnþ1x0jjj�b; ð6Þ

it follows that there exists no n 2 N, for which

MðTnx0; Tn�1x0Þ ¼ kdðTnþ1x0; Tnx0Þk. For otherwise, it

would mean that there exists some m 2 N such that for

every � 2 ð0; 1�,

kdðTmþ1x0; Tmx0Þk�K�a�1wð�Þ½1 þ 2jjjTmx0jjj
þ jjjTm�1x0jjj þ jjjTmþ1x0jjj�b:

Letting � ! 0þ yields, kdðTmþ1x0; Tmx0Þk ¼ 0, i.e.,

Tmþ1x0 ¼ Tmx0, a contradiction. Thus, for each n 2 N,

letting � ¼ 0 in inequality (6) yields,

kdðTnþ1x0; Tnx0Þk� kdðTnx0; Tn�1x0Þk: ð7Þ

Iterating we obtain

kdðTnþ1x0; Tnx0Þk� kdðTx0; x0Þk; ð8Þ

for all n ¼ 0; 1; 2; . . .
Next, we show that the sequence ðkdðTnx0; x0ÞkÞ is

bounded above by c ¼ 2jkdðx0; Tx0Þk. This is certainly the

case when n ¼ 1. Assume that kdðTm�1x0; x0Þk� c. The

claim follows from induction, if we show that

kdðTmx0; x0Þk� c. Using (8), it follows that

kdðTmx0; x0Þk� jfkdðTmx0; Tx0Þk þ kdðTx0; x0Þkg

� jMðTm�1x0; x0Þ þ
c

2

¼ j max
n

kdðTm�1x0; Tmx0Þk; kdðx0; Tx0Þk;


 1

2j
kdðTm�1x0; x0Þk

o

þ c

2

� j max kdðx0; Tx0Þk;
1

2j
kdðTm�1x0; x0Þk

� �

þ c

2
� j

c

2j

n o

þ c

2
¼ c:

Thus, for all n 2 N,

kdðTnx0; x0Þk� c: ð9Þ

Consider the monotonically decreasing sequence

ðkdðTnx0; Tnþ1x0ÞkÞ [see (7)]. Since it is bounded below by

0, it is convergent. Let ‘ ¼ lim
n!1

kdðTnx0; Tnþ1x0Þk. Clearly

‘� 0. We will in fact, prove that ‘ ¼ 0. For each � 2 ð0; 1�,
it follows from (6) and (9) that

kdðTnx0; Tnþ1x0Þk� ð1 � �ÞkdðTn�1x0; Tnx0Þk þ KK�awð�Þ;

where K ¼ ð1 þ 4cÞb. Rearranging the above inequality

and using the fact that the sequence ðkdðTnx0; Tnþ1x0ÞkÞ is

monotonically decreasing yields,

kdðTnx0; Tnþ1x0Þk�
kdðTn�1x0; Tnx0Þk

ð1 þ �Þ þ KK�awð�Þ
ð1 þ �Þ ;

ð10Þ

for each � 2 ð0; 1�. Fixing such an � and letting n ! 1 in

(10), we obtain

‘� ‘

ð1 þ �Þ þ
KK�awð�Þ
ð1 þ �Þ

Multiplying both sides by ð1 þ �Þ and simplifying yields,

for each � 2 ð0; 1�,

‘�KK�a�1wð�Þ:

Letting � ! 0þ yields, ‘� 0. Thus, in fact,

‘ ¼ 0: ð11Þ

Next, we show that the sequence ðTnx0Þ is Cauchy. In view

of Lemma 1 (i), it suffices to show that, given g[ 0 and

p 2 N, there exists M 2 N which is independent of p, such

that kdðTnx0; Tnþpx0Þk\g, for all n�M.

By (11), choose N 2 N such that

kdðTnx0; Tnþ1x0Þk\
g
2

ð12Þ

for all n�N.

Consider kdðTnx0; Tnþpx0Þk for all n�N þ 1. Letting

� ¼ 0 in (5) yields,

kdðTnx0; Tnþpx0Þk�MðTn�1x0; Tnþp�1x0Þ:

If MðTn�1x0; Tnþp�1x0Þ ¼ kdðTn�1x0; Tnx0Þk or

kdðTnþp�1x0; Tnþpx0Þk, then it follows from (12) that

kdðTnx0; Tnþpx0Þk\
g
2
: ð13Þ

If MðTn�1x0; Tnþp�1x0Þ ¼ 1
2j kdðTn�1x0; Tnþp�1x0Þk, then

the normality of the underlying cone and an application of

the triangle inequality yield,

kdðTnx0; T
nþpx0Þk�

1

2j
kdðTn�1x0; Tnþp�1x0Þk

� 1

2
fkdðTn�1x0; T

nx0Þk þ kdðTnx0; T
nþpx0Þk

þ kdðTnþpx0; T
nþp�1x0Þkg:
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From a rearrangement of terms, it follows from (12) that

kdðTnx0; Tnþpx0Þk� kdðTn�1x0; Tnx0Þk
þ kdðTnþpx0; Tnþp�1x0Þk\g: ð14Þ

Thus, it follows from (13) and (14) that given g[ 0 and

p 2 N, by choosing M ¼ N þ 1, which is independent of p,

one has that

kdðTnx0; Tnþpx0Þk\g;

for all n�M. i.e., the sequence ðTnx0Þ is Cauchy in the

cone metric space ðX; dÞ. By completeness, there exists a

unique u 2 X such that Tnx0 ! u as n ! 1.

We complete the proof by showing that this u is a fixed

point of T . Let g[ 0 be arbitrary, B ¼ Kjð1 þ jjjujjjþ
jjjTujjj þ 2cÞb. Choose �0 2 ð0; 1� such that

B�a�1
0 wð�0Þ\

g
2
: ð15Þ

Choose L 2 N such that

kdðTLx0; uÞk þ kdðTLx0; TLþ1x0Þk\
�0g
4j

: ð16Þ

Consider kdðTu; uÞk. From (5), it follows that

kdðTu; uÞk� jfkdðTu; TLþ1x0Þk þ kdðTLþ1x0; TLx0Þk
þ kdðTLx0; uÞkg

� ð1 � �0ÞMðu; TLx0Þ
þ jK�a0wð�0Þð1 þ jjjujjj þ jjjTLx0jjj þ jjjTujjj
þ jjjTLþ1x0jjjÞb þ jfkdðTLþ1x0; TLx0Þk
þ kdðTLx0; uÞkg

� ð1 � �0Þfkdðu; TuÞk
þ kdðTLþ1x0; TLx0Þk þ kdðu; TLx0Þkg
þ B�a0wð�0Þ þ jfkdðTLþ1x0; TLx0Þk
þ kdðTLx0; uÞkg

� ð1 � �0Þkdðu; TuÞk
þ 2jfkdðTLþ1x0; TLx0Þk þ kdðu; TLx0Þkg
þ B�a0wð�0Þ:

Rearranging the terms in the above inequality yields,

kdðu; TuÞk� 2j
�0

fkdðTLþ1x0; TLx0Þk þ kdðu; TLx0Þkg

þ B�a�1
0 wð�0Þ:

It follows from (15) and (16) that

kdðu; TuÞk\g:

Since g[ 0 is arbitrary, the proof is complete. h

Applications and examples

This section contains applications of Theorem 1, presented

as corollaries. Recall the definition of Mðx; yÞ and the

notation jjj � jjj from Theorem 1.

Corollary 1 Let ðX; dÞ be a complete cone metric space

with normal constant j� 1 and d 2 0; 1
j

� �

. If the map T :

X ! X satisfies

kdðTx; TyÞk� dMðx; yÞ

for all x; y 2 X, then T has a unique fixed point.

Proof It suffices to show that T satisfies condition (5).

The result then follows from Theorem 1. Fix x0 2 X.

Observe that

Mðx; yÞ ¼ max kdðx; TxÞk; kdðy; TyÞk; 1

2j
kdðx; yÞk

� �

� 1 þ kdðx; x0Þk þ kdðx0; TxÞk þ kdðy; x0Þk
þ kdðx0; TyÞk

¼ 1 þ jjjxjjj þ jjjTxjjj þ jjjyjjj þ jjjTyjjj:
ð17Þ

It follows from (17) and a Bernoulli inequality argument

similar to Sect. 3 in [1], that for all � 2 ½0; 1�, x; y 2 X,

kdðTx; TyÞk� dMðx; yÞ

¼ ð1 � �Þ
j

Mðx; yÞ þ d þ ð�� 1Þ
j

� �

Mðx; yÞ

¼ ð1 � �Þ
j

Mðx; yÞ þ d 1 þ ð�� 1Þ
jd

� �

Mðx; yÞ

� ð1 � �Þ
j

Mðx; yÞ þ dð1 þ ð�� 1ÞÞ
1
jdMðx; yÞ

� ð1 � �Þ
j

Mðx; yÞ þ d�
1
jd½1 þ jjjxjjj þ jjjTxjjj

þ jjjyjjj þ jjjTyjjj�:

¼ ð1 � �Þ
j

Mðx; yÞ

þ d�1þg½1 þ jjjxjjj þ jjjTxjjj þ jjjyjjj þ jjjTyjjj�;
ð18Þ

where g ¼ 1
jd � 1
� �

[ 0. Comparing (18) with (5), one sees

that T satisfies (5) with K ¼ d, b ¼ a ¼ 1, wð�Þ ¼ �g. h

Corollary 2 (The Kannan Fixed Point Theorem) Let

ðX; dÞ be a complete metric space and d 2 ð0; 1Þ. If the map

T : X ! X satisfies

dðTx; TyÞ� d
2
ðdðx; TxÞ þ dðy; TyÞÞ
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for all x; y 2 X, then T has a unique fixed point.

Proof Observe that j ¼ 1 and T satisfies the hypothesis

of Corollary 1. The result follows. h

We end with an example which demonstrates that

Theorem 1 indeed generalizes the main result in [1].

Observe that it suffices to produce a complete metric space

ðX; dÞ and a map T : X ! X which satisfies

(A) dðTx; TyÞ� d max dðx; TxÞ; dðy; TyÞ; 1
2

dðx; yÞ
	 


for

some d 2 ð0; 1Þ and x; y 2 X,

(B) dðTa;TbÞ[ 1
2
fdða; TaÞ þ dðb; TbÞg for some

a; b 2 X.

Example Let X ¼ 0; 1
2

� �

[ f1; 2g with d being the usual

metric. It is clear that ðX; dÞ is a complete cone metric

space with j ¼ 1. Define the map T : X ! X by Tx ¼ 2 if

x 6¼ 1; 2 and T1 ¼ T2 ¼ 1. Observe that for x 6¼ 1; 2,

dðTx; T1Þ ¼ 1 and

max dðx; TxÞ; dð1; T1Þ; 1
2

dðx; 1Þ
� �

¼ max 2 � x; 0;
1

2
ð1 � xÞ

� �

¼ 2 � x:

Similarly, for x 6¼ 1; 2, dðTx; T2Þ ¼ 1 and

max dðx; TxÞ; dð2; T2Þ; 1

2
dðx; 2Þ

� �

¼ max 2 � x; 1;
1

2
ð2 � xÞ

� �

¼ 2 � x:

Since, by choice, x 2 0; 1
2

� �

, it follows that 1� 2
3
ð2 � xÞ.

Moreover, dðT1; T2Þ ¼ dðTx;TyÞ ¼ 0 for all x; y 2 0; 1
2

� �

.

Putting all this together implies that T satisfies condition

(A) above with d ¼ 2
3
. Since 1

2
d 1

4
; T 1

4

� �

þ dð1; T1Þ
	 


¼
2�1

4ð Þ
2

\1 ¼ d T 1
4
; T1

� �

, it follows that T also satisfies

condition (B) above with a ¼ 1
4

and b ¼ 1. From the proof

of Corollary 1, it follows that T satisfies (5). However, T

does not satisfy (4), as it satisfies condition (B) above. This

can be seen by setting � ¼ 0 in (4). It is immediate that T

has a unique fixed point.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Chakraborty, M., Samanta, S.K.: A fixed point theorem for

kannan-type maps in metric spaces, pre-print (2012), arXiv:1211.

7331v2 [math.GN], Nov 2012

2. Haghi, R.H., Rezapour, Sh.: Fixed points of multifunctions on

regular cone metric spaces. Expositiones Mathematicae 28(1),

71–77 (2010)

3. Huang, L.-G., Zhang, X.: Cone metric spaces and fixed point

theorems of contractive mappings. J. Math. Anal. Appl. 332,

1468–1476 (2007)

4. Pata, V.: A fixed point theorem in metric spaces. J. Fixed Point

Theory Appl. 10, 299–305 (2011)

Math Sci (2014) 8:65–69 69

123

http://arxiv.org/abs/1211.7331v2
http://arxiv.org/abs/1211.7331v2

	A Pata-type fixed point theorem
	Abstract
	Introduction
	Preliminaries and the main result
	Proof of The main result
	Applications and examples
	Open Access
	References


