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Abstract We prove a fixed point theorem for a Pata-type
map defined on a complete (normal) cone metric space.
Our results generalize the recent work of M. Chakraborty
and S. K. Samanta. An example demonstrating this fact is
also presented.
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Introduction

The classical Banach fixed point theorem states that if
(X,d) is a complete metric space and T:X — X is a
contraction map, i.e., T satisfies

d(Tx, Ty) <od(x,y), (1)

for all x,y € X and some o € [0,1), then T has a unique
fixed point. i.e., there exists a unique a € X such that
Ta = a.

In [4], Pata considered a map 7 : X — X on the com-
plete metric space (X, d) that satisfied the condition: for all
x,y€eX,

d(Tx, Ty) < (1 = e)d(x,y) + AY(e)[1 + el + Iv])”,
(2)
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for every e€0,1], fixed constants A>0, o>1 and
p€[0,0], a fixed element xy € X, |z|| = d(z,x0) and an
increasing function y : [0, 1] — [0, 00) which vanishes at
and is continuous at 0. He proved that the map T satisfying
(2) has a unique fixed point. Moreover, he also demon-
strated that if 7:X — X is a contraction map, then T
satisfies condition (2), thereby obtaining a generalization of
the Banach fixed point theorem.

Another fixed point theorem that is widely popular, is
due to Kannan which states that if (X,d) is a complete
metric space and the map 7 :X — X is a Kannan con-
traction, i.e., T satisfies

d(Tx,Ty) < 2{d(x, Tx) + d(y, T9)} (3)

for all x,y € X and some 7y € [0, 1), then T has a unique
fixed point.

There are several generalizations of the Kannan fixed
point theorem, but the one of particular interest to us is due
to Chakraborty and Samanta in [1]. The authors, in [1],
consider a map 7 : X — X defined on the complete metric
space (X,d) that satisfies the condition: for all x,y € X,

d(Tx, Ty) < % {d(x, Tx) + d(y, Ty)} + W
AeY([1 + lx] + Iyl + I7x] + [Ty,

for every €€ [0,1], fixed constants A>0, «>1 and
p€1]0,00), a fixed element xy € X, ||z]] = d(z,x) and a
function y : [0,1] — [0, 00) which vanishes at and is con-
tinuous at 0. The authors prove that the map 7 has a unique
fixed point. Moreover, they also demonstrate that if 7 :
X — X is a Kannan contraction map, then T satisfies
condition (4).

This article contains a generalization of the main result
in [1]. The setting considered is that of complete cone
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metric spaces, where the underlying cone is normal (see
[3]). It is shown that for a map 7 : X — X defined on the
complete (normal) cone metric space (X, d), which satisfies
a Pata-type condition, that is an improved version of (4),
there exists a unique fixed point. An example to illustrate
the main result is also provided.

Preliminaries and the main result

Let E be a real Banach space. A non-empty closed subset P
of E is said to be a cone if

(@) oP+ PP C P forall o f €0,00).
(b) PN (—P)= {0}, where 0 € E is the zero vector.

The cone P is said to be solid if the interior of P, which we
will denote by int P, is non-empty.
Examples of solid cones

(1) Let E=Rand P =[0,00).
(2) LetE=R? and P = {(x,y) : x,y>0}.
(3) Let E={and P ={(x,),>, : X, >0}.

The norms on E in the examples above are the usual norms.
A cone P in a real Banach space E, induces the fol-
lowing partial order < on E. For x,y € E,

xXy & y—xchP.

In the case of a solid cone P, we will use the notation x < y
to denote y — x € int P.

A cone P is said to be normal if for all x,y € P such that
x <y, there exists a constant x> 1 such that ||x|| <x||y]-
The examples (1), (2) and (3) above are normal cones with
K=1.

Let X be a nonempty set, E be a real Banach space and
P C E be a solid normal cone with normal constant x> 1.
Amapd : X x X — E is said to be a cone metric if for all
x,y,z € E,

(@ d(x,y) = 0,1ie., d(x,y) €P.
(b) d(x,y) =0 if and only if y = x.
(C) d(x,y) = d(x,z) +d(Z,y)

The pair (X,d) is called a cone metric space. It is indeed
the case that every metric space is a cone metric space.
Examples of cone metric spaces

(1) ([3]D) Let E and P be as in example (2) above, d :
R x R — E be the map d(x,y) = (|x — y|, alx — y|),
where o >0 is a constant. The pair (R,d) is a cone
metric space.

(2) ([2]) Let (X, p) be a metric space, E and P be as in
example (3) above, d:X x X — E be the map

d(x,y) = (v/27"p(x,y)), -, It can be verified that

(X,d) is a cone metric space.

o
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Let (X,d) be a cone metric space. A sequence (x,) of
points in X is said to be Cauchy if for any given ¢ > 0,
there exists N € N such that d(x,,x,) < ¢, for all
m,n>N, or equivalently, there exists M € N which is
independent of p such that d(x,, x,4,) < ¢ for all n>M.

The sequence (x,) is said to be convergent, if there
exists x € X such that for any given c¢ > 0, there exists
N € N such that d(x,,x) < ¢ for all n>N.

The cone metric space (X,d) is said to be complete if
every Cauchy sequence in X converges.

The proof of the following lemma can be found in [3].

Lemma 1 Let (X,d) be a cone metric space and (x,) be a
sequence in X.

(1) (x,) is Cauchy if and only if ||d(xu,x,)|| — O as
m,n — o0. i.e., Given 1 > 0 and p € N, there exists
N €N which is independent of p such that
ld(xn, Xn4p) || <n, for all n>N.

(2)  (x,) is convergent to x if and only if ||d(x,,x)|| — O
as n — oo.

(3) If (x,) converges to x,y € X, then x = y.

The following is our main result which generalizes
Theorem 2.2 in [1].

Theorem 1 Let (X,d) be a complete cone metric space
with normal constant Kk > 1, xp € X, A>0, «>1and f§ €
[0,00) be fixed constants and ¥ : [0, 1] — [0, 00) be such
that Elir(gl+ Y(e) = 0. If for every x,y € X, the map T : X —

X satisfies
(1 B 6) o
(T, Ty)| < ~——M(x,y) + Ay ()1 + [Ixl| + [l
+ |7l + Iyl

(5)
for every e€[0,1], where M(x,y) = max{||d(x, Tx)|,
ld(y, Ty)||, 3¢ [ld(x, y)[I} and [|z]] denotes [|d(z, xo)[l, then T
has a unique fixed point.

The proof of the above Theorem is given in Sect. 3. We
point out that there is no loss of generality in choosing any
such x¢ in (5), simply because a change in x(; can essen-
tially be absorbed by assigning a different value to A,
thanks to the triangle inequality of the cone metric d and
the sub-additivity of the norm.

Proof of The main result

This section contains a proof of our main result. Although
the proof follows a similar pattern as that of Theorem 2.2 in
[1], the arguments provided here are different and some-
times simpler.



Math Sci (2014) 8:65-69

67

Proof of Theorem I First we prove uniqueness of the
fixed point. Suppose that x,y € X are such that x # y, Tx =
x and Ty =y. Letting ¢ =0 in inequality (5) yields,
l|d(x,y)|| < 5-||d(x,y)|l, a contradiction to the fact that
x # y. The uniqueness follows.

To show the existence of a fixed point, consider the
sequence (7"xp). Without loss of generality, we assume
that T"xg # T"*'xg, for all n =0,1,2,.... Since for each
neN, and € € [0,1],
|d(T™* x0, T"x0) || < (1 — €)M (T"x0, T" 'x0)

+ACY ()1 + 20 T"xo || + 17" xo]

+ [T o) (6)
it follows that there exists no n €N, for which
M(T"xo, T" 'x0) = ||d(T" ' x0, T"x0)||. For otherwise, it
would mean that there exists some m € N such that for
every € € (0,1],

(T x0, T"x0) || < A"~ (€)[1 + 2] T
+ 17" ol + 17" o ll)”

Letting € — 0" yields, ||d(T"™"'xo, T"x)|| =0, i.e.

T xy = T"xy, a contradiction. Thus, for each n € N,
letting € = 0 in inequality (6) yields,

(T x0, T"x0) || < [|d(T"x0, T"~x0) . (7)
Iterating we obtain
(1" x0, T"x0) | < [|d(Txo, x0) |, (3)

foralln=0,1,2,...

Next, we show that the sequence (||d(T"xo,x0)||) is
bounded above by ¢ = 2x||d(xo, Txo)||. This is certainly the
case when n = 1. Assume that ||d(7" 'xo,x0)|| <c. The
claim follows from induction, if we show that
|d(T™x0,x0)|| < c. Using (8), it follows that

1d(T"x0, x0) || < e l|d(T"x0, Txo) || + [|d(Tx0, x0) [ }

< kM (T ' x0, x0) +%

= Kmax {||d(rm—1x0, Tx0)|, [ld (xo, Txo) |,

1 c
— ld(T™ ! } e

1 _
< wmax{ [, o)l 1 (" 30, 30) |

+C< {C}+C
—<Kky—p+=-=c.
2=MaS T2 7€

Thus, for all n € N,
|d(T"x0, x0) || <c. 9)

Consider the monotonically decreasing sequence
(|ld(T"x0, T"'x0)||) [see (7)]. Since it is bounded below by

0, it is convergent. Let £ = lim ||d(T"xo, T"""'x0)||. Clearly
£>0. We will in fact, prove that £ = 0. For each € € (0, 1],
it follows from (6) and (9) that

1a(T"x0, T" ) | < (1 = )| d(T" x0, T"x0) || + KA (e),

where K = (1 —|—4c)p . Rearranging the above inequality
and using the fact that the sequence (||d(T"xo, T"*'xo)||) is
monotonically decreasing yields,

|d(T""x0, T"x0) |
(I+¢)

KAe*y(e)
(I+¢€
(10)

d(T"x0, T""x0) || <

for each € € (0, 1]. Fixing such an e and letting n — oo in
(10), we obtain
’ 14 KAe*y(e)

“(I4+e¢) (I+e

Multiplying both sides by (1 + €) and simplifying yields,
for each € € (0, 1],

C< KA (e).

Letting ¢ — 0" yields, £ <0. Thus, in fact,

{=0. (11)
Next, we show that the sequence (7"xp) is Cauchy. In view
of Lemma 1 (i), it suffices to show that, given n > 0 and
p € N, there exists M € N which is independent of p, such

that ||d(T"xo, T" P x0)|| <, for all n> M.
By (11), choose N € N such that

1d(T"x0, T x0)| <g (12)

for all n > N.
Consider ||d(T"xy, T"Pxp)|| for all n>N + 1. Letting
e = 0 in (5) yields,

d(T"x0, T"Pxo)|| < M(T" ' x0, TP x0).

If M(T" xq, TP~ x0) = ||d(T" ' x0, T"x0)|| or
|l (TP~ xo, T"*Px0)||, then it follows from (12) that

d(T"x0, T™Px0)|| < g (13)

If M(T" 'xo, TP~ xg) = 5 ||d(T" ' x0, T"7'x0) ||, then
the normality of the underlying cone and an application of
the triangle inequality yield,

1
(7" x0, T x0) | < 5 (" xo, T2 Lxo )|
K

1
< S {ld(T" " xo, T"x0) | + [1d(T"x0, T x0) |

+ 1 d(T" P, T Lxo ) | }.

N
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From a rearrangement of terms, it follows from (12) that
1d(T"x0, T" P x0) || < [|d(T" 0, T"x0)

+ | (T Pxo, TP ' x0) || <n.  (14)
Thus, it follows from (13) and (14) that given > 0 and

p € N, by choosing M = N + 1, which is independent of p,
one has that

1d(T"x0, T" P x0) | <1,

for all n> M. ie., the sequence (T"x) is Cauchy in the
cone metric space (X,d). By completeness, there exists a
unique u € X such that 7"xp — u as n — oo.

We complete the proof by showing that this u is a fixed
point of T. Let >0 be arbitrary, B = Ax(l + |Jul+

I Tul] 4 2¢)P. Choose € € (0, 1] such that

Bes (o) <3 (15)

Choose L € N such that

o
4k

Consider ||d(Tu, u)||. From (5), it follows that
1d(Tu, ) || < w{]|d(Tu, T x0) || + [l d(T" x0, T x0) |
+[ld(Thx0, u) [}
< (1 — €)M (u, T"xo)
+ kA (eo) (1 + Jull + 1T xol + | 7]
+ 1T %ol + e (T 0, Thx0) |
+ [|d(T 0, u)|}
< (1 = eo){lld(u, Tu)|
+ (T xo, Thxo) || + lld (u, Thxo) ||}
+ Beg (o) + w{||d(TH " xo, T x0)|
+ [d(T x0, )}
< (1= eo)lld(u, Tu)
+ 2{ | d(T" xo, Thx0) || + (1l (e, Tx0) |1}
+ Begy (o).

(T x0, u)|| + [|d(T"x0, T x0) || < (16)

Rearranging the terms in the above inequality yields,
2K
[l (u, Tu)|| < g{\ld(TL“xO, Thx0) || + lld(u, T xo) [}
+Bey 'Y (eo)-
It follows from (15) and (16) that
1 (u, Tu)|| <n.

Since 1 > 0 is arbitrary, the proof is complete. O

o

@ Springer

Applications and examples

This section contains applications of Theorem 1, presented
as corollaries. Recall the definition of M(x,y) and the
notation || - || from Theorem 1.

Corollary 1 Let (X,d) be a complete cone metric space
with normal constant kx> 1 and J € (O, %) If the map T :
X — X satisfies

1d(Tx, Ty)|| < oM (x, y)
for all x,y € X, then T has a unique fixed point.

Proof 1Tt suffices to show that T satisfies condition (5).
The result then follows from Theorem 1. Fix xo € X.
Observe that

1
M(x3) = max{ e, 7). . 1)l g e )
<1t de0) ]+ (e, T + . 0)|
+ldGo. )|
= 1+ el 7l + Il + 50
(1)

It follows from (17) and a Bernoulli inequality argument
similar to Sect. 3 in [1], that for all € € [0,1], x,y € X,
1d(Tx, Ty)|| < oM (x, y)

- (1;€)M(x,y)—|— <5+

_ _G)M(x,y) +5<1 +

ey

(e—1)
KO

M(x,y)

=

—~

Y79 (e, y) + 601+ (e — 1) M(x,y)

IN

=

~—

1—¢

—~

1
< M(x,y) + 0e[1 + [lx]| + | Zx]

oy

+ Iyl 17yl

- ; 6)M(XJ)

+ 01+ el + 7l + Iyl + 1T,
(18)

where = (% — 1) > 0. Comparing (18) with (5), one sees
that T satisfies (5) with A =0, f =a = 1, y(e) = €. O

Corollary 2 (The Kannan Fixed Point Theorem) Let
(X, d) be a complete metric space and 6 € (0, 1). If the map
T : X — X satisfies

(T, 1) < 2 (de, T0) + (3, 73)
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for all x,y € X, then T has a unique fixed point.

Proof Observe that k = 1 and T satisfies the hypothesis
of Corollary 1. The result follows. O

We end with an example which demonstrates that
Theorem 1 indeed generalizes the main result in [1].
Observe that it suffices to produce a complete metric space
(X,d) and a map T : X — X which satisfies

(A)  d(Tx,Ty) < dmax{d(x, Tx),d(y, Ty),%d(x,y)} ~ for
some J € (0,1) and x,y € X,

(B) d(Ta,Tb) > {d(a,Ta) +d(b,Tb)}  for
a,beX.

some

Example Let X = [0,%] U {1,2} with d being the usual
metric. It is clear that (X,d) is a complete cone metric
space with ¥ = 1. Define the map 7 : X — X by Tx =2 if
x# 1,2 and T1 =T2=1. Observe that for x# 1,2,
d(Tx,T1) =1 and

max{d(x, Tx),d(l,Tl),%d(x, 1)}

1
= max{Z _X’O’E(l —x)} =2—x
Similarly, for x # 1,2, d(Tx,T2) = 1 and

max{d(x, Tx),d(2,T2), %d(x, z)}

1
:max{Z—x,1,§(2—x)} =2—x.

Since, by choice, x € [O,%], it follows that 1 < %(2 —X).

Moreover, d(T1,T2) = d(Tx,Ty) = 0 for all x,y € [0,1].

Putting all this together implies that T satisfies condition

(A) above with 6 =2. Since 1{d(},T}) +4d(1,T1)} =
_1

() <1=d(T1,T1), it follows that T also satisfies

2
condition (B) above with a = }1 and b = 1. From the proof

of Corollary 1, it follows that T satisfies (5). However, T
does not satisfy (4), as it satisfies condition (B) above. This
can be seen by setting ¢ = 0 in (4). It is immediate that T
has a unique fixed point.
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tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

References

1. Chakraborty, M., Samanta, S.K.: A fixed point theorem for
kannan-type maps in metric spaces, pre-print (2012), arXiv:1211.
7331v2 [math.GN], Nov 2012

2. Haghi, R.H., Rezapour, Sh.: Fixed points of multifunctions on
regular cone metric spaces. Expositiones Mathematicae 28(1),
71-77 (2010)

3. Huang, L.-G., Zhang, X.: Cone metric spaces and fixed point
theorems of contractive mappings. J. Math. Anal. Appl. 332,
1468-1476 (2007)

4. Pata, V.: A fixed point theorem in metric spaces. J. Fixed Point
Theory Appl. 10, 299-305 (2011)

N

@ Springer


http://arxiv.org/abs/1211.7331v2
http://arxiv.org/abs/1211.7331v2

	A Pata-type fixed point theorem
	Abstract
	Introduction
	Preliminaries and the main result
	Proof of The main result
	Applications and examples
	Open Access
	References


