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1 Introduction

A distinctive feature of black holes (BH), in both, asymptotically flat and asymptotically

(A)dS space-times, is the existence of “Quasi Normal Modes” (QNM): if one perturbs a

black hole, one finds damped modes, i.e. modes whose frequencies are complex, signalling

the fact that the corresponding field can decay by falling into the black hole. In the

AdS case these modes have an interpretation in the dual CFT as describing the approach

to equilibrium of the perturbed thermal state [1–3]. This phenomenon has been studied

extensively, especially after the proposal of the AdS/CFT correspondence, in the ordinary

(super)gravity context in various dimensions. In particular, for gravity coupled to various

matter in D = 3, the case of the BTZ black hole has been studied in detail.

We will be interested in generalising the problem to the context of higher spin systems

in D = 3. Such systems, with finite number of higher spins ≤ N , can be formulated via

Chern-Simons theories based on sl(N) algebras, but, like ordinary 3D gravity, they do

not contain propagating degrees of freedom and, moreover, they do not allow coupling to

propagating matter. In order to introduce (scalar) matter coupled to the higher spin sector,

one formulates the theory in terms of a flat connection (A, Ā) for the infinite dimensional

algebra hs(λ) × hs(λ) [4–6]. The matter fields are packaged in an algebra valued master

field C, a section obeying the horizontality condition with respect to the flat connection, in
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a way that will be detailed below. It turns out that if one embeds the BTZ black hole in this

system, one can follow a “folding” procedure to reduce the equation of motion for C in the

BTZ background to an ordinary second order equation for the lowest, scalar, component

of the field C, with a λ dependent mass, m2 = λ2 − 1. Therefore the corresponding quasi

normal modes are the usual ones that one finds for a massive scalar field coupled to BTZ

in the ordinary gravity case.

However, the higher spin systems are expected to admit generalised black holes car-

rying different charges, other than the mass and angular momentum carried in the BTZ

case [7–18]. The issue then arises to study matter fluctuations in their background and

possibly identify the spectrum of the corresponding quasi normal modes. Unlike for the

BTZ background, one expects in general the “folding” procedure to give rise to a differen-

tial equation of order higher than two for the matter scalar field and it is not to be expected

to be able to solve it analytically.

In this paper we present a class of flat connections, depending on parameters (µ, µ̄),

in such a way that when µ and µ̄ go to zero we recover the BTZ connection. We will argue

that they correspond to black hole configurations in 3D hs(λ)× hs(λ) higher spin gravity.

In addition, we will be able to solve the equations for matter fluctuations analytically and

therefore identify the presence of quasi normal modes.

As first discussed in [7], establishing whether a given geometry represents a black

hole in higher spin theories is a subtle issue, due to the presence of a higher spin gauge

degeneracy that can, to mention an example, relate seemingly black hole geometries to

geometries without horizons. We will follow the criterion of [7] and impose the BTZ

holonomy conditions on the connection around the euclidean time S1. As a result spacetime

tensor fields [19] will be shown to behave smoothly at the horizon.

But as remarked above, further evidence arises from the analysis of their interaction

with matter, in particular from the existence of quasi normal modes and their dispersion

relations. Another subtle and important issue, whose general aspects have been subject of

recent investigations, with different conclusions, [14–16, 20, 21], concerns the precise deter-

mination of the charges carried by our backgrounds and, more generally, their asymptotic

symmetry algebras. Perhaps, one could get a clue of the general answer by studying the

truncations of hs(λ) with integer λ, we hope to come back to this problem in the future.

In this way one would be able of, first, properly define their charges and, second, identify

whether they are of higher spin character or not.

As for the bulk to boundary 2-point function, even though the differential equations

of motion that determine them are of order higher than two, they are described by combi-

nations of pairs of solutions of a 2nd order PDE’s. Only one of all these pairs is smoothly

related to the solutions corresponding to a real scalar field with m2 = λ2 − 1 propagating

in the BTZ black hole [5, 22], as µ, µ̄ → 0.

The outline of the paper is as follows. First, in section 2 we introduce the ansätze

mentioned above and show that they define smooth horizons by use of the relation connec-

tions - metric-like fields proposed in [19]. Then, we identify our (µ,µ̄) with the so called

chemical potentials in the solutions introduced in [7] and generalisations to hs(λ) of the

sl(3,R) black holes with higher spin charges (and W3×W3 asymptotic symmetry algebra)
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presented by the authors in [20], that from now on, we denote as GK and BHPT2,1 respec-

tively. We do it by identifying the gauge transformation relating our connection to those

ansätze. Next, in section 3 we discuss the equations of motion for the effective scalar in

the black hole backgrounds and describe the strategy to solve them for a generic element

in the class. We give the explicit solutions for a couple of particular cases. An important

fact to stress on, is that even though connections and generic metric like fields do break

the asymptotic of AdS, the equations for fluctuations do preserve the behaviour of scalars

minimally coupled.

In section 4 we show how to obtain the quasi normal modes and bulk to boundary

2-point functions for a generic element in the class and discuss them in the same particular

cases. As a last check, we transform our results to the GK and BHPT2 descriptions and

verify that the result of the gauge transformation coincides with the perturbative solution

of the equations of motion for linear fluctuations of matter, written in those ansätze, as it

should.

2 A class of black hole in the hs(λ) × hs(λ) theory

In this section of the paper we argue that a given class of hs(λ)×hs(λ) flat connections do

have a space time interpretation as black holes. As a first argument, we resort to the usual

relation between connections and metric like tensor fields discussed in the finite dimensional

case in [19].

We start by writing down the generic form for the flat connections of interest:

Aρ = V 2
0 , Āρ = −V 2

0 ,

At,φ = bAt,φb
−1, Āt,φ = b̄Āt,φb̄

−1, (2.1)

with b = e−ρV 2
0 , b̄ = eρV

2
0 . The generators and structure constants for hs(λ) algebra are

listed in appendix A. Let us denote our space-time coordinates as (ρ, t, φ) and restrict our

analysis to connections that obey the gauge choice (2.1) with A independent of xa = (t, φ).

The relation between the connection and the space time tensor fields is:

g(n) = −1

2
tr(en), e = A− Ā, (2.2)

with e being the dreibein. As a starting point we remind the condition:

et|ρ=0 = 0, (2.3)

required in order to have a smooth horizon at ρ = 0 in the spacetime tensor field g(n).

Under (2.3) each t component in g(n) will have a zero at ρ = 0 with the appropriate order.

By appropriate orders we mean those that make the corresponding reparameterisation

invariant quantities smooth at ρ = 0. For instance, g
(n)
t ∼ ρn, and thence, it will be

1These, are solutions in hs(λ)× hs(λ) with chemical potentials turned on in the time direction. In this

way the fixed time asymptotic symmetry algebra is precisely Wλ ×Wλ. Details on their construction are

given in section 2.
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smooth after transforming to a regular coordinate system about the horizon. In virtue

of (2.1) we can rewrite (2.3) as:

Āt = At. (2.4)

From the flatness condition the φ components are constrained to be of the form:

Aφ = P (At) , Āφ = P̄ (At) ,
2 (2.5)

where we take P and P̄ to be polynomials in At and Āt respectively. The condition:

g(n)(ρ) = g(n)(−ρ), (2.6)

guarantees that all the components of g(n) will be C∞ in the Cartesian coordinates in the

plane (ρ, t), with ρ thought as the radial coordinate. Condition (2.6) ensures smoothness

for the g(n) at ρ = 0. As far as Euclidean conical singularity is concerned, it will be

automatically excluded by requiring fulfilment of the BTZ holonomy condition [7]. See the

paragraph before (4.11) for more details.

Let us identify a sufficient condition on the connections (A, Ā) for (2.6) to hold. Con-

sider the generic connections:

Aa =
∑

(s,ms)

csms
V s
ms

, Āa =
∑

(s,ms)

c̄sms
V s
ms

. (2.7)

Notice that the change ρ to −ρ in (2.7) is equivalent to the change V
s

ms
→ V

s

−ms
.3

By inserting (2.7) in (2.2), and using the properties of the ⋆-product, we can notice

that tr(ena) is invariant under the combined action of ρ → −ρ and any of the following pair

of Z2 transformations:

I : csms

(
c̄sms

)
→ cs−ms

(
c̄s−ms

)
AND/OR I× II, (2.8)

with the Z2 II given by

II : c̄s−ms
→ −csms

. (2.9)

Transformation I together with V s
ms

→ V s
−ms

leaves the dreibein ea = Aa−Āa invariant

and therefore the trace of powers of ea. The transformation II leaves tr(ena) invariant but

generically not the dreibein ea.

A trivial (even) representation of (A, Ā)a under (2.8) is sufficient condition for (2.6).

Should some components in (A, Ā) not remain invariant under the Z2 I or I×II, but carry

a non trivial (odd) representation under any of them, then the corresponding component

of the dreibein e will carry a non trivial (odd) representation too. Condition (2.6) will thus

imply that traces involving an odd number of such components must vanish.

2 It could be the case that At = P (Aφ) and not the other way around, but for our purposes we stick

to the case written above. In fact the most general case is Aφ = Pφ(A) and At = Pt(A) with a generic

A ∈ hs(λ).
3Here we consider s = 1, . . .∞, ms = −2s + 1, . . . , 2s − 1. So that under summation the indices s and

ms are mute and can be renamed without lack of rigor.
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Let us analyze the particular case of the BTZ connection

At = Āt =
1

2
a, Aφ = −Āφ =

1

2
a, (2.10)

where

a = V 2
1 +MV 2

−1. (2.11)

From now on, for simplicity, we will choose the value M = −1, which locates the horizon

at ρ = 0. For later use we define a±ρ = bab−1.

The φ component of the pair (A, Ā) remains invariant under the transformation II

whereas the t component is odd. However the t component is also odd under I and so even

under the composition I× II. Finally, the following symmetries of the corresponding t and

φ components of the dreibeins

et =
1

2
(aρ − a−ρ) ≡ a I × II −even,

eφ =
1

2
(aρ + a−ρ) ≡ a II−even, (2.12)

imply that (2.6) holds for the connection (2.10). We can still get further information from

symmetries. As et and eφ are odd under I, any tensor field component with an odd number

of t plus φ directions, vanishes. As et and eφ are odd and even respectively, under II, any

tensor component with an odd number of t components vanish. Finally, what said before

implies that any tensor component with and odd number of φ directions vanish too.

Much of what was used for the BTZ case before, holds also for generic connections.

Specifically:

• Any pair of connections (A, Ā) that carries a trivial representation under I or I × II,

will define metric-like fields obeying (2.6).

Additionally, one can argue also for a necessary condition for (2.6) to hold. Let us

suppose that a pair (A, Ā) contains a part (Arep, Ārep) that satisfies the conditions above,

and a part (δA, δĀ) that does not, but still defines metric like fields which are even under

ρ to −ρ. In that case the term (δA − δĀ) should be orthogonal to itself,4 its powers,

and powers of the generators in (Arep − Ārep) (This is possible to find, for example V 3
2 is

orthogonal with itself and its powers). Should this not be the case, the term (δA − δĀ)

would give contributions which are not even in ρ (based on the invariance property of the

trace mentioned above). However, if (Arep − Ārep) contains all of the sl(2,R) elements,

V 2
0,±1, it is impossible to find a set of generators in hs(λ) that is orthogonal to every power

of them. In that case, symmetry under any of the Z2 transformations in the maximal set,

out of the (2.8), (I, I× II) for any (s,ms)
5 is also a necessary condition for (2.6).

4 The orthogonality is meant with respect to the trace operation in hs(λ).
5Notice that there are many possible Z2’s. The number grows exponentially with the number of gen-

erators in (A − Ā). The calligraphic letters indicate the full connection, ρ component and ρ dependence

included.
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At this point we specify our class of connections:

At = Āt = Pt (a) ,

Aφ =
1

2
a+ Pφ (a) , Āφ = −1

2
a+ P̄φ (a) , (2.13)

with Pt, Pφ and P̄φ being arbitrary traceless polynomials of the form

Pt =
∞∑

i=0

νi
(
a2i+1 − trace

)
,

Pφ =
∞∑

i=0

µi+3

(
a2i+2 − trace

)
, P̄φ =

∞∑

i=0

µ̄i+3

(
a2i+2 − trace

)
. (2.14)

Notice that (2.14) obeys (2.3) and that Pt and Pφ are selected in such a way that gtφ = 0.

We also choose the components gρt and gρφ to vanish. In particular (2.14) reduce to the

non rotating BTZM=−1 connection in the limit ν0 = 1
2 , νi>0 = 0, and vanishing µi, µ̄i.

Now:

• The transformations of a, the corresponding deformation polynomials (Pφ(a), P̄φ(a),

Pt(a)) and the ρ components ±V 2
0 under I in (2.8), are odd, even, odd and even

respectively.

• In virtue of properties of the ⋆-product, the traces with odd numbers of a and Pt(a)

with any number of insertions of V 2
0 and (Pφ(a), P̄φ(a)), vanish, and so all non van-

ishing traces are even under I and henceforth even under ρ → −ρ.

We conclude that the ansätze (2.14) give rise to spacetime tensor fields that obey (2.6). In

fact we explicitly checked (2.6) to hold up to arbitrary higher order in n and the order of

the polynomials P and P̄ .

In the near horizon expansion, g(2), the line element defined by (2.2), will look like:

dρ2 − 4

T 2
ρ2dt2 + . . . = ρ∗dv2 +

1

2
dρ∗dv + . . . , (2.15)

with v = t − T
2 log(ρ) + . . . and ρ∗ = 4

T 2 ρ
2 + . . . being coordinate redefinitions that are

going to be useful later on when analyzing fluctuations. The . . . denoting higher orders

corrections in ρ. The temperature:

T (Pt) ≡
1√

1
2 tr
(
[Pt(a), V 2

0 ]
2
) , 6 (2.16)

defines the thermal periodicity under t → t+ πT i.

We will focus our study in the cases ν0 = 1
2 , νi>0 = 0. These are solutions that

obey the usual BTZ holonomy-smoothness condition as the temporal component of the

6From the positiveness of the traces tr(V 2s
2ms+1V

2s
−2ms−1), see (A.4), in the interval 0 < λ < 1 and the

fact we have chosen odd powers of a in Pt it follows that the quantity inside the roots in (2.17) and (2.19)

is a sum of positive defined quantities and hence positive defined. We stress that we restrict our study to

the interval 0 < λ < 1.
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connection coincides with the BTZ one with M = −1. This implies that not only the

eigenvalues of the time component of connection are the same as BTZM=−1, but also that

the holonomy around the contractible euclidean time cycle coincides with the BTZ case,

since the euclidean periodicity, determined by the temperature T
(
1
2a
)
= 2, is the same as

for the BTZM=−1.

However before going on, let us comment on the possibility of arbitrary νi. The

euclidean smoothness condition is:

eπiT (Pt)Pt(a) ∼ V 1
0 . (2.17)

To solve for (2.17) we use the fact that πiP (a), with P (a) an arbitrary polynomial in a with

arbitrary integer coefficients, are known to exponentiate to V 1
0 in the region 0 < λ < 1,

see [23].

Then relations (2.17) reduce to find out the νi such that νiT (Pt) are integers. To study

this quantization conditions it is useful to write down Pt in the basis

as−1
⊥ ≡ 1

Ns

s−1∑

t=0

(−1)t

(
s− 1

t

)
V s
s−1−2t ∼ (as−1)

∣∣
V t<s
mt

→0
, (2.18)

where Ns is a normalization factor, chosen in such a way that: tr((as−1
⊥ )2) = 1. We get

thus

Pt(a) =
∞∑

s=0

ν⊥s

a2s+1
⊥√

1
2 tr([a

s−1
⊥ , V 2

0 ]
2)
, νs⊥ = M siνi, (2.19)

where the linear transformation matrix M is upper triangular. In the appendix B we

present the explicit form for M , (B.1), for the case µ2i+1 6= 0, with i = 0, . . . , 4. An

important property to use is that the eigenvalues (the diagonal elements) of M can be

checked to be larger or equal than 1 in the range 0 < λ < 1 until arbitrary large i.

The desired quantization conditions can be written as:

νiT (Pt) = (M−1)is cos θ
s = ni, (2.20)

with cos θs ≡ νs
⊥

√

∑

s(νs⊥)
2
and ni an arbitrary integer. The condition for the quantization

relation (2.20) to admit solutions is:

∞∑

s=1

(M � n)s2 = 1. (2.21)

In appendix B we show that the property of the eigenvalue of M mentioned above excludes

the presence of other solutions to the consistency condition (2.21) in the region 0 < λ < 1,

apart from the trivial one, n0 = 1 (ν0 =
1
2 , νi>0 = 0). Here, we just continue with the cases

that are continuously linked to the BTZ connection in the limit µi, µ̄i to zero. Namely

ν0 = 1
2 , νi>0 = 0. The requirement of the BTZ holonomy condition will guarantee the

absence of any possible conical singularity in the tensor like fields as the dreibein itself is

thermal periodic.
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Generically, (2.14) will define asymptotically Lifshitz metrics with critical exponent

z < 1, except for the cases in which the contributions out of the deformation parameters

µi, µ̄i will not provide ρ dependence. An example being when µ̄i = 0 (or µi = 0) in

which case the only contribution to gφφ comes at quadratic order in µi(or µ̄i) but it is

independent of ρ due to the cyclic property of the trace. In those cases the metric becomes

asymptotically AdS.

To summarise, (2.14) will define metrics of two classes:

• Generically Lifshitz metric with z < 1.

• AdS metrics when µ2i = 0 (or µ̄2i = 0).

This classification relies on the definition (2.2). For instance the line elements coming

from (2.2) for the cases µ3 6= 0, µ̄3 = −µ3 6= 0 and µ̄3 = µ3 6= 0 look like:

ds2(µ3, 0) = dρ2 − sinh2 ρ dt2 +

(
cosh2 ρ+

16(λ2 − 4)

15
µ2
3

)
dφ2,

ds2(µ3,−µ3) = dρ2 − sinh2 ρ dt2 +
1

30

(
12
(
λ2 − 4

)
µ2
3 cosh(4ρ)

+ 5
(
4
(
λ2 − 4

)
µ2
3 + 3 cosh(2ρ) + 3

))
dφ2,

ds2(µ3, µ3)
= dρ2 − sinh2 ρ dt2 +

1

5
cosh2(ρ)

(
−8
(
λ2 − 4

)
µ2
3 cosh(2ρ)

+ 8
(
λ2 − 4

)
µ2
3 + 5

)
dφ2. (2.22)

The first line element in (2.22) behaves asymptotically as AdS3 and shows a smooth horizon

at ρ = 0, while the last two cases are Lifshitz metrics with dynamical critical exponent

z = 1
2 < 1. Should we have turned on a higher spin µ deformation, the parameter z would

have decreased like z = 1
4 ,

1
8 . . . .

The bulk of the present study, section 3, will be devoted to the study of matter fluc-

tuations around the connections (2.13), which are not just gravitational but involve also

higher spin tensor fields turned on. This further analysis will confirm the expectation that

these backgrounds truly describe black holes, through the “dissipative” nature of matter

fluctuations we will find.

Before closing this section, we make contact (perturbatively in µ3) with other relevant

backgrounds studied in the literature recently. More precisely, we look for static gauge

parameters (Λ, Λ̄) (independent of x1,2), that transform (2.14) to the GK [7] and BHPT2

backgrounds mentioned in the introduction (those that generalise the sl(3,R) black holes

with higher spin charge introduced in [20, 24] to hs(λ)). Notice that these gauge transfor-

mations will not change the eigenvalues of the components (A1,2, Ā1̄,2̄) of the connections

because they are just similarity transformations. The two classes of backgrounds we want

to relate ours to, are described by the following connections:

A1 = V 2
1 + LV 2

−1 +WV 3
−2 + ZV 4

−3 + . . . , A2 =
∞∑

i=0

µi+3

(
Ai+2

1 − traces
)
,

Ā1̄ = V 2
−1 + L̄V 2

1 + W̄V 3
2 + Z̄V 4

3 + . . . , Ā2̄ =
∞∑

i=0

µ̄i+3

(
Āi+2

1̄
− traces

)
. (2.23)

– 8 –



J
H
E
P
1
1
(
2
0
1
4
)
0
1
3

Our parameters (µi, µ̄i) will be identified precisely with the chemical potentials in (2.23).

In our approach the charge-chemical potential relations [7, 25] are determined a priori by

the condition ν0 = 1
2 , νi>0 = 0. Namely, after applying the gauge transformations (Λ, Λ̄)

the charges L, W and Z will be already written in terms of the chemical potentials (µi, µ̄i).

In this way one can generate GK, and BHPT2 ansätze with more than one (µi, µ̄i) turned

on, and with the holonomy conditions already satisfied. However, with the choice ν0 = 1
2 ,

νi>0 = 0 one can only reach branches that are smoothly related to the BTZM=−1.

Taking x1 = x2̄ = x+ and x2 = x1̄ = x−, we recover the GK background, whereas for

x1 = x1̄ = φ and x2 = x2̄ = t we get BHPT2.

For later use, we write down the particular gauge transformations that takes the rep-

resentative with non vanishing µ3 = −µ̄3 into the wormhole ansatz for GK’s case. They

read, respectively, to leading order in µ3 = −µ̄3:

ΛGK = µ3

(
−5

3
e−ρV 3

−1 + eρV 3
1

)
+ commutant of aρ +O(µ2

3),

Λ̄GK = µ3

(
eρV 3

−1 −
5

3
e−ρV 3

1

)
+ commutant of a−ρ +O(µ2

3). (2.24)

The holonomy conditions are satisfied a priori and so the corresponding charge-chemical

potential relations are as follows:

L = L̄ = −1 +O(µ2
3), W = −W̄ =

8

3
µ3 +O(µ3

3), Z = Z̄ = O(µ2
3), . . . (2.25)

For BHPT2, namely when the chemical potentials are turned on along the t direction and

the asymptotic symmetry algebra is the undeformed Wλ ×Wλ [24, 26], they are given by:

ΛBHPT2 = 2ΛGK +O(µ2
3),

Λ̄BHPT2 = 2Λ̄GK +O(µ2
3). (2.26)

In this case the relations charge-chemical potential are:

L = L̄ = −1 +O(µ2
3), W = −W̄ =

16

3
µ3 +O(µ3

3), Z = Z̄ = O(µ2
3). (2.27)

Later on, we will apply these transformations to the matter fluctuations in the µ̄3 = −µ3 6=
0 background in (2.14).

3 Equations for fluctuations

In this subsection we show how to obtain the differential equations for the scalar fluctuations

over the backgrounds (2.14). Firstly, we review how this works for the BTZM=−1 case. This

will allow us to identify a strategy for the cases (2.14).

As mentioned in the introduction, the equation of motion of the master field C in

generic background connections (A, Ā) is simply the horizontality condition:

∇̃C ≡ dC +A ⋆ C − C ⋆A = 0 with C =
∑

Cs
ms

V s
ms

, (3.1)
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whose formal solution and its corresponding transformation law under left multiplication

(g, ḡ) → (eΛg, eΛ̄ḡ), are, respectively:

C = g C g−1 and C(Λ,Λ̄) = eΛCe−Λ̄, (3.2)

where dC = 0 and C =
∑ Cs

mV s
m.

The trace part of the master field C and its transformation law are also:

C1
0 = (C)

∣∣
V 1
0

and C1
0 (Λ,Λ̄) =

(
e(Λ−Λ̄)C

) ∣∣
V 1
0
. (3.3)

The integration constant C is evaluated in the limit C
∣∣
g→1

. In our cases (2.14) g goes to

1 at the points (ρ, xa) = 0. However notice that these points are located at the horizon

ρ = 0 of (2.14) and, as we shall see, many of the components of the master field C will

diverge there.

Our aim is to “fold” (3.1) for our ansätze (2.14) with ν0 = 1
2 , νi>0 = 0. By “folding”

we mean the process of expressing every Cs
ms

in terms of C1
0 and its derivatives, and finally

to obtain a differential equation for C1
0 . For such a purpose we start by reviewing how this

process works for the simplest case, BTZM=−1, and in doing so we will discover how to

fold the matter fluctuations in the case of the backgrounds (2.14).

We start by proving that for BTZM=−1 every higher spin component Cs
ms

, can be

expressed in terms of ∂± derivatives of C1
0 and C2

0 . Using the explicit forms for g and ḡ in

this case:

C = e−aρx+C(ρ)e−a−ρx− . (3.4)

It is easy to see that:

∂±C
1
0 = −(a±ρC)

∣∣
V 1
0
∼ −(e±ρC2

1 − e∓ρC2
−1), (3.5)

from where (D.4) of the appendix D is immediate. By
(
. . .
)∣∣

V 1
0
we denote the coefficient

of V 1
0 in

(
. . .
)
.

Now we can repeat the procedure at second order in ± derivatives of C1
0 . At this stage

we can write down three combinations:

∂2
+, ∂2

−, ∂2
+−,

which would generate the following quadratic relations inside the trace element:

a2ρ = Ṽ 1
0 + e2ρV 3

2 − 2V 3
0 + e−2ρV 3

−2, (3.6)

a2−ρ = Ṽ 1
0 + e−2ρV 3

2 − 2V 3
0 + e2ρV 3

−2, (3.7)

aρa−ρ = cosh 2ρ(Ṽ 1
0 − 2V 3

0 )− 2 sinh 2ρV 2
0 + V 3

2 + V 3
−2, (3.8)

where Ṽ 1
0 =

(λ2−1)
3 V 1

0 .

Equations (3.6), (3.7) and (3.8), allow to write down C3
−2, C

3
0 and C3

2 in terms of

(
∂2
+C

1
0 , ∂2

−C
1
0 , ∂2

+−C
1
0 , C

2
0

)
,
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so that one arrives to the relations (D.6) and (D.8).

Proceeding this way, we see that at the level s = 3 we can still use first derivatives

acting on C2
0 :

∂+C
2
0 = −(V 2

0 aρC)
∣∣
V 1
0

and ∂−C
2
0 = −(a−ρV

2
0 C)

∣∣
V 1
0
. (3.9)

Then, if we use:

V 2
0 aρ = −1

2
(eρV 2

1 + e−ρV 2
−1)− e−ρV 3

−1 + eρV 3
1 , (3.10)

a−ρV
2
0 =

1

2

(
e−ρV 2

1 + eρV 2
−1

)
− eρV 3

−1 + e−ρV 3
1 , (3.11)

on both equations in (3.9), together with (3.5), we get the spin three components C3
±1 in

terms of: (
∂+C

1
0 , ∂−C

1
0 , ∂+C

2
0 , ∂−C

2
0

)
,

as shown in (D.7).

Now we show how this process of reduction works at any spin level s. First we remind

some useful properties of the lonestar product. Let us start by the generic product

V s1
m1

⋆ V s2
m2

,

that will reduce to a combination of the form:

V s1+s2−1
m1+m2

+ . . .+ V
s1+s2−1−j
m1+m2

+ . . .+ V
|m1+m2|+1
m1+m2

, (3.12)

where we are not paying attention to the specific coefficients, which will be used in due

time. The index j goes from 0 to s1 + s2 − 2− |m1 +m2|. From (3.12) it follows that the

products: V s1
m1

⋆ a and a ⋆ V s1
m1

, with a = V 2
1 − V 2

−1, will contain combinations of the form:

V s1+1
m1+1 + V s1+1

m1−1 + . . . , (3.13)

where the . . . stand for lower total spin s contributions. For our purposes only the highest

total spin generators are relevant.

Furthermore, for any chain of 2s−1 generators with even spin 2s and even projections,
s−1∑

m=−s+1
V 2s
2m + . . ., further left or right multiplication by a will change it into a chain of

2s generators
s−1∑

m=−s

V 2s+1
2m+1 + . . . at the next spin level 2s+ 1. As a consequence, arbitrary

powers of a look like:

a2s =
s∑

m=−s

V 2s+1
2m + . . . and a2s+1 =

s∑

m=−s−1

V 2s+2
2m+1 + . . . . (3.14)

From (3.3) and (3.4), it follows that each ∂± derivative acting on C1
0 is equivalent to

a left or right multiplication by −a±ρ inside the trace. In particular, taking 2s of these

derivatives on C1
0 is equivalent to take 2s powers of ±a±ρ inside the trace.
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The number of different derivatives of order 2s denoted by: ∂2s
± is 2s+1. This number

coincides precisely with the number of components with total spin=2s+1 in the first power

of (3.14). So one can use the 2s+ 1 relations:

∂2s
± C1

0 = (a2s±ρC)
∣∣
V 1
0
, (3.15)

to solve for 2s+ 1 components of C:

[C2s+1
2m ] with m = −s, . . . , s, (3.16)

in terms of components with lower total spin and their ± derivatives.

One can always solve equations (3.15) in terms of (3.16) because the set of symmetrised

powers of a2s±ρ (more precisely, their components with the highest total spin) will generate

a basis for the 2s+ 1 dimensional space generated by:

[V 2s+1
2m ] with m = −s− 1, . . . , s.

In order to prove this statement, we take the large ρ limit. In this limit a given symmetric

product a2s± with 2m+ plus signs and 2m− = 2 (s−m+) minus signs reduces to a single

basis element V 2s
2(m+−m−). So, the set of all possible symmetric products a2s± span an 2s+1-

dimensional vector space. Consequently the system of equations (3.15) is non-degenerate.

Similarly, increasing the spin by one, one can solve the 2s+ 2 relations:

∂2s+1
± C1

0 = −(a2s+1
±ρ C)

∣∣
V 1
0
, (3.17)

for the 2s+ 2 components

[C2s+2
2m+1] with m = −s− 1, . . . , s, (3.18)

in terms of lower spin components and their ± derivatives.

Summarizing, what we have done is to use the identities:

∂+ = −aρ⋆L, ∂− = −a−ρ⋆R, (3.19)

with left ⋆L and right ⋆R multiplication inside any trace. Notice that in Fourier space

(−i∂t,−i∂φ) = (w, k) the master field (3.4) is an eigenstate of the operators on the right

hand side of (3.19). This will turn out to be a crucial observation, and it will be useful

for later purposes, but for now we just use (3.19) to solve for every component of Cs
ms

with (s,ms) being points in a “semi-lattice” with origin (1, 0) and generated by positive

integral combinations of basis vectors (2, 1) and (2,−1). From now on we will refer to this

particular “semi-lattice” as I and to the corresponding set of components of the master

field C in it as CI .

In exactly the same manner one can show how the set of powers

as+ρ V 2
0 a

s−
−ρ, (3.20)

with s = s+ + s− + 1 spans the complementary “semi-lattice” of spin s+ 1 and projection

ms = −s+ 1,−s+ 3, . . . , s− 3, s− 1 generators. Namely the “semi-lattice” with origin at
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(2, 0) and positive integral combinations of (2, 1) and (2,−1). We refer to it as II, and the

corresponding components of the master field C, CII . More in detail, this means that we

can solve the s relations:

∂
s+
+ ∂

s−
− C2

0 = (−1)s++s−
(
a
s−
−ρV

2
0 a

s+
ρ C

) ∣∣
V 1
0
, (3.21)

for the set of components in CII with highest spin= s + 1 and projections ms = −s +

1,−s+ 3, . . . , s− 3, s− 1.

• In conclusion, equations (3.15)–(3.18) and (3.21) allow to solve for every components

of CI and CII in terms of C1
0 and C2

0 and their derivatives along ± directions.

Finally, the V 1
0 -dρ component of (3.1) gives C2

0 ∼ ∂ρC
1
0 and the V 2

0 -dρ component

of (3.1) will determine the differential equation D2C
1
0 = 0 with

D2 = �−
(
λ2 − 1

)
, (3.22)

being the Klein Gordon operator in the BTZM=−1 background, for a scalar field with mass

squared λ2 − 1.

Now we go back to our case ν0 = 1
2 νi>0 = 0. Here the t component of (3.1) is the

same as for the BTZM=−1 case and so we use it as before

∂tC
s−1
ms+1 = Cs

ms
+ Cs

ms+2 + . . . , (3.23)

to solve for the highest spin, with the lowest spin projection components (s,ms). The dots

refer to components with lower total spin and we have omitted precise factors. That is,

we solve for all components in CI and CII in terms of the line of highest weight and its

contiguous next-to-highest weight components, namely:

Cs+1
s and Cs+2

s with s = 0, . . . ,∞. (3.24)

Next, ∂φ ∼ a1+s̃Max + lower powers, and therefore from (3.14) one can prove that the

use of the dφ component of the equations (3.1) reduces the set of independent elements

in (3.24) to:

Cs+1
s and Cs+2

s with 0 ≤ s ≤ smax, (3.25)

with smax +1 being at most s̃max +1, the maximum value of the power in the polynomials

(P (a), P̄ (a)), that determines the φ component of the connections (Aφ, Āφ). Notice that

for some configurations in (2.14) there are degeneracies and the number of independent

components decreases in those cases. In fact smax determines the degree of the differential

equation for C1
0 (or equivalently the number of ρ-components one has to use to close the

system) to be given by 2 (smax + 1), after the ρ components of the equations of motion

are imposed.
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3.1 Solving the matter equations of motion

In this subsection we show how to proceed for the simplest cases, and later on we prove

in general that the equations of motion for scalars in (2.14), can be expressed in terms

of simpler building blocks. Let us start by explicitly exhibiting the solutions for mat-

ter fluctuations in the case of the backgrounds with µ3 6= 0. Firstly, we determine the

differential equation for C1
0 by using the procedure outlined in the last paragraph of the

previous section. In this case smax = 1 and we get a differential equation for C1
0 with

degree 2(smax + 1) = 4 in ρ. It is convenient to Fourier transform from (φ, t) to (k, ω) for

the fileds Cs
m:

Cs
m[ρ, t, φ] = eiωteikφCs

m[ρ]. (3.26)

The final form of the equation for C1
0 is given in (D.2), here we will be somewhat schematic.

After the change of coordinates ρ = tanh−1 (
√
z)7 and the following redefinition of the de-

pendent variable C[z] = z
−iω
2 (1−z)

1−λ
2 G[z] one gets a new form for the original differential

equation:

D4G[z] = 0. (3.27)

The differential operator D4, whose precise form is given in (D.2), has three regular singu-

larities at 0,1 and ∞ with the following 4× 3 = 12 characteristic exponents:

αI
0 = (0, iω) αI

1 = (0, λ) α∞ = (δ+− , δ
+
+)

αII
0 = (1, 1 + iω) αII

1 = (1, 1 + λ) α̃∞ = (δ−− , δ
−
+),

where:

δ++ = 1−λ
2 + δ+0 (µ3), δ+− = 1−2iω−λ

2 − δ+0 (µ3),

δ−+ = 1−λ
2 + δ−0 (µ3), δ−− = 1−2iω−λ

2 − δ−0 (µ3), (3.28)

and:

δ±0 (µ3) =
−3±

√
9−36iµ3(ω+k)+12µ2

3(λ
2−1)

12µ3
. (3.29)

Notice that δ+0 is regular in the limit of vanishing µ3 whereas δ−0 is not.

For a Fuchsian differential equation of order n with m regular singular points the sum

of characteristic exponents is always (m − 2) × n(n−1)
2 [27]. It is easy to check that in

our case n = 4, m = 3 the sum of characteristic exponents is indeed 6. An interesting

case is when n = 2 and m = 3 in that case one has m × n = 6 characteristic exponents

whose sum equals 1. Conversely, it is a theorem that any set of 6 numbers adding up to

1 defines a unique Fuchsian operator of order n = 2 with m = 3 regular singular points.

It is also a theorem that such a sextuple of roots defines a subspace of solutions that

carry an irreducible representation of the monodromy group of Dn and hence a factor

D2 [27]. Namely:

Dn = DL
n−2D

R
2 , (3.30)

7Notice that this implies that z lies in the positive real axis. The coordinate z used in this section,

should not be confused with the dynamical critical exponent z introduced before, below equation (2.22).

Our apologies for the confusion that this abuse of notation could create.

– 14 –



J
H
E
P
1
1
(
2
0
1
4
)
0
1
3

and DL
n−2 is also Fuchsian and the L and R denote the left and right operator, respectively,

in the factorisation.

Before proceeding, let us review some facts that will be used in the following [27, 28].

The most general form of a Fuchsian differential operator D2 once the position of the

regular singular points are fixed at 0, 1,∞ and a pair of characteristic exponents is fixed

to zero, is:

D2 ≡ y(y − 1)
d2

dy2
+ ((a+ b+ 1)y − c)

d

dy
+ ab. (3.31)

The characteristic exponents are:

α0 = (0, 1− c), α1 = (0, c− a− b), α∞ = (a, b). (3.32)

The kernel of D2 is generated by the linearly independent functions:

u1(a, b, c|z) ≡ 2F1(a, b, c|z),
z1−cu2(a, b, c|z) ≡ z1−c

2F1(a+ 1− c, b+ 1− c, 2− c|z), (3.33)

which are eigenstates of the monodromy action at z = 0. The second solution is indepen-

dent only when c is not in Z. The monodromy eigenstates at z = 1 are:

ũ1(a, b, c|z) ≡ 2F1(a, b, 1 + a+ b− c|1− z),

(1− z)c−a−bũ2(a, b, c|z) ≡ (1− z)c−a−b
2F1(c− a, c− b, 1 + c− a− b|1− z). (3.34)

when c− a− b is not in Z. In a while we will see that c− a− b = λ.

Our operator D4 does have the properties mentioned in the paragraph before (3.30).

In fact each one of the set of characteristic exponents:

(
αI
0, α

I
1, α∞

)
,

(
αI
0, α

I
1, α̃∞

)
, (3.35)

adds up to 1, and hence defines the second order Fuchsian operators:

DR
2 : a = δ++(µ3), b = δ+−(µ3), c = 1− iω,

D̃R
2 : a = δ−+(µ3), b = δ−−(µ3), c = 1− iω. (3.36)

As a result D4 has two independent factorizations:

D4 = DL
2D

R
2 and D4 = D̃L

2 D̃
R
2 , (3.37)

as one can check explicitly. Consequently we have:

kerD4 = kerDR
2

⊕
kerD̃R

2 , (3.38)

where kerDR
2 is given by the hypergeometric functions u1 and u2 given in (3.33), with

the parameters a, b and c defined in (3.36). This proves that the fluctuation equation

in the background µ3 6= 0 is solved in terms of four linearly independent hypergeometric

functions, which, from now on we refer to as “building blocks”.
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One can explicitly verify this factorization pattern for the next background, with

µ3, µ5 6= 0. In this case sMax = 3 and the corresponding differential operator D8, has

order 8, and is again Fuchsian with 3 regular singularities in the z coordinate system pre-

viously defined (we always place them at 0, 1 and ∞). The characteristic exponents are:

αI
0 = (0, iω) αI

1 = (0, λ) αI
∞ = (δ++

− , δ++
+ )

αII
0 = (1, 1 + iω) αII

1 = (1, 1 + λ) αII
∞ = (δ+−

− , δ+−
+ )

αIII
0 = (2, 2 + iω) αIII

1 = (2, 2 + λ) αIII
∞ = (δ−+

− , δ−+
+ )

αIV
0 = (3, 3 + iω) αIV

1 = (3, 3 + λ) αIV
∞ = (δ−−

− , δ−−
+ ),

where for each of the couples of exponents α∞ the following property holds: δ±±
+ (µ3, µ5)+

δ±±
− (µ3, µ5) = 1−iω−λ. As a consequence there are four triads of characteristic exponents

whose sums equal 1:

(
αI
0, α

I
1, α

I
∞
)
,
(
αI
0, α

I
1, α

II
∞
)
,

(
αI
0, α

I
1, α

III
∞
)
,
(
αI
0, α

I
1, α

IV
∞
)
. (3.39)

Each of them defines a second order “Hypergeometric operator” as in (3.36):

DI R
2 , DII R

2 , DIII R
2 and DIV R

2

such that

kerD8 = kerDI R
2

⊕
kerDII R

2

⊕
kerDIII R

2

⊕
kerDIV R

2 .

In fact there is a simple way to prove that the above pattern generalises, showing

that the solutions of our higher order differential equations can be expressed in terms of

ordinary hypergeometric functions, for all of the representatives in (2.14). The point is to

use the fact that the Fourier components C(ω, k) of the full master field C(t, x) defined

by the arbitrary polynomial Pφ and P̄φ, are eigenstates of the operators in the right hand

side of:

∂t =
−aρ ⋆L +a−ρ⋆R

2
,

∂φ = −
(aρ
2

+ Pφ(aρ)
)
⋆L −

(a−ρ

2
− P̄φ(a−ρ)

)
⋆R, (3.40)

with eigenvalues (iω, ik) respectively. The same can be said of the trace component C1
0 (ω, k)

but in this case, the left and right multiplication are equivalent by cyclic property of the

trace. As the operators on the right hand side of (3.40) are polynomials in a±ρ, they share

eigenvectors with the latter. But as we pointed out around (3.19):

i(ω′ + k′)CBTZ(ω
′, k′) = −aρ ⋆L CBTZ(ω

′, k′),

i(k′ − ω′)CBTZ(ω
′, k′) = −a−ρ ⋆R CBTZ(ω

′, k′), (3.41)

where CBTZ is the master field for the BTZM=−1 connection. So from (3.40) and (3.41) it

follows that:

C1
0 (ω, k) = C1

0BTZ(ω
′, k′), (3.42)

– 16 –



J
H
E
P
1
1
(
2
0
1
4
)
0
1
3

where (ω′, k′) are any of the roots of the algebraic equations:

iω = iω′,

ik = ik′ −
(
Pφ(−i(ω′ + k′))− P̄φ(−i(k′ − ω′))

)
. (3.43)

Relations (3.42) imply that the differential equation for C1
0 in the class of ansätze (2.14)

is always integrable in terms of hypergeometric functions 2F1. The number of linearly

independent modes being given by twice the order of the algebraic equations (3.43), which

can be checked to be, 2(sMax+1). Here sMax+1 coincides with the order of the polynomial

equation (3.43) for k′ in terms of (ω, k).

Summarising, the most general solution for fluctuations in (2.14) is:

C1
0 (ω, k) =

∑

r

ei(ωt+kφ)(1− z)
1−λ
2

(
cinr z

− iω
2 u1(ar, br, 1− iω, z)

+ coutr z
iω
2 u2(ar, br, 1− iω, z)

)
,

ar ≡
i(k′r − ω) + 1− λ

2
, br ≡

−i(k′r + ω) + 1− λ

2
,

(3.44)

where k′r are the roots of (3.43) and r = 1, . . . , 2(sMax + 1).

For later reference we write down (3.44) in terms of monodromy eigenstates at the

boundary z = 1:

C1
0 (ω, k) =

∑

r

ei(ωt+kφ)z
−iω
2 (1− z)

1−λ
2
(
c̃1rũ1(ar, br, 1− iω; z)

+ c̃2r(1− z)λũ2(ar, br, 1− iω; z)
)
. (3.45)

As a check, let us reproduce the first result of this section by using this method. For the

case µ3 6= 0 the equation for k′r are:

ik = ik′r − µ3

(
−(ω + k′r)

2 +
1− λ2

3

)
, (3.46)

whose solutions are:

ik′± = −iω − δ±0 (µ3). (3.47)

This coincides with the solution one obtains from (3.36), as can be seen using the definitions

in the second line of (3.44). We note that only k′+ is smooth in the BTZ limit µ3 to zero.

As an interesting observation, we would like to draw the attention of the reader to the

fact that the boundary conditions for the most general fluctuation (3.44) at the horizon and

boundary, z = 0 and z = 1, respectively, are not affected by the fact that connections (2.14)

and the corresponding background tensor fields g(n), defined as (2.2), do break the original

BTZM=−1 boundary conditions!
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4 Quasi normal modes and bulk to boundary 2-point functions

As anticipated, in this subsection we will further argue that the connections (2.14) describe

a class of black hole configurations. We will do so by showing the presence of Quasi Normal

Modes (QNM). We will compute their spectrum for any representative in (2.14) and, in

particular, more explicitly for the simplest cases discussed in the previous section.

We start by recalling the conditions for quasi normal modes for AdS Black Holes [1]:

they behave like ingoing waves at the horizon, z = 0 and as subleading modes at the

boundary z = 1. In the language employed before, the quasi normal modes conditions

reduce to ask for solutions with indicial roots α0 = 0 at the horizon z = 0, and α1 = λ

at the boundary z = 1. In this section we are considering the region 0 < λ < 1 so that

(1 − z)
(1−λ)

2 is the leading behaviour near the boundary. In terms of the most general

solution (3.44), the ingoing wave condition reads: coutr = 0. The subleading behaviour

requirement implies the quantisation conditions.8

ω ± k′r + i(1 + 2n+ λ) = 0, r = 1, . . . 2(sMax + 1), (4.1)

where n is an arbitrary and positive integer.

We should elaborate about the smoothness of the quasi normal modes at the horizon.

In the Eddington-Finkelstein coordinates v = t−T
2 log(ρ)+. . . and ρ∗ = 4

T 2ρ
2+. . ., see (2.15)

the incoming waves, namely the cinr modes , behave as plane waves eIwv, at leading order

in the near-horizon expansion. In contrast, the coutr modes are not C∞ as they look like

eiωv
(
ρ∗iω

)
. In other words, the requirement of incoming waves at the horizon amounts to

have a smooth solution at the horizon [1].

In our example µ3 6= 0, sMax = 1, there are 2 × 2 branches in the quantisation

conditions (4.1). The associated branches of quasi normal modes being:

ω0
n = −k − i

(
1 + 2n+ λ− 2µ3

3

(
1 + (1 + 2λ)(1 + λ) + 6n(1 + λ) + 6n2

))
,

ω±
n = −1

2 i(1 + 2n+ λ) + δ±(n, µ3), (4.2)

where:

δ±(n, µ3) =
−i±

√
−1 + 8(1 + 2ik + 2n+ λ)µ3 − 16(λ2−1)µ2

3

3

8µ3
. (4.3)

Before going on, let us briefly mention some relevant issues about the stability of the

branches (4.2). It is not hard to see that for large enough values of k ∈ R at least one

of the branches ω±
n will exhibit a finite number of undamped modes, namely modes with

positive imaginary parts. However for a fixed value of k and µ3 the UV modes (n ≫ 1, k, µ3)

will go like ω±
n ∼ −in and hence will be stable. The branch ω0

n is stable for µ3 < 0. Finally

8 We have the identity 2F1[a, b, c, z] = Γ[c]Γ[a+b−c]
Γ[c−b]Γ[c−a] 2F1[a, b, a + b − c + 1, 1 − z] + (1 −

z)c−a−b Γ[c]Γ[c−a−b]
Γ[b]Γ[a] 2F1[c − a, c − b, c − a − b + 1, 1 − z] [28]. The quantisation condition (4.1) is equiv-

alent to c− a = −n and c− b = −n respectively. These choices guarantees that the first term on the r.h.s.

of the previous identity vanishes. Indeed, this is the term that carries the leading behaviour of the field at

the boundary.
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notice also that (ω0
n, ω

+
n ) become the left and right moving branches of the BTZM=−1 case,

in the limit of vanishing µ3, whereas ω
−
n is not analytic in that limit.

We have 2×2(sMax+1) independent solutions (cin, cout)r in (3.44). Each block r repre-

sents an independent degree of freedom and a general fluctuation in the background (2.14)

can be re-constructed as a combination of them. So, for the moment we restrict our analysis

to a given sector, let us say the block r.

In order to define the bulk to boundary 2-point function we set c̃2r = 0 in (3.45), cor-

responding to the solution with the leading behaviour (1− z)
1−λ
2 at the boundary. We will

further fix c̃1r = 1, to guarantee independence on ω and k of the leading term in the expan-

sion of the solution near the boundary, in such a way that its Fourier transform becomes

proportional to δ(2)(t, φ) at the boundary, which is the usual UV boundary condition in

coordinate space. As a result, in Fourier space, the bulk to boundary 2-point function of

the block of solutions r is given by:

G(2)
r (ω, k, z) ≡ ũ1(ar, br, 1− iω; 1− z). (4.4)

After Fourier transforming back in (t, φ) space and using the ρ coordinate one gets prelim-

inary:

G(2)
r (t, φ, ρ) = Jr(−i∂t,−i∂φ)

(
G

(2)
BTZ(t, φ; ρ) + δG(2)

r (t, φ, ρ)
)
. (4.5)

We stress that (4.5) obeys the boundary condition:

G(2)
r (t, φ, ρ) → δ(2)(t, φ), when ρ → ∞. (4.6)

The quantity:

Jr(ω, k) ≡
1

∂k′r(ω,k)
∂k

ei
(
k−k′r(ω,k)

)
φ,

is the product of the Jacobian from the change of variables from k to k′r times an exponential

contribution. For our specific case:

Jr(ω, k) =
(
1 + 2iµ3δ

±
0 (ω, k)

)
ei
(
k−k′r(ω,k)

)
φ. (4.7)

The quantity:

G
(2)
BTZ(t, φ, ρ) = −λ

π

(
e−ρ

e−2ρ coshx+ coshx− + sinhx+ sinhx−

)1−λ

, (4.8)

is the bulk to boundary 2-point function for BTZM=−1. Notice that (4.8) is smooth in

the near-horizon expansion as its leading contribution is independent of t. We note that

the contributions coming from G
(2)
BTZ to (4.5) are also smooth at the horizon provided the

Taylor expansion of Jr(w, k) around (ω, k) = 0 starts with a constant or an integer power

of k. This is always the case, as one can infer from (3.43) that Jr = 1 + O(µ3), as in the

particular case (4.7).

Finally δG
(2)
r is a contribution that comes from the deformation of the countour of

integration that follows from the change k → k′r . The change of variable from k to
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k′r(ω, k) deforms the real line R to a contour Cr,ω ≡ k′r(R, ω). Integration over the contours

k′r ∈ R and k′r ∈ Cr,ω (followed by integration over ω ∈ R) of the integrand

eik
′
rφ+iωtũ1(ar, br, 1− iω; 1− z),

differ by the quantity δG
(2)
r (t, φ, z). This quantity can be obtained imposing the condi-

tion (4.6). In Fourier space (ω, k′r) It reads:

δG(2)
r (ω, k′r, z) =

(
∂k′r
∂k

− 1

)
ũ1(ar, br, 1− iω; 1− z).9 (4.9)

Finally, (4.5) takes the form:

G(2)
r (t, φ, ρ) = e−

(
ik′r(−i∂t,−i∂φ)−∂φ

)
φG

(2)
BTZ(t, φ, ρ).

10 (4.10)

For the same reasons explained before (4.10) is smooth at the horizon, namely its leading

behaviour is independent on t.

Notice that periodicity under t → t + 2πi is preserved by all building blocks (4.10).

The preservation of thermal periodicity comes after imposing the BTZ holonomy condition

on (2.14). It is a global statement in the sense that is determined by the exponentiation

properties of the algebra. Namely the gauge group elements generating the family (2.14)

with ν0 =
1
2 , νi>0 = 0:

g = e−ρV 2
0 e−

a
2
t−(a

2
+Pφ(a))φ,

ḡ = eρV
2
0 e−

a
2
t+(a

2
−P̄φ(a))φ, (4.11)

are thermal periodic due to the fact iπa exponentiates to the center of the group whose

Lie algebra is hs(λ) [23].

4.1 Making contact with other relevant backgrounds

In this section we perform the gauge transformations (2.24) and (2.26) taking our back-

grounds to the GK (BHPT2) ones. As already said, the backgrounds to be transformed

have critical exponent z < 1. Here we will focus in performing gauge transformations (2.24)

and (2.26) on the scalar fluctuations for µ̄3 = −µ3 6= 0 and we will explicitly verify that

they solve the equation of motion for matter fluctuations in the GK (BHPT2) backgrounds.

The analysis will be done perturbatively, to first order in a µ3 expansion.

To this purpose we introduce the series expansion:

C =

∞∑

i=0

µi
3

(i)

C, (4.12)

9Notice that the quantity δG
(2)
r (ω, k′

r, z) ( as G
(2)
BTZ(ω, k

′

r, z)) is in the kernel of the BTZ Klein-Gordon

operator D2(ω, k
′

r, z).
10We note that the φ in the exponential (4.10) is located to the right of the derivatives.
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for the master field in equations (3.1) with the connections (A, Ā) given by (2.23), (2.25)

and (2.27). Taking the µi
3 component of (3.1):

(d+
(0)

A ⋆L −
(0)

Ā⋆R)
(i)

C = −
i∑

j=1

(
(j)

A ⋆L −
(j)

Ā⋆R)
(i−j)

C , i = 0, . . . , ∞, (4.13)

where
(j)

A is the coefficient of µj
3 in the Taylor expansion of A about µ3 = 0. Notice that

if
(i)

C is a particular solution of (4.13), then
(i)

C + constant
(0)

C is also a solution. This is in

fact the maximal freedom in defining
(i)

C and it constraints the form of the “folded” version

of (4.13) to be of the form:

D2

(0)

C1
0 = 0, i = 0,

D2

(i)

C1
0 =

(i)

D

(
(0)

C1
0 , . . . ,

(i−1)

C1
0

)
, i = 1, . . .∞, (4.14)

where the differential operator D2 is the BTZ Klein-Gordon operator (3.22) and
(i)

D is a

linear differential operator in ρ that we shall find out explicitly when analysing up to first

order in µ3.

Let us write down the connections (2.14) with µ3 = −µ̄3 6= 0 as:

Aours =
(0)

A + µ3

(1)

Aours, Aours =
(0)

A + µ3

(1)

Aours. (4.15)

The full answer C1
0 ours is defined as the building block r in (3.44) with k′r, given by the

root (C.2) of equation (C.1) which is the analytic solution in the limit µ3 to zero. By

using the folding method one can check until arbitrary order in i that (4.14) works for the

expansion coefficients
(i)

C ours. Here we restrict to the i = 1:

D2

(1)

C1
0 ours =

(1)

Dours

(0)

C1
0 , (4.16)

where:
(1)

Dours =
16ike2ρ

(
1
3(λ

2 − 1) + k2 + w2
)

(e2ρ + 1)2
. (4.17)

Let us solve (4.16). We can expand in series the solution for C1
0 ours (3.44), but we will use

gauge covariance instead. From the use of the transformation laws:

Aours = eΛoursAe−Λours + eΛoursd e−Λours ,

Āours = eΛ̄oursĀe−Λ̄ours + eΛ̄oursd e−Λ̄ours , (4.18)

at linear order, with:

Λours = −φPφ(aρ), Λ̄ours = −φP̄φ(a−ρ), (4.19)
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and C1
0 ours =

(
(eΛours−Λ̄ours)

(0)

C1
0

)∣∣∣∣
V 1
0

, for the case µ3 = −µ3 6= 0 in Fourier space, it

follows that:

(1)

C1
0 ours = −i∂k

(
(a2ρ + a2−ρ − trace)

(0)

C

)∣∣∣∣
V 1
0

= −i

(
2

3
(1− λ2)− 2(k2 + w2)

)
∂k

(0)

C1
0 + . . . , (4.20)

where the . . . in (4.20) stand for terms that are proportional to
(0)

C1
0 and hence are in the

kernel of D2.

To check that (4.20) is solution of (4.16) it is enough to check that:

[
i

(
2

3
(1− λ2)− 2(k2 + w2)

)
∂k, D2

]
=

(1)

Dours, (4.21)

by using (D.1) or to notice that (4.20) coincides with the first order coefficient in the

Taylor expansion around µ3 = 0 of the corresponding solution C1
0 ours which is given by

( ∂k′

∂µ3
∂k′C

1
0 ours)|µ3=0 =

∂k′

∂µ3
|µ3=0∂k

(0)

C1
0 .

Next, we truncate the GK background at first order in µ3 and after following the

procedure we can explicitly show again that the form (4.14) holds until i = 1.11 Here we

just present the i = 1 equation:

D2

(1)

C1
0GK =

(1)

DGK

(0)

C1
0 . (4.22)

The expression for
(1)

DGK is given in (D.3). We should stress again that (4.22) refers only to

fluctuations over the GK ansatz that are analytic when µ3 goes to zero. Finally we check

explicitly that the transformed fluctuation:

(1)

C1
0GK =

(1)

C1
0 ours +

(
(
(1)

ΛGK −
(1)

Λ̄GK)
(0)

C

)∣∣∣∣
V 1
0

=
(1)

C1
0 ours −

ik
(
3e2ρ + 5

)

3 (e2ρ + 1)2

(
(
e2ρ − 1

) (0)

C1
0 −

(
e2ρ + 1

)
∂ρ

(0)

C1
0

)
, (4.23)

solves (4.22), after using (4.16) and the i = 0 equation in (4.14). We have then reproduced

the result of [9, 29], by starting from our ansatz.

5 Final remarks

We have presented a family of connections constructed out of arbitrary polynomial com-

binations of the BTZM=−1 connection in hs(λ) × hs(λ) 3D CS theory. Their space time

11We checked it up to i = 2, when the GK background is truncated at second order in µ3.
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tensor fields present smooth horizons. The system of higher order differential equations of

motion for matter fluctuations can be solved in terms of hypergeometric functions related

to the solutions in the BTZ background. This allows to solve explicitly for Quasi Normal

Modes and 2-point functions. As a check, we have made contact with other backgrounds

studied in the literature. Among the open problems that this work leaves unanswered,

we mention the following ones. The first regards the understanding of which (higher spin

?) charges are carried by these backgrounds, or, more generally what is the asymptotic

symmetry algebra associated to them. Recent progresses on this problem for black hole

backgrounds in the Sl(3) CS theory, may allow to get an answer for the cases presented

here. Secondly, one would like to use the results found here for the matter fluctuations,

to solve for more general backgrounds by using appropriate gauge transformations (either

“proper” or “improper” ) carrying our backgrounds to these. Unfortunately, a perturbative

analysis along the lines discussed in this paper seems to be unavoidably beset by singu-

larities at the horizon ρ = 0. It would be interesting to know whether this is an artifact

of the perturbative expansion and if a full non perturbative analysis would be free of such

singularities. This would allow to study quasi normal modes virtually for any black hole

background.

We owe a more detailed study of the properties of the differential operators governing

the propagation of matter in the backgrounds here presented. Perhaps this study could

shed some light on the specific geometrical properties that drive matter propagation in

generic backgrounds with higher spins [23]. Finally, we stress that the same approach we

followed to show the factorisation property, can be implemented for a family of backgrounds

constructed out of polynomials in more general highest weight connections. We hope to

come back to some of these issues in the near future.
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A Conventions

The construction of the hs(λ) algebra can be seen for example in [30]. The algebra is

spanned by the set of generators V s
t with s = 2, . . . ,∞ and 1− s ≤ t ≤ s− 1. The element

V 1
0 denotes the identity operator. To define the algebra we use the ⋆-product representation

constructed in [31]:

V s
m ⋆ V t

n =
1

2

s+t−Max[|m+n|,|s−t|]−1∑

i=1,2,3,...

gsti (m,n;λ)V s+t−i
m+n . (A.1)

– 23 –



J
H
E
P
1
1
(
2
0
1
4
)
0
1
3

With the constants:

gsti (m,n;λ) ≡ qi−2

2(i− 1)!
4F3

[
1
2 + λ 1

2 − λ 2−i
2

1−i
2

3
2 − s 3

2 − t 1
2 + s+ t− i

∣∣∣∣1
]
N st

i (m,n), (A.2)

q = 1
4 and:

N st
i (m,n) =

∑i−1
k=0(−1)k





i− 1

k





(
s−1+m+1

)
k−i+1

(
s−1−m+1

)
−k

(
t−1+n+1

)
−k

(
t−1−n+1

)
k−i+1

.

(A.3)

The (n)k are the ascending Pochhammer symbols. We define trace as:

tr
(
V s
ms

V s
−ms

)
≡ 6

1− λ2

(−1)ms23−2sΓ(s+ms)Γ(s−ms)

(2s− 1)!!(2s− 3)!!

s−1∏

σ=1

(
λ2 − σ2

)
. (A.4)

B Uniqueness of the choice ν0 = 1

2
, νi>0 = 0 for 0 < λ < 1

Here we show how the only solution to the integrability condition (2.21) in the region

0 < λ < 1 is the trivial one n0 = 1. First we write down the first 4× 4 block of the upper

triangular matrix M




1 4(λ2−4)
15

4(λ2−4)(11λ2−71)
315

4(λ2−4)(107λ4−1630λ2+6563)
4725

0
12

∏3
σ=2

√
(λ2−σ2)

5
√
14

4(7λ2−67)
∏3

σ=2

√
(λ2−σ2)

15
√
14

4
∏3

σ=2

√
(λ2−σ2)(893λ4−19090λ2+113957)

2475
√
14

0 0
8
√

5
11

∏5
σ=2

√
(λ2−σ2)

21

80
√

5
11

∏5
σ=2

√
(λ2−σ2)(5λ2−89)
819

0 0 0
32

√

7
5

∏7
σ=2

√
(λ2−σ2)

429




.

(B.1)

The eigenvalues can be checked to be greater or equal than one in 0 < λ < 1. In fact they

grow as the diagonal index i grows. Next we show this excludes the presence of any other

solution. Be the following definition and couple of facts

nO
i ≡ Oi

jn
j , OMTMOT = Diag((M ii)2), OTO = 1. (B.2)

As (M ii)2 ≥ 1 it is clear that

∞∑

i=1

(
(M � n)i

)2
=

∞∑

i=1

(
M ii

)2
(nOi)

2 ≥
∞∑

i=1

nO
2
i =

∞∑

i=1

n2
i ≥ 1. (B.3)

The saturation in (B.3) comes when one of the integers ni is ±1. As (M ii)2 = 1 only if i = 1

thence the only solution to (2.21) is the trivial one. Notice however that our conclusions

do breakdown when we are out of the region 0 < λ < 1. This is, to define a new solution

we just need to tune up λ in such a way that for a given i, M ii = ±1.
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C Solutions with dynamical critical exponent z < 1

Here we study the fluctuations for a specific background with dynamical critical exponent

z < 1. We take as a toy example the case µ̄3 = −µ3 6= 0. The secular polynomial reads

out

ik = ik′r − 2µ3

(
ω2 + k′2r +

λ2 − 1

3

)
, (C.1)

whose roots are

k′± =
−i+

√
−1 + 8ikµ3 − 16

3 (λ2 + 3ω2 − 1)µ2
3

4µ3
. (C.2)

From the quantisation condition (4.1)

w±
1−n = −i

1

2
(1 + 2n+ λ) + δ±1 z<1,

w±
2−n = −i

1

2
(1 + 2n+ λ) + δ±2 z<1, (C.3)

where the ± refer to the ± in (C.2) and the (1, 2) refer to the (+,−) in (4.1) respectively,

and

δ±1 z<1 =
3i∓

√

−1+8(−1+2ik−2n−λ)µ3+
16
3
(5+12n2+6λ+λ2+12n(1+λ))µ2

3

8µ3
,

δ±2 z<1 =
−3i±

√

−1+8(1+2ik+2n+λ)µ3+
16
3
(5+12n2+6λ+λ2+12n(1+λ))µ2

3

8µ3
. (C.4)

We can also study the case µ̄3 = µ3, we get in this case from (3.43):

k′ =
k + 4ikωµ3

1 + 16ω2µ2
3

. (C.5)

We get just one root, which means that after the folding process of section 3, the final

equation obtained is of second order, as can be explicitly checked. The quasi normal

modes in this case are given by:

ω1± =
−i−4i(1+2n+λ)µ3∓

√
−1+8(1−2ik+2n+λ)µ3−16(1+2n+λ)2µ2

3

8µ3
,

ω2± =
−i−4i(1+2n+λ)µ3∓

√
−1+8(1+2ik+2n+λ)µ3−16(1+2n+λ)2µ2

3

8µ3
. (C.6)

In section 2 we have given the metric for these solutions (2.22). Propagation in Lifshitz

metrics with z < 1 is typically associated with the presence of superluminal excitations in

the dual field theory, see for instance [32, 33]. For each one of our blocks r we can make

use of the AdS/CFT dictionary. The dispersion relations for the corresponding physical

excitation, n, is given by the condition for a pole in the retarded 2-point function (4.1) and

the expression for the auxiliary momentum k′r of the given block in terms of k and w are

given in (C.2) and (C.5) respectively. The wavefront velocity vf = limω→∞ ω
kR(ω,n) , [34],

can be computed to be

vf1 = lim
ω→∞

ω

−ω + 4ωµ3 + 8nωµ3 + 4λωµ3
=

1

−1 + 4µ3 + 8nµ3 + 4λµ3
, (C.7)
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vf2 = lim
ω→∞

ω

ω + 4ωµ3 + 8nωµ3 + 4λωµ3
=

1

1 + 4µ3 + 8nµ3 + 4λµ3
. (C.8)

We end up by noticing that for |µ3| ≥ 1
2(1+λ) there are no superluminal modes (|vf | ≤ 1)

in these examples. But for other values there is a finite number of them. However the tale

of large n excitations have all |vf | ≤ 1.

D Differential operators and CBTZ

We present some differential operators that were referenced in the main body of the text.

The Klein Gordon operator in ρ coordinates:

D2 ≡
d2

dρ2
+2(e4ρ+1)

(e4ρ−1)
d
dρ

+ (1−λ2)(e8ρ−1)
(e4ρ−1)2

− 2(2(k2−ω2)(e2ρ+e6ρ)+λ2−1−e4ρ(4k2+4ω2+λ2−1))
(e4ρ−1)2

.

(D.1)

The operator D4 for the background µ3 6= 0

D4(z) ≡ ∂4
z − 2iw(z−1)+2(λ−4)z+4

(z−1)z ∂3
z +

(
−3(z−1)z+6iµ3(z−1)z(k+2w)

12µ2
3(z−1)2z2

−3w2(z−1)2−9iw(z−1)((λ−3)z+1)+z((λ−18)λ−(λ−4)(4λ−11)z+44)−6
3(z−1)2z2

)
∂2
z

+ (w(z−1)−i((λ−2)z+1))(6kµ3+4µ3(3w+(λ−2)µ3(3w−i(λ−4)))+3i)
12µ2

3(z−1)2z2
∂z

− (−i(λ−1)(2(λ−2)µ3+3)+3k+3w)(−i(λ−1)(2(λ−2)µ3−3)+3k+12iµ3w
2+3w(4(λ−1)µ3−1))

144µ2
3(z−1)2z2

.(D.2)

The differential operator
(1)

DGK that we make reference to in section (4.1)

D
(1)
GK =

64ie2ρ(3e2ρ − 1)k

(e2ρ − 1)2(1 + e2ρ)3(λ2 − 1)

d

dρ

+
8k
(
1−11k2−ω2−λ2+e6ρ(−7k2+3ω2−5λ2−11)

(e2ρ−1)3
+ e4ρ(3k2 + 9ω2 + λ2 − 1)

)

−ie−2ρ(1 + e2ρ)4(λ2 − 1)

+
8k
(
e8ρ(42ω2+6k2+2λ2−2)+e4ρ(29−15k2+59ω2+3λ2)+e2ρ(27k2+25ω2+λ2−17)

(e2ρ−1)3

)

−ie−2ρ(1 + e2ρ)4(λ2 − 1)
. (D.3)

Finally, we give the master field C for the BTZM=−1 background up to spin 4. We

have used the Fourier basis (3.26) and redefined C1
0 ≡ C:

C2
±1 =

6ieρ
(
∓(e2ρ − 1)k + (e2ρ + 1)ω

)
C[ρ]

(e2ρ − 1)(e2ρ + 1)(λ2 − 1)
, (D.4)

C2
0 = − 6C ′[ρ]

λ2 − 1
, (D.5)

C3
0 =

30
(
6(k2−ω2)(e2ρ+e6ρ)

λ2−1
+ 1 + e8ρ − 2e4ρ(6k

2+6ω2

λ2−1
+ 1)

)
C[ρ]

(e4ρ − 1)2(λ2 − 4)

− 90(e8ρ − 1)C ′[ρ]
(e4ρ − 1)2(4− 5λ2 + λ4)

, (D.6)
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C3
±1 =

(
∓(e3ρ−eρ)
(1+e2ρ)2

k + ω
(e3ρ+eρ)
(e2ρ−1)2

)
C[ρ] +

(
±eρ

(1+e2ρ)
k − eρ

(e2ρ−1)
ω
)
C ′[ρ]

(4−5λ2+λ4)
60i

, (D.7)

C3
±2 = −

30
(

∓eρ

(e2ρ+1)
k + eρ

(e2ρ−1)
ω
)2

C[ρ] + 30e2ρ

(e4ρ−1)
C ′[ρ]

(4− 5λ2 + λ4)
(D.8)

C4
0 =

(
(e2ρ + 4e6ρ + e10ρ) (k

2−ω2)
λ2−1

+
(
1+e12ρ

8 − (e4ρ + e8ρ)(3k
2+3ω2

λ2−1
+ 1

8)
))

C[ρ]

(e4ρ−1)3(λ2−9)(λ2−4)
5600

−

(
(e2ρ + e6ρ)(k2 − ω2) + (1+e8ρ)(11+λ2)

10 − 2e4ρ(k2 + ω2 + λ2−29
10

)
C ′[ρ]

(e4ρ−1)2(λ2−9)(λ2−4)(λ2−1)
42000

,

(D.9)

C4
±1 =



±k
(
(1+λ2)(1+e8ρ)

5 − (e2ρ + e6ρ)(2 + ω2)− 2e4ρ(ω2 + λ2−9
5 )

)

ie−ρ(e2ρ−1)2(e2ρ+1)3(λ2−9)(λ2−4)(λ2−1)
2100

+
±e2ρk3 − e2ρ

(e2ρ+1)
(e2ρ−1)

k2ω − (e2ρ+1)3

(e2ρ−1)3
ω
(
(1+λ2)(1+e4ρ)

5 + e2ρ(8−5ω2−2λ2)
5

)

ie−ρ(e2ρ+1)3(λ2−9)(λ2−4)(λ2−1)
2100


C[ρ]

−
2(e2ρ − 1)

(
±(e2ρ − e4ρ + e6ρ−1

2 )k − (e2ρ + e4ρ + e6ρ+1
2 )ω

)
C ′[ρ]

ie−ρ(e2ρ+1)2(λ2−9)(λ2−4)(λ2−1)
2100

, (D.10)

C4
±2 = −420e2ρ

(±8kω + (1− λ2 ∓ 4kω + 4ω2)(1 + e8ρ) + 2e4ρ(1 + 20ω2)

(e4ρ − 1)3(λ2 − 9)(λ2 − 4)(λ2 − 1)

+

(
20e4ρ − 12(e2ρ + e6ρ) + 2(1 + e8ρ)

)
(k2 − ω2)

(e4ρ − 1)3(λ2 − 9)(λ2 − 4)(λ2 − 1)

)
C[ρ]

+420e2ρ
(
±4kω − 2e2ρ(k2 − ω2) + (1 + e4ρ)(k2 ∓ 2kω + ω2 − 4)

)
C ′[ρ]

(e4ρ − 1)2(λ2 − 9)(λ2 − 4)(λ2 − 1)
,

(D.11)

C4
±3 =

(
±k(3ω2+e4ρ(3ω2−2)+e2ρ(4+6ω2)−2)

(e2ρ−1)2
± k3 − 3(1+e2ρ)k2ω

e2ρ−1
− (1+e2ρ)3ω(ω2−2)

(e2ρ−1)3

)
C[ρ]

−ie−3ρ(e2ρ+1)3(λ2−9)(λ2−4)(λ2−1)
140

+

(
±(e2ρ − 1)k − (1 + e2ρ)ω

)
C ′[ρ]

−ie3ρ(e4ρ−1)3(λ2−9)(λ2−4)(λ2−1)
420

. (D.12)

The primes stand for derivative along ρ, and one can recover the result in coordinate

space (t, φ) by replacing k → −i∂φ and ω → −i∂t. Notice that all these higher spin

components are generically singular at the horizon.
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