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Abstract In this article, we automatically create two large and richly annotated data

sets for studying the English dative alternation. With an intrinsic and an extrinsic

evaluation, we address the question of whether such data sets that are obtained and

enriched automatically are suitable for linguistic research, even if they contain errors.

The extrinsic evaluation consists of building logistic regression models with these data

sets. We conclude that the automatic approach for detecting instances of the dative

alternation still needs human intervention, but that it is indeed possible to annotate the

instances with features that are syntactic, semantic and discourse-related in nature.

Only the automatic classification of the concreteness of nouns is problematic.

Keywords Automatic annotation � Intrinsic and extrinsic evaluation �
Syntactic alternation � Dative alternation � Logistic regression

1 Introduction

Much effort has been—and continues to be—put into developing corpora to provide

linguists with suitable data in sufficient quantities to perform their research. Still, for

many types of research the availability of data remains an issue: even when
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numerous corpora are available, most of these are too small and/or have not been

annotated with the required information. This means that linguists often have to

extend the data and, while doing so, somehow have to provide the necessary

annotations. This often involves costly manual labour. It might also involve

acquiring copyright for the new data, since, ideally, the additional data and

annotations should be made available to other researchers: only then will it be

possible to verify any results of experiments based on these data. A possible

approach to creating sufficiently large sets of suitable data that can also be accessed

by other researchers is to make use of already existing corpora and provide what

additional linguistic information is required automatically, employing computa-

tional tools. In this article, we address the question: Is data that is obtained and

annotated automatically suitable for linguistic research, even if the data may contain

a certain proportion of errors? We investigate this by focussing on a specific

linguistic task considering syntactic alternation: modelling the dative alternation.

In syntactic alternations, speakers and writers have several syntactic options that are

equally grammatical, but where usually one particular variant is considered to be more

appropriate in a given context. For instance, speakers of English can choose between the

s-genitive, as in John’s dog, and the of-genitive, in the dog of John (e.g. Rosenbach

2003). Researchers have suggested many factors that may influence the choice of a

construction in syntactic alternations. These are syntactic (complexity, person, number,

etc.), semantic (e.g. animacy, concreteness) and discourse-related (e.g. discourse

givenness, structural parallelism) in nature. Research directed at syntactic alternations

therefore needs various levels of annotation in order to be successful.

To address the question of whether automatic annotation of data affects linguistic

models, we consider a well-studied type of syntactic alternation: the dative

alternation. The dative alternation occurs in various languages, for example in

English (e.g. Bresnan et al. 2007), Dutch (e.g. Colleman 2006), Greek (e.g.

Anagnostopoulou 2005), Spanish (e.g. Beavers and Nishida 2010) and Brazilian

Portuguese (e.g. Gomes 2003). In this article, we take the dative alternation with to
in English as a case study.1 The two syntactic constructions available in this

alternation are the prepositional dative construction with to (example 1) and the

double object construction (example 2).

1. The evil queen gives the poisonous apple to Snow White.

2. The evil queen gives Snow White the poisonous apple.

The English dative alternation has been studied by many researchers (e.g. Quirk et al.

1972; Collins 1995; Gries and Stefanowitsch 2004). More recently, a line of research has

emerged which successfully combines the largely complementary theories advanced by

these authors. Bresnan et al. (2007) and Theijssen (2010) have built logistic regression

models that predict the construction used on the basis of features at different levels: the

animacy of the recipient (Snow White in the example), the concreteness of the theme (the
poisonous apple), the definiteness of the recipient and the theme, the discourse givenness

1 English also allows alternations with prepositions other than to, for instance with for (also referred to as

the ‘benefactive alternation’). In this article, ‘dative alternation’ and ‘prepositional dative’ always refer to

the variant with to only, unless explicitly indicated otherwise.
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of the recipient and the theme, the length difference between the theme and the recipient

(in terms of the number of words), the number of the recipient and the theme, the person

of the recipient and the pronominality of the recipient and the theme. The regression

models can predict over 90% of the instances correctly, using manually annotated data.

The models show that animate objects tend to be placed before inanimate objects,

concrete before abstract, definite before indefinite, discourse-given before discourse-

new, shorter before longer, etc.

The previous research has resulted in two data sets that have been created in a

way many linguists create their data sets: Researchers extracted as many candidates

as possible from corpora that contain manually checked syntactic parses. All

candidates were manually checked and manually annotated with the features

required (Bresnan et al. 2007; Theijssen 2010). We employ these traditionally
established data sets in different ways. We will use the data set in Theijssen (2010)

as a development and analysis set: to optimise the algorithms, and to evaluate the

errors made by them. We will refer to this set as ICE-TRAD since the instances were

extracted from the British component of the ICE corpus (ICE-GB, Greenbaum

1996). The data set established by Bresnan et al. (2007) is next used as a separate

test set, for the purpose of quantitative evaluation only. It is taken from the

Switchboard corpus of American telephone dialogues (Godfrey et al. 1992), and

will be referred to as SWB-TRAD from now on.

The goal of this paper is to evaluate the quality of two data sets that we extract

from the same corpora, but automatically: ICE-AUTO and SWB-AUTO. The procedure

for automatically creating annotated data sets consists of two steps: finding

instances of the dative alternation, and enriching them with the desired information.

Both steps will be elaborately described further on in this article, and they are

evaluated independently in intrinsic evaluations. In order to establish the effect of

the automatic procedure on our conclusions in linguistic research, we also need an

extrinsic evaluation. We therefore evaluate the suitability of ICE-AUTO and SWB-

AUTO by building new regression models on these sets and comparing the results to

the models found for ICE-TRAD and SWB-TRAD.

The remainder of this article is organised as follows: Sect. 2 give a brief description of

the two traditional data sets ICE-TRAD and SWB-TRAD. The automatic detection of

instances is next described and intrinsically evaluated in Sect. 3, the automatic annotation

of these instances in Sect. 4. The extrinsic evaluations are presented and discussed in

Sect. 5. A general discussion and our final conclusion can be found in Sects. 6 and 7.

2 Traditional data

As development data, we employ the traditional data set in Theijssen (2010),

ICE-TRAD. It consists of instances found in the British component of the ICE Corpus

(ICE-GB, Greenbaum 1996). The ICE-GB corpus contains spoken and written

British English in various genres, as can be seen in Table 1. The corpus can be

obtained from the Survey of English Usage.2

2 See http://www.ucl.ac.uk/english-usage/projects/ice-gb.
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The procedure for establishing ICE-TRAD was as follows. First, candidate

sentences were automatically extracted from the corpus, making use of its manually

checked syntactic parses. Next, all candidate sentences found were manually

checked. This was especially necessary for the prepositional dative instances, since

the syntactic annotation of the ICE-GB corpus does not distinguish between

different types of prepositional phrases at the clause level. This means that

sentences like example 3, in which the prepositional phrase is a locative, are also

found, and should be filtered out manually. The resulting data set contains 930

instances in spoken and written British English. The number of instances and of

different verb types in each subgenre of the corpus can be found in Table 1. The

majority construction is the double object construction, with a relative frequency of

72.3% (672/930). With respect to medium, the proportion of instances in spoken

data is highest: 60.0% (558/930).

3. Fold the short edges to the centre. (ICE-GB W2D-019 144:1)

As a test set, we employ the traditional Switchboard set (SWB-TRAD), a set of 2,349

instances, being a corrected version of the original set described in Bresnan et al.

(2007).3 The Switchboard corpus consists of spoken telephone dialogues in

American English (Godfrey et al. 1992) and can be obtained from the Linguistic

Table 1 Number of double object constructions (d.obj), prepositional dative constructions (p.dat), total

number of constructions (tot), and verb types (vb) per subgenre in the ICE-GB Corpus

Medium Genre Subgenre d.obj p.dat tot vb

W (200) Non-printed (50) Non-prof. writing (20) 11 3 14 7

Correspondence (30) 93 32 125 29

Printed (150) Academic writing (40) 19 13 32 13

Non-acad. writing (40) 35 13 48 15

Reportage (20) 30 18 48 18

Instructional writing (20) 25 10 35 8

Persuasive writing (10) 8 8 16 6

Creative writing (20) 45 9 54 18

266 106 372 51

S (300) Dialogues (180) Private (100) 151 49 200 20

Public (80) 116 41 157 25

Monologues (100) Scripted (70) 101 33 134 22

Unscripted (30) 26 20 46 11

Mixed (20) 12 9 21 9

406 152 558 43

Total (approx. 1M words) 672 258 930 65

The number of corpus samples in the subgenres is given in brackets (each containing approx. 2,000

words)

The italics are used to indicate the subtotals per medium (spoken/written)

3 We thank Prof. Joan Bresnan for sharing this data set with us.
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Data Consortium.4 For details about the extraction of this data set, we refer to

Bresnan et al. (2007). SWB-TRAD consists of 1,850 instances with a double object

construction (78.8%), and 499 with a prepositional dative construction. The number

of different verb types is 38.

Some verbs have a clear bias towards one of the two constructions, as can be seen in

Table 2. In the top part, we see the verbs that show a bias towards the double object

construction: tell, teach, give, show, offer and send. The bottom shows that the verb sell
prefers the prepositional dative construction. For the verbs in the middle, the

alternation differs in the two data sets (lend, do, cause, pay and bring) or the verb only

occurs in one of these data sets (cost, take). The Table thus reveals that the two data sets

were established with different conditions: SWB-TRAD includes instances with cost and

take, while they were not kept as instances in ICE-TRAD.5

Both ICE-TRAD and SWB-TRAD have been manually annotated, for 12 features

taken from Bresnan et al. (2007), as summarised in Table 3. Most features describe

characteristics of the theme and the recipient in the construction. Some of the

characteristics, however, are only established for either the recipient or the theme.

Previous research (Bresnan et al. 2007) has shown that for some features, the theme

and recipient are too biased towards one of the two values: themes are hardly ever

Table 2 Number of double object constructions (d.obj) and prepositional dative constructions (p.dat) for

the 10 most frequent verbs in ICE-TRAD and SWB-TRAD (cost and take are not included at all in ICE-TRAD)

Verb ICE-TRAD SWB-TRAD

d.obj p.dat d.obj p.dat

nr perc nr perc nr perc nr perc

Give 377 85.7 63 14.3 1078 85.8 179 14.2

Offer 32 76.2 10 23.8 20 66.7 10 33.3

Send 51 68.0 24 32.0 89 64.0 50 36.0

Show 43 81.1 10 18.9 46 86.8 7 13.2

Teach 7 100.0 0 0.0 58 95.1 3 4.9

Tell 73 98.6 1 1.4 113 96.6 4 3.4

Bring 7 70.0 3 30.0 19 44.2 24 55.8

Cause 5 38.5 8 61.5 8 80.0 2 20.0

Cost 0 0.0 0 0.0 137 100.0 0 0.0

Do 10 50.0 10 50.0 25 92.6 2 7.4

Lend 9 52.9 8 47.1 2 66.7 1 33.3

Pay 8 32.0 17 68.0 83 58.9 58 41.1

Take 0 0.0 0 0.0 2 3.4 56 96.6

Sell 1 8.3 11 91.7 30 40.0 45 60.0

The percentages in boldface are those that are above 50%

4 See http://www.ldc.upenn.edu.
5 The verb cost was left out because two linguists (the first and fourth author) judged that no alternation is

possible. The verb take either occurred in prepositional dative constructions that were locative, or in

double object constructions that were judged to alternate with the preposition of.
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animate and/or in first or second person (me or you), while recipients are hardly ever

abstract. For this reason, the features Animacy of Theme, Person of Theme, and

Concreteness of Recipient have been excluded in our previous research (Theijssen

2010) and are excluded in this article as well.

The manual annotations of ICE-TRAD were done by the first author, following the

annotation instructions provided in the ‘‘Appendix’’. The definitions are as close as

possible to the descriptions used for SWB-TRAD (Bresnan et al. 2007). In order to

establish the quality of the data sets, we had an extra human annotator annotate

subsets of the data sets. For ICE-TRAD, the third author annotated 10 items that were

randomly selected, after which he was provided with feedback about his

annotations. After this short training session, he annotated 40 additional instances,

on which j scores were established. Only the inter-annotator agreement for

Animacy of Recipient was below 0.75 (0.63). This unexpectedly low j score was

the result of only three disagreements, all concerning groups of people that could be

interpreted either as institutions (being inanimate) or as groups of individuals (being

animate). They have such a great impact on the j score because there is a great bias

towards animate recipients in the 40 items. For SWB-TRAD, the first author annotated

a subset of 30 items. The j scores between these annotations and the original

annotations by Bresnan et al. (2007) were 0.78 or higher for all features, which

shows a high overall agreement. The individual j scores per feature per data set will

be provided later in this article, in Table 6 (being the results of the automatic feature

extraction in Sect. 4)

3 Automatic detection of instances in a corpus

As mentioned in Sect. 1, the first step towards automatically obtaining data sets for

studying the English dative alternation (ICE-AUTO and SWB-AUTO) is to detect

instances automatically.

Table 3 Features and their values

Name Feature Values Description

AnRec Animacy of rec a, in Human or animal, or not

ConTh Concreteness of th c, a With fixed form/space, or abstract

DefRec, DefTh Definiteness of rec&th d, in Definite pronoun, proper name

or noun preceded by a

definite determiner, or not

GivRec, GivTh Disc. givenness of rec&th g, new Mentioned or evoked B 20 clauses

before, or not (new)

LenDif Length difference -3.4 to 4.2 ln(#words th) � ln(#words rec)

NrRec, NrTh Number of rec&th sg, pl Plural in number, or singular

PrsRec Person of rec l, non Local (1st or 2nd) person, or not

PrnRec, PrnTh Pronominality of rec&th p, non Headed by a pronoun, or not

th Theme, rec Recipient

570 D. Theijssen et al.

123



3.1 Related work

The dative alternation, together with other diathesis alternations,6 has been the

topic of interest for a number of researchers in the field of automatic lexicon

learning, or more specifically: ‘verb classification’. Their goal has been to

automatically induce possible verb frames7 from corpora (for comprehensive

overviews, see Schulte im Walde 2009; Korhonen 2009). Several approaches have

been rather successful (e.g. Joanis et al. 2008; Schulte im Walde et al. 2008; Li

and Brew 2008; Sun and Korhonen 2009), but many challenges are still to be met

(Korhonen 2009). Only a few researchers have attempted to tackle the detection of

actual instances of diathesis alternations automatically. Their work is shortly

summarised below.

Lapata (1999) used the British National Corpus (BNC Consortium, 2007) to

determine the frequency with which verbs occur in prepositional dative (with to and

for), and double object constructions. First, she parsed the corpus with the shallow

parser Gsearch (Keller et al. 1999) and extracted syntactic patterns that were

potentially relevant. Next, she used a number of heuristic rules to divide the

candidate patterns into relevant and irrelevant instances. The procedure was

evaluated by comparing against manual annotations. For the double object

construction (3,000 manually annotated candidates), the precision of the heuristics

was approximately 89.8%, while for the prepositional dative construction with to
(994 candidates), it was 77.3%. There is no information about recall.

McCarthy (2001) used syntactic and semantic cues to find various syntactic

alternations, including the dative alternation. She parsed parts of the written part of

the BNC with a probabilistic chart parser and an LR (left-to-right) parser based on

string analysis. Looking at the most prototypical subcategorisation frames for each

verb, she found six dative verbs that occur freely with different themes and

recipients: award, give, hand, lend, offer and owe. She concluded that for the

detection of instances of the dative alternation (with to and for), it is sufficient to use

syntactic information only.

Lapata and Brew (2004) detected semantic preferences of verbs in the BNC and

used them as priors in a Naive Bayes verb classifier. They used over 5,000 manual

verb classifications to test against. Although they also evaluated the performance on

the individual tokens, their task is essentially different from ours: they classify the

verb class of a particular instance, while we want to detect instances of a certain

verb class. The same is true for Girju et al. (2005). Using the annotations available

in the PropBank, they used a machine learning technique to assign verb classes to

instances (tokens).

Grimm and Bresnan (2009) automatically extracted instances of the dative

alternation from a POS-tagged version of the Brown family of corpora (Hinrichs

et al. 2007), consisting of the written American English corpora Brown (1960s) and

6 Diathesis alternations are alternations in which verbs systematically allow a choice between two verb

frames (double object, prepositional dative) to express the same semantic roles (recipient, theme).
7 Verb frames indicate what type of arguments a given verb can take. The definition of types depends on

one’s goal, and can be syntactically and/or semantically motivated.
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Frown (1990s), and the written British English corpora LOB (1960s) and F-LOB

(1990s). They parsed the corpora with the Stanford dependency parser and used a

Python script to extract sentences with the desired syntactic pattern and a dative

verb. The sentences with complex syntactic structures (e.g. passives) were filtered

out. The procedure was evaluated on a small random subset of 100 sentences with

the verb give in the Brown Corpus. For this small set, the accuracy for automatically

distinguishing datives from non-datives was 45.0%, the recall 93.8% and the

precision 46.4%. Given the low precision, they manually checked all 6,759

candidates, resulting in a final set of 3,114 instances that they used for further

analysis.

3.2 Our method for automatic instance detection

For the automatic detection of instances, we use five steps that are performed in

sequence:

1. Establishing a list of dative verbs

2. Extracting all sentences with these verbs from the corpus

3. Parsing the sentences with the FDG parser

4. Extracting candidates from the parses

5. Filtering the candidates with heuristic rules.

In the first step, we compile a list of dative verbs. This is not a necessary step, since

we could simply include all dative constructions that the syntactic parser detects.

Since we plan to use the automatic approach to case detection on very large corpora

in the future, it is more efficient to first make a selection of potentially relevant

sentences or utterances on the basis of a list of verbs.8 The parsing, extracting and

filtering then only needs to be applied to the retrieved sentences or utterances. Steps

three to five are based on approaches in previous research. We use a syntactic parser

to automatically extract potentially relevant instances like McCarthy (2001) and

Grimm and Bresnan (2009). The candidates are filtered with the help of linguistic

rules based on those in Lapata (1999).

In step one, we consider all verbs suggested in at least two of the following

linguistic resources: the dative alternation verbs in Levin’s verb classification

(1993), the prepositional dative and double object frames in VerbNet (Kipper et al.

2000), the ditransitive verbs present in the ICE-GB corpus and the TOSCA lexicon

(Oostdijk 1996), the verbs included in Bresnan et al. (2007), a list created by Johan

Bos9 and a list in an English Grammar Guide.10 Many of the 264 verbs found are

rather rare: 86 have a frequency below 1,000 in the 100-million-word British

National Corpus (BNC Consortium, 2007). The occurrences of these verbs in the

8 Of course this list should not be seen as static; language changes all the time, and new dative verbs

emerge.
9 Extracted from http://www.coli.uni-saarland.de/bos/atp/dtvs.html (which is no longer available): ask,
bring, buy, call, consider, demonstrate, describe, give, hand, leave, lend, offer, pass, promise, provide,
send, serve, show, suggest, teach, tell.
10 See http://learning.cl3.ust.hk/english-grammar-guide/Verbs/Ditransitive_Verbs.htm.
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BNC are often in syntactic contexts that are not dative constructions. Since the

eventual goal of the automatic detection of dative instances is to prevent data

sparseness in future data sets, and since the verb itself is a feature in the statistical

analyses, we want to exclude such low-frequency verbs.11 This means we remove

the aforementioned 86 verbs that occur fewer than 1,000 times in the BNC (e.g.

fax).12 Next, we manually filter out the 102 verbs that alternate with a preposition

other than to (e.g. cook for) and/or that allow only one of the two constructions (e.g.

inform). The procedure results in the list of 76 dative verbs in Table 4.

For the second step, we extract all sentences with a dative verb which occurs in

the final list. If a corpus contains POS tags, most of the times they have either been

checked manually (as is the case for the ICE-GB corpus)13 or established

automatically with the help of a tagger that is trained on similar material. We use the

POS tags in the corpus for a first filtering: We only extract sentences if they have a

dative verb that is tagged as a verb in the corpus. This filtering is left out in the

evaluation on Switchboard, where we only use the plain text in the corpus.

In step three, the sentences are fed to the Functional Dependency Grammar

(FDG) parser, version 3.9, developed at Connexor (Tapanainen and Järvinen 1997).

The parser outputs functional dependencies that represent the structural information

within the sentence. Our motivation for choosing this parser is fourfold. First, the

level of detail is sufficient for our purposes, and both dative constructions are

recognized. They are explicitly marked as datives, making the extraction of

candidates straight-forward. For most parsers, this is not the case: they either only

Table 4 Final list of dative verbs, i.e. verbs that allow dative alternation and occur at least 1,000 times in

the BNC

Accord Cause Flick* Lower* Promise Serve Take

Advance Charge Fling* Make Propose* Ship* Teach

Allocate Concede* Forbid Offer Quote* Shoot* Tell

Appoint* Deal Give Owe Read* Show Throw

Assign Deliver Grant Pass Recommend* Sign* Toss*

Award Deny Guarantee Pay Refuse Signal* Trade*

Bear Dictate* Hand Permit Repay* Sing* Vote

Bid Do Issue Play Return* Slide* Wish

Bounce* Drop* Kick* Pose Roll* Slip* Write

Bring Extend* Leave Prescribe* Sell Submit* Yield*

Carry* Feed Lend Present Send Supply*

Verbs marked with * are not recognised as allowing dative verb frames by the FDG parser

11 We tested the effect of verb frequency by including it as a fixed effect in regression models for ICE-

TRAD and SWB-TRAD. In both models, the effect of verb frequency was far from significant. We therefore

believe that removing the low-frequency verbs is warranted.
12 The threshold of 1,000 is based on our observations of the list of BNC frequencies and our intuitions

about the subcategorisation frames in which these verbs may occur.
13 Actually, the leaf nodes of the syntactic parses contain information that is similar to the result of POS

tagging, and these syntactic parses have been checked manually. We will refer to this information as

‘POS tags’ in the remainder of this article.

Evaluating automatic annotation 573

123



mark explicitly the double object construction (e.g. Stanford parser, Minipar, Link

Grammar), or provide no function labels at all (e.g. Charniak). Second, the FDG

parser can be used ‘off-the-shelf’, i.e. there is no need for training prior to applying

it to data. This was an important motivation because of the small size of ICE-TRAD

(only 930 instances, taken from a corpus of only 1 million words), which we use for

developmental purposes. The Bikel parser (Bikel 2002), which does seem to

distinguish the two dative constructions, could not be employed because it needs

training. The FDG parser has been developed using approx. 100 million words in

various kinds of texts—news articles, technical and legal documents, literature,

discussion forum texts, transliterations, etc.—aiming for general use. Third, the

parser does not need large computer capacity, and is quite fast in processing large

amounts of data. Fourth, initial tests with the demo version of the parser14 showed

that it was able to deal with dative constructions with various verbs, and the parser

was able to deal with complex sentences. A disadvantage of the parser is that 31 of

the 76 dative verbs in Table 4 are not in the lexicon as being dative verbs (and

cannot be added as such by users).

In the fourth step, we extract candidates from the syntactic parses. The parser

generates one parse per sentence. In case a word is ambiguous, all possible

functional and part-of-speech (POS) tags are provided, but it is always assigned only

one relation. In dative sentences, the theme (the poisonous apple in the example) is

labelled by the parser as an object (‘obj’) of the verb, while the recipient (Snow
White), or the preceding to in the prepositional dative variant, is recognised as its

dative complement (‘dat’). We save all clauses in which one dative verb has both an

object and a dative.

The fifth step consists of filtering the candidates found with heuristic rules. We

distinguish between two types of filtering.

3.2.1 First filtering

Following Theijssen (2010), we exclude candidates that have at least one of the

following features: (1) the theme or recipient is a clause, (2) the clause is in passive

voice, (3) the verb is imperative, (4) the theme or recipient precedes the verb, (5) the

verb is phrasal (e.g. I’ll send you out that), (6) the clause is interrogative, (7)

recipient and theme are reversed with respect to the expected order (e.g. I give to
him a letter), (8) the theme is an adjective, (9) the theme or recipient is empty, (10)

the clause is a fixed expression (e.g. I’ll tell you what), (11) there is more than one

verb, theme or recipient (e.g. I gave it to her and to him). Most of these filters are

used to prevent the influence of other types of syntactic variation than those of

interest in this research (passive versus active voice, declarative versus interrogative

mode, the placement of adverbials, etc.). Some are used to make sure that the

features we want to apply later are applicable (e.g. it is not possible to establish the

concreteness of the theme if it is a clause, not a noun phrase). We use a Perl script to

apply these filters automatically, making use of the automatic parses and a manually

established list of fixed expressions. This list is based on the observations made

14 See http://www.connexor.eu/technology/machinese/demo/syntax.
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during the manual checking of the data set extracted from the ICE-GB corpus

(ICE-TRAD).

3.2.2 Second filtering

Obviously, syntactic parsing is not the easiest task, and parsers always make

mistakes. This is certainly also the case for the two dative constructions, since they

are often structurally ambiguous. For the double object candidates, the difficulty lies

in word sequences that are difficult to split into phrases, like the holy water in

example 4. For prepositional dative candidates, the problem is that the prepositional

phrase can be either attached to the verb or the noun (e.g. to parliament in example

5). These problems are even worse in automatic parsing, since even candidates that

are completely unambiguous for humans, are still ambiguous for the parser since it

lacks world knowledge.

4. He gave the holy water.

5. They give access to parliament.

Given the fact that parsers make errors, we have a final step in which we remove

candidates that have been falsely accepted due to errors in the parses. Following

Lapata (1999), we formulate a number of heuristic rules to filter out these

candidates. The rules we apply are based on Lapata’s work and our observations of

ICE-TRAD. For some of the rules we need POS tags. For ICE-AUTO, we use the POS

tags available in the corpus; for SWB-AUTO, we employ the POS tags provided in the

automatic parse.

For both constructions, we remove all instances where the recipient or theme

lacks the presence of a pronoun or noun. In these cases, the recipient or theme

instead consists of a numeral, adjective or adverb, e.g. a hollow in example 6.

6. She gave [a hollow]Rec [laugh]Th

For the double object constructions, there are more patterns that are likely to be the

result of parse errors, or that represent structures that we do not consider instances

of the dative alternation. More specifically, we filter out all candidates in which

– the last word of the recipient and the first word of the theme are proper nouns

(e.g. give John Smith)

– the last word of the recipient is a possessive (e.g. give Mary’s money)

– the last word of the theme is a reflexive pronoun (give it yourself)
– the verb is make, and both recipient and theme are persons in WordNet

(Fellbaum 1998) (e.g. make him king)

– the verb is take, and the theme is a time noun in WordNet (e.g. takes me an
hour)

– the recipient and theme together are likely to be one phrase (e.g. write the
professional letters)

For the last rule, we need to establish whether the recipient and theme together are

likely to be a single object. If the recipient ends in and the theme starts with at least
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one noun, we take the maximum sequence of ‘nouns’. This sequence not necessarily

consists of real nouns only, since there may be errors in the POS tags. For instance,

if we use the POS tags provided by the FDG parser (as we do for the Switchboard

data), the parser could recognise a dative construction in write the professional
letters. As a result, the word professional is tagged as a noun while it is in fact an

adjective. We filter out such word sequences by first checking if it is present in a

compound dictionary derived from WordNet (following Lapata 1999). If it is, the

candidate is rejected (e.g. holy water in example 7).

If it is not, we use a corpus-based approach to establish the probability that the

two or three words together form a single phrase (e.g. sea water and priests water in

examples 8 and 9 respectively). For this, we slightly adapt the approach in Lapata

(1999), using Daudaravičius and Marcinkevičiene’s gravity measure (2004), as

suggested in Gries (2010), instead of the log-likelihood ratio. Gravity (G) not only

takes into account the token frequencies of the separate words A and B and that of

the sequence A-B, but also the number of possible word types before B and after

A:15

G ¼ log
FAB � Nb

FA

� �
þ log

FAB � Na

FB

� �
; ð1Þ

in which FAB is the token frequency of the combination A–B, FA the frequency of

word token A, FB the frequency of word token B, Na the number of possible word

types before B, and Nb the number of possible word types after A. The values are

based on the British National Corpus (BNC Consortium, 2007). Using this formula,

we calculate the gravity between two nouns in the sequence. If the gravity is above

the suggested threshold of 5.5 (Daudaravičius and Marcinkevičiene 2004), the noun

sequence is probably a single phrase and we thus reject the candidate (e.g. give the
sea water in example 8). Else, we keep the candidate (e.g. give the priests water in

example 9). For three-word sequences A–B–C (e.g. priests holy water in example

10), we first decide how to split it into two parts by establishing the gravity between

the two possible pairs (A–B and B–C). The pair with the highest gravity is next

used as input to the formula, together with the remaining word (A–B and C, or

A and B–C).

7. He gave the holy water.

8. He gave the sea water.

9. He gave the priests water.

10. He gave the priests holy water.

For the prepositional dative construction, we exclude all instances where the

recipient is a location in WordNet (e.g. bring him to school). Also, we remove the

instances where the prepositional phrase is likely to be the complement of the theme

rather than the verb (e.g. give access to the garden). We again employ the

aforementioned gravity measure to establish this. Since the BNC contains no

syntactic annotations at the level required, we first parse the BNC with the FDG

15 The words ‘types’ and ‘tokens’ refer to the counts of unique words and of all words, respectively.
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parser. We then use the PP-attachment in the parses to calculate the gravity between

the verb and the recipient, and between the theme and the recipient.

3.3 Results

We applied the approach described in the previous section to ICE-GB and

Switchboard. The number of candidates found in both corpora are presented in

Table 5. The table also shows the precision, recall and F-score of the sets after the

second filtering (ICE-AUTO and SWB-AUTO), when comparing them to ICE-TRAD and

SWB-TRAD.

In ICE-AUTO, 62.9% (559/889) of the instances are from the spoken part of the

corpus, which is not significantly different from the 60.0% in ICE-TRAD (v2 = 1.47,

df = 1, p > 0.20). The majority construction is the double object construction,

comprising 73.1% (650/889) of the instances (which again is not significantly

different from ICE-TRAD: 72.3%, v2 = 0.13, df = 1, p > 0.70). In SWB-AUTO, the

proportion of double object constructions is significantly different from SWB-TRAD:

81.9% (2,206/2,694), compared to 78.8% (v2 = 7.61, df = 1, p < 0.01).

3.4 Discussion

When we look at the precision, recall and F-score for both data sets, we see that the

scores for ICE-AUTO are much higher than those for SWB-AUTO. In general, parsers

have more difficulties with spoken material than written material, because it often

contains disfluencies, corrections and unfinished clauses. We also find a trend for

this within the ICE-GB data: The precision for the spoken instances in the ICE data

is 67.4% (377/559), while it is 73.3% (242/330) for the instances in written English

(v2 = 3.13, df = 1, p < 0.10).

The approach is quite successful on the development data: with the help of the

filtering rules, our approach outperforms the precision reached on the Brown

corpora by Grimm and Bresnan (2009): 69.6% compared to 46.1%. The recall of our

approach, however, is much lower: 66.6% compared to 93.8%. Combining precision

and recall, we reach an F-score of 68.1% on the ICE-GB data, which is higher than

the 61.8% obtained by Grimm and Bresnan (2009). When we compare our

Table 5 Results of automatic case detection for both the development/analysis data (ICE) and test

data (SWB)

ICE SWB

Number of candidates found by parser 1,674 5,087

Number of candidates after 1st filtering 1,111 3,356

Number of candidates after 2nd filtering (AUTO) 889 2,694

Number of candidates in both AUTO and TRAD 619 1,292

Precision (%) 69.6 48.0

Recall (%) 66.6 55.0

F-score (%) 68.1 51.2
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performance on the Switchboard data to Grimm and Bresnan (2009), we see that the

precision we reach (48.0%) is comparable to the precision they reach on the Brown

corpora (being 46.1%). Their F-score is much higher (61.8% compared to our

51.2%), however, because of their better recall. It is clear that the spoken data in the

test set (SWB-AUTO) is problematic for our approach.

Let us now consider the errors made on the development set (ICE-AUTO). In order

to gain insight into the possible improvements of the approach, we manually

classified the 270 candidates in ICE-AUTO that are not present in ICE-TRAD:

– 131 (48.5%) of them are found because the FDG parser incorrectly recognised a

dative construction. These sentences are not part of ICE-TRAD because the

syntactic annotations of these sentences in the ICE-GB corpus do not contain a

construction that could be dative. These errors are thus in fact parse errors,

which we are unable to solve (at least in the scope of this article).

– 125 (46.3%) are found both in the ICE-GB annotations and the automatic

parses. In ICE-TRAD, these were filtered out automatically (using the syntactic

annotations in the corpus) or manually. The procedure is different for

ICE-AUTO: the automatic filtering is now based on the automatically obtained

FDG parses, and the manual filtering is replaced by the filtering rules. For 125

instances, the FDG parser thus should have indicated that these constructions

are irrelevant, or the filtering rules should have filtered them out. In 33

sentences, the prepositional phrase indicates a location, amount, time or

degree, in 22 the verb is phrasal, 17 are fixed expressions, 15 are imperatives

or interrogatives, 12 have an object that is split up or incomplete, 11 have

clausal objects, and 15 are irrelevant because of other reasons. Where we

manually checked these properties for ICE-TRAD, we have performed no such

checking for ICE-AUTO.

– 14 (5.2%) actually contain relevant dative constructions. Of course, manually

checked annotations are also error-prone (e.g. Nancarrow and Atwell 2007). The

fact that these 14 instances are not part of ICE-TRAD exemplifies this, since they

are missed due to errors in the annotations in the ICE-GB corpus. Most of these

instances (11) were prepositional dative constructions in which the prepositional

phrase was incorrectly attached to the theme, not to the verb.

The division shows that of the 889 candidates found automatically, 256 are not

relevant instances of the dative alternation. The FDG parser thus reached a precision

of 71.2% on recognising the two objects in dative constructions. This precision is

much lower than the general precision the parser reaches on linking subjects and

objects: 93.5% on texts from the Maastricht treaty and 96.5% on foreign news

texts.16 Of the remaining 633 candidates, not all are present in ICE-TRAD, but they

are all instances of the dative alternation. The effect of the 256 irrelevant cases will

become evident in Sect. 5.

16 These figures were established by Connexor Oy in December 2005, after which only minor changes

have been applied to the parser.
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The 311 instances not found automatically can be subdivided as follows:

– 206 (66.2%) are due to errors in the automatic parses. Of these, 10 have a verb

that is listed in our list of dative verbs (Table 4), but which is not marked as such

in the parser lexicon (e.g. read, indicated with the asterisk in Table 4). So, the

fact that 31 of the 78 dative verbs in our list are not stored as such in the parser

lexicon, eventually causes only 10 instances to be missed.

– 43 (13.8%) are falsely filtered out in the second filtering. In 20 the gravity

measure unjustly indicated that the recipient should be interpreted as a

postmodifier of the theme. In 12 the recipient is interpreted as a location on the

basis of WordNet, while it is not a location in the given context. In 11 the theme

or recipient does not contain (or is taken not to contain) a (pro)noun, but only a

numeral, adjective or adverb. Seeing the small number of errors per type of

filtering, there is only little to gain by improving the filtering.

– 38 (12.2%) are not found because the verb is not in the list of dative verbs

(Table 4). We have not employed this list to establish ICE-TRAD; we extracted all

dative constructions regardless of the verb present, and manually checked

whether the candidate was relevant.

– 24 (7.7%) are falsely filtered out in the first filtering: 10 are taken to have a

clausal object, 6 are interpreted as expressions, 4 are taken to have split objects,

3 are considered passives or imperatives and 1 is taken to contain a phrasal verb.

As with the second filtering, the numbers are too small to make investing in

improvement worthwhile.

When we compare the recall we obtained with the FDG parser (66.6%) to the recall

that the FDG parser reaches on linking subjects and objects in general, we see that

the general recall of the FDG parser is much higher: 90.3% on texts from the

Maastricht treaty and 95.4% on foreign news texts.17

Counting the number of words in the sentences in ICE-TRAD, we see that the

instances that were found automatically have an average length of 21.5 words,

which is significantly shorter than the average length of 25.7 words for the cases we

could not find automatically (t = -4.23, df = 548, p < 0.001). Apparently, the

parser has most difficulty identifying dative constructions in sentences that are

relatively long and thus, presumably, more complex. Also, the division of the two

construction types (double object and prepositional dative) differs significantly

between the instances we have found in the ICE corpus and those we have missed.

Of the cases we found automatically, only 19.4% is a prepositional dative, while this

is true for 44.4% of the cases we have missed (v2 = 63.2, df = 1, p < 0.001).18 The

attachment of prepositional phrases (PP-attachment) is a common problem in

automatic parsing (e.g. Agirre et al. 2008). It is therefore not surprising that the

parser has more difficulties with the prepositional dative variant than with the

double object construction (cf. also Lapata 1999).

17 Again, these figures were established by Connexor Oy in December 2005.
18 As we will mention in Sect. 5, the difference in the distribution of the two constructions between ICE-

AUTO and ICE-TRAD will not influence the extrinsic evaluation, because logistic regression is very robust

against class imbalance.
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4 Automatic annotation of instances found

Now we have described the automatic extraction of the instances, we can move on

to the annotation of the instances. We include the features introduced in Sect. 2

Previous research has already shown that they play a role in the dative alternation

(Bresnan et al. 2007; Theijssen 2010).

4.1 Method

The automatic extraction of the values for the twelve features is described below.

Our aim is to obtain feature values that agree with the ones selected by the human

annotator in ICE-TRAD. We make use of the syntactic parses produced by the FDG

parser. For some features, we consult WordNet (Fellbaum 1998). Most corpora

contain POS information, so we also make use of the POS tags in the ICE-GB

corpus. For the Switchboard data, we use the POS tags provided by the parser.

4.1.1 Animacy of recipient (AnRec)

Most researchers who have been successful in animacy classification of English
nouns employ WordNet (e.g. Orǎsan and Evans 2007; Baker and Brew 2008). We

therefore employ WordNet as well, together with other resources. More precisely,

we use three lists of animate words: (1) the nouns marked as person or animal in

WordNet, (2) a list of company names found on the Internet19 and (3) a short list of

additional words, e.g. personal pronouns like I and him. Company names are thus

deemed animate. Our assumption is that company names functioning as a recipient

in a dative construction will mostly refer to the people working at this company (e.g.

BUPA in example 11).

11. I mean two three weeks ago John Major made a speech to BUPA in which he

said he wanted the private sector to be boosted. (ICE-GB S1B-039 64:1:C)

In this article, we simplify the problem of animacy classification of the recipient in two

ways. First of all, we limit ourselves to the lemma of the syntactic head of the recipient,

as found in the syntactic parse. Second, we classify the different types (not the different

tokens), irrespective of context. This means that we always assign the same value for

animacy to recipients that have as their syntactic head the same lemma. When this

lemma is present in at least one of the three lists mentioned above (ignoring upper/

lower case), we classify it as animate. All other recipients are deemed inanimate.

4.1.2 Concreteness of theme (ConTh)

In the dative alternation, the theme can either be ‘‘prototypically concrete’’

(Garretson 2003), i.e. having a fixed size or form in space (She gave him a book), or

19 The company names have been extracted from http://www.buyblue.org/alphalist.php (which is no

longer available) and http://www.businessweek.com/1999/99_28/alphalist.htm. All names ending in

Corp, Corporation, Co, Incorporated, Inc, Holding, Group were duplicated without this ending.
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abstract (She gave him her love). Concepts like love and objects like book are fairly

straight-forward, but there are many difficult cases. Sometimes words have several

senses. For instance, if a furniture salesman shows you a table, he most likely refers

to the concrete object standing in his showroom, while a researcher giving a

presentation refers to the representation of information he or she has put on the

slide. Furthermore, words in the same (or at least in a similar) sense can be used

figuratively: when a waitress in a restaurant shows you a table, you could say she is

literally showing you a concrete object (a specific table), but what she means is not

just a table, but a place to have dinner. In this situation, the table is arguably not

prototypically concrete anymore.

The assumption that meaning depends on context is not new. The distributional

hypothesis in Harris (1954) has led to a long line of context-based approaches in

lexicon learning, many of which are semi-supervised or unsupervised. There are two

main lines of research: (1) clustering semantically similar words (e.g. Rooth et al.

1999), and (2) extending existing lexicons through bootstrapping. In both,

contextual features are used to find similarities. The clustering approach is not

directly useful for us, since we want a binary, pre-defined, classification. A common

method in bootstrapping is to start with a very simple lexicon, comprising a set of

occurrences (tokens) of word types that are prototypical examples of the semantic

class of interest (in our case concrete and/or abstract words). For this seed set, it is

assumed that the word types have this class in (almost) all contexts, so you can use

all tokens of this word type. In an iterative process, the seed set is extended with

new word tokens that share properties with the tokens in the seed set. Many

researchers use syntactic information for this purpose, for instance for classifying

nouns into the lexical categories building, event, human, location, time and weapon
(Riloff and Jones 1999; Thelen and Riloff 2002) or for detecting film titles (Kuijjer

2007).

In a previous study (Theijssen et al. 2011), we evaluated five different (semi-)

automatic approaches for establishing the concreteness of nouns for the purpose of

investigating the dative alternation. One approach used the MRC Psycholinguistic

Database (Coltheart 1981) to find the concreteness value of a noun type (interval

scale). Two approaches found the concreteness of a noun sense with the help of the

WordNet hierarchy: by counting the number of nodes from the sense to the root

(ordinal scale, following Changizi 2008), and by checking whether the sense was

part of the physical entity subtree (binary value, following Xing et al. 2010). The

final two approaches (both resulting in an interval scale score per noun token) were

two variants of the bootstrapping approach in Thelen and Riloff (2002): one using

all syntactic contexts, and one only dative contexts. The data used for bootstrapping

was taken from the British National Corpus. The conclusion was that the first three

approaches were hampered by the insufficient coverage of the lexical resources used

(WordNet, MRC). The bootstrapping approaches were not very successful either:

abstract nouns denoting ‘time’ (e.g. minute, February) and ‘quantity’ (e.g. ton, inch)

received high concreteness scores. This shows that the selection of the seed set is

not trivial, and that seeds are often not as suitable as one would expect.

Seeing the problems with the use of existing resources and with applying a

bootstrapping approach, we decided to make use of our development data: ICE-TRAD.
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We take the 619 instances in ICE-TRAD that were also detected automatically, and

establish a number of syntactic features for them. For each instance, we find the

automatically obtained FDG parses and for the head of the theme, we extract the

relations to its daughter nodes and to its mother node. Also, the POS tags and lemmas

are retrieved, as well as the representation (upper/lower case, etc.). The found

information is transformed into machine learning features. For instance, the features

for apple (head of the poisonous apple) in the example sentence are:

– lemma of the focus word: apple
– upper (U) / lower case (L) and presence of non-alphanumeric characters (S) in

the focus word: L
– POS tags of the focus word: N_NOM_SG
– relation with the mother node: obj
– relation with the mother node ? its lemma: obj;give
– relation with the mother node ? its POS tag(s): obj;V_PRES_SG3
– relation with the daughter node(s): det, attr
– relation with the daughter node(s) ? its/their lemma(s): det;the, attr;poisonous
– relation with the daughter node(s) ? its/their POS tag(s): det;DET, attr;A_ABS

After establishing the features for the themes in the instances, we applied various

machine learning algorithms to classify the 619 instances in a tenfold cross-

validation setting. We employed Weka (Hall et al. 2009) for a number of

classifiers,20 and libSVM (Chang and Lin 2001) for Support Vector Machines

(SVMs). For all algorithms, only the features that occur at least three times in the

training data were actually employed. The best results were obtained by the SVMs.

SVMs need tuning of three hyperparameters: (1) the kernel, which we limit to

linear and RBF, (2) the cost c, for which we go through a grid of 2-12 to 210 with

steps of *2, and (3) the gamma g (only for the RBF kernel), for which we go through

a grid of 2-10 to 26 with steps of *2. The optimal hyperparameters are found in a

tenfold cross-validation setting, and these are then used to build an SVM on all

training data. When applying the classification to the 619 instances present in ICE-

TRAD, we perform leave-one-out: the tuning is done on 618 instances in tenfold cross-

validation, the optimal settings are used to build an SVM on all 618 cases, which is

then used to predict the 619th instance. When predicting data that does not overlap

with the 619 instances in ICE-TRAD, we use all 619 instances for tuning and training.

4.1.3 Definiteness of recipient and theme (DefRec, DefTh)

For establishing the definiteness of recipient and theme, we use the POS tags in the

corpus or the parse. In order to establish what is the head of the object, and with

which words it occurs (i.e. which words are its daughter nodes) we always use the

dependency relations in the FDG parse.

When the head occurs with a definite article, we classify it as definite. The same

applies to a head that is, or occurs with, a demonstrative, interrogative, relative or

20 More specifically, we used Naive Bayes, Logistic, Multilayer Perceptron, Voted Perceptron,

RBFNetwork, Ibk, AdaBoost, Bagging, SimpleMI, Jrip, DecisionTable, J48 and RandomForest.
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possessive pronoun. Similarly, we consider definite heads that are a reciprocal,

reflexive or personal pronoun, or a proper noun.

4.1.4 Discourse givenness of recipient and theme (GivRec, GivTh)

Automatically identifying discourse-new objects has received considerable attention

of researchers working in the field of anaphora resolution. This is because the first

step in anaphora resolution is recognizing which elements should be resolved, i.e.

which elements actually refer to an item that has previously been mentioned (and

thus is discourse-given).

Vieira and Poesio (Vieira 1998; Vieira and Poesio 2000; Poesio et al. 2004) used

heuristics to establish which definite nouns are discourse-new. For example, one

heuristic rule says that noun phrase heads that start with a capital (e.g. The Iraq
war), or that refer to time (the morning) are discourse-new. Testing on 195 definite

phrases, they reached a precision and recall of 77%.

The work by Vieira and Poesio has been extended in several ways. Some have

added new heuristics (e.g. Bean and Riloff 1999). Others have extended the work to

other types of nouns, not only the definite ones (e.g. Ng and Cardie 2002; Uryupina

2003). The use of different machine learning techniques for the task of detecting

discourse-new objects has also received some attention (e.g Ng and Cardie 2002;

Kabadjov 2007). Most researchers have employed the corpora created for one of the

Message Understanding Conferences (MUC) for training and testing. The precision

and recall are generally above 80%.

In the context of anaphora resolution, establishing the discourse givenness of an

object affects the decision made further on in the discourse, since new objects will

be given later in the discourse. Our task is considerably easier, since we only have to

establish whether the recipient or theme is discourse-given or discourse-new. We

therefore developed our own, much simpler, algorithm.

The approach we take is as follows. Given the fact that indefinite objects are

mostly new to the discourse, we classify all indefinite objects as discourse new. For

definite objects, we extract the head and its attributes from the FDG parse, and take

the POS tags from the corpus or the parse. Definite objects of which the head is a

personal pronoun, and of which the head is preceded by a demonstrative pronoun,

are labelled discourse given. For the remaining definite objects, we check the

preceding contexts, with a maximum length of 20 clauses (i.e. until the 20th

preceding word that is tagged as main verb). If the head itself, or a synonym of the

head is found within this preceding context, the object is considered discourse
given. We use the synsets in WordNet to extract the synonyms. The remaining

definite objects are given the value discourse new.

4.1.5 Number of recipient and theme (NrRec, NrTh)

Again, we employ the POS tags in the corpus or the parse. We use the FDG parse to

identify the head of the object, and take the number provided in the POS tag. For
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heads of objects that have no information about number (e.g. you, which can be

both), we assign the default value singular.

4.1.6 Person of recipient (PrsRec)

For this feature, we simply check whether the head of the recipient is I, me, my,
mine, myself, you, your, yours, yourself, yourselves, we, us, our, ours or ourselves. If

this is the case, the recipient is local, otherwise it is non-local.

4.1.7 Pronominality of recipient and theme (PrnRec, PrnTh)

For this feature, we again employ the POS tags in the corpus or the parse. We

extract the head of the object from the FDG parse. If the head has a POS tag for (any

type of) pronoun, the object is classified as pronominal. If not, it is non-pronominal.

4.1.8 Length difference (LenDif)

For length difference, we use a Perl function that we also used for ICE-TRAD (see the

‘‘Appendix’’). It counts the number of words in the recipient and the theme by

splitting on white space, and takes the natural log of these lengths to smoothen

outliers. The recipient length is then subtracted from the theme length (thus giving

the log of the ratio between the lengths). The difference with ICE-TRAD is that the

input strings are now not the theme and recipient as found in ICE-TRAD, but as found

with the automatic approach (i.e. in the FDG parses).

4.2 Results

We intrinsically evaluate the automatic feature extraction by comparing the features

values found to a gold standard. This gold standard consists of the manual

annotations in ICE-TRAD and SWB-TRAD. For this reason, only the instances that are

present in both the traditional and the automatic set can and will be included in this

evaluation (619 for the ICE data, 1,292 for the Switchboard data).

For the only feature with an interval scale, length difference, we calculate the

correlation coefficient between the values in the traditional set, and those in the

automatic set. For the 619 instances in ICE-TRAD and ICE-AUTO, the correlation is

0.825. For 442 (71.4%) of the 619 instances, the feature value is exactly the same in

both data sets. In 26 (4.2%) instances, the theme and recipient are equally long in

one data set, but differ in length in the other. In only 8 (1.3%) instances, the polarity

differs. For the remaining 143 (23.1%) instances, the same object is found to be

longer than the other, but the length differences found differ.

For the 1,292 instances in SWB-TRAD and SWB-AUTO, the correlation is 0.635. The

length difference has exactly the same value in 851 (65.9%) instances, is zero for

only one of the two sets in 97 (7.5%) instances, differs in polarity in 11 (0.9%)

instances, and only differs in the size of the length difference in 333 (25.8%)

instances.
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For the binary features, we calculated the classification accuracy and established

the proportion of the majority value. The results are shown in Table 6. They show

us two important things. First of all, most features are biased towards one of the two

values. Over 90% of the recipients are definite, for instance. An exception is the

person of the recipient where the division between local and non-local is much more

balanced. Second, we see that the accuracies reached are all C79%.

Seeing that all accuracies and most majorities are above 79%, we have also

established the j statistic for inter-annotator agreement that discounts the prior

probability that two annotators will agree. The two annotators in this case are the

human annotator of the traditional set, and the extraction algorithm for the

automatic set. Table 6 shows these j scores, as well as those between two human

annotators (as described in Sect. 2) Most of the j values between the automatic and

the manual annotations are quite similar to the j scores between two human

annotators. This is not the case for the features that are intuitively the most difficult

(givenness, animacy and concreteness); they result in lower j scores. For the other

features, the j scores are all above 0.65.

4.3 Discussion

When looking at the results for the ICE data (the development/analysis data), we see

that for the animacy of the recipient, the j score between the automatic extraction

and the human annotations is very similar to that between two humans. Apparently,

the simplifications in the automatic extraction have not influenced the quality of the

extraction, and the resources we employed are quite reliable. One of those resources

is WordNet. Of course, some noun head lemmas may have several senses and

therefore occur not only as animal or person, but also in a different noun class.

Table 6 The accuracy (Acc) of automatic feature extraction and the proportion of the majority class

(Maj) in the traditional sets for the binary features

Feature ICE SWB

Acc Maj j Human j Acc Maj j Human j

PrsRec 1.00 0.52 1.00 1.00 0.82 0.64 0.65 0.91

PrnRec 1.00 0.77 0.99 0.95 1.00 0.87 0.98 1.00

DefTh 0.99 0.65 0.97 1.00 0.97 0.70 0.94 0.93

DefRec 0.99 0.93 0.93 0.78 0.98 0.95 0.80 1.00

NrTh 0.98 0.86 0.92 0.88 0.98 0.80 0.93 1.00

PrnTh 0.98 0.88 0.89 0.84 0.97 0.84 0.91 1.00

NrRec 0.94 0.71 0.84 0.77 0.95 0.71 0.88 1.00

GivRec 0.91 0.82 0.69 0.95 0.95 0.86 0.79 0.80

AnRec 0.92 0.90 0.68 0.63 0.91 0.87 0.55 1.00

GivTh 0.87 0.83 0.59 0.80 0.90 0.82 0.68 0.78

ConTh 0.87 0.79 0.55 0.75 0.79 0.72 0.37 0.86

The fourth column indicates the j score between the traditional and the automatic annotation of the

instances in both sets. Human j scores are provided in the fourth column
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This is the case for 12 of the 47 incorrectly classified instances: authority (twice),

dealer, face, man, master, mother, opposition, party, plant, subject and world. With

respect to simplifications, remember we had two of them: (1) limiting ourselves to

the lemma of the syntactic head of the recipient, and (2) classifying the different

types (not the different tokens), irrespective of context. An analysis of the 47

misclassifications reveals that only five are caused by the first simplification: four

are animate but were labeled inanimate (those who…, any of…, the rest of…, Mr
…) and one the other way around (due to a parse error in the former Deputy Prime
Minister’s words). The second simplification leads to sixteen errors in ICE-AUTO.

Three are nouns that are inanimate in the given context, but were labelled animate

automatically: world, nation and face. The rest are incorrectly labelled inanimate,

e.g. few, it, jury and panel.
The lowest j scores between the automatic and manual annotations are for the

concreteness of the theme, in both ICE-AUTO and SWB-AUTO. When we look at the

83 cases that are different in the ICE data, we see that fourteen are pronouns

(it, some and that). It is not surprising that pronouns are difficult for the automatic

approach; it depends even heavier on the context, since it needs to resolve to

which antecedent the pronoun refers. In addition, there are twenty cases where the

theme is something made of paper, e.g. picture, piece of paper, card, voucher.

These are concrete in the manual annotation, but labelled abstract in the automatic

approach. Apparently, these types of themes often share contextual properties with

themes that are abstract.

Surprising is the rather low j for the person of the recipient for the Switchboard

data: 0.65. A quick look at the discrepancies shows that the annotations in

SWB-TRAD are more semantic in nature (whether the recipient is really physically

part of the discourse), while we used a more syntactic definition (whether the

recipient is in first or second person) in ICE-TRAD and the automatic approach.

Almost all of the differences were caused by the generic use of you (e.g. it gives you
energy), which was labelled ‘non-local’ in SWB-TRAD, and ‘local’ by us.

5 Extrinsic evaluation: Using the data in logistic regression models

The intrinsic evaluations in the previous sections have shown that the automatic

detection of instances of the dative alternation may need improvement, but that the

annotation of these instances seems promising. In order to establish the effect of the

automatic procedure on our linguistic research, we need an extrinsic evaluation. The

use of extrinsic evaluations is quite common in the field of Natural Language

Processing (NLP), where the quality of the automatic annotations are tested in NLP

applications like machine translation (e.g. Bod 2007) and question answering (e.g.

Theijssen et al. 2007). Researchers in NLP now even question the use of intrinsic
evaluations (e.g. Poibeau and Messiant 2008). For our extrinsic evaluation, we build

a logistic regression model on the automatic data (ICE-AUTO and SWB-AUTO), and

compare the effects in the model to a model built on the traditional data (ICE-TRAD

and SWB-TRAD).
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5.1 Method

Previous research has indicated that over 90% of the dative alternation can be

correctly predicted with a logistic regression model that combines the features

introduced previously (Bresnan et al. 2007; Theijssen 2010). More information

about multivariate techniques such as regression can for instance be found in

Izenman (2008).

As discussed in Theijssen (2010), there are at least six ways to build a logistic

regression model for the dative alternation. One can choose between a mixed model,

i.e. a model with a random effect, and a model without such an effect. Seeing the

verb biases we presented in Table 2, we want to include verb as a random effect.21

The second choice we have to make is the manner of feature (or variable) selection.

Researchers have employed at least three different approaches to feature selection:

(1) first building a model on all available explanatory features and then removing

those that do not show a significant contribution (e.g. Bresnan et al. 2007), (2)

sequentially adding the most explanatory feature (forward), until no significant gain

is obtained anymore (e.g. Grondelaers and Speelman 2007), and (3) starting with a

model containing all available features, and (backward) sequentially removing those

that yield the lowest contribution (e.g. Blackwell 2005). Comparing all three options

for the two data sets is beyond the scope of the present article. Seeing that our

research is the closest to that in Bresnan et al. (2007), we follow their approach. We

will thus build only one type of model: a mixed model with verb as a random effect,

building it on all features, then removing all features that are not significant, and

building a new model with only those features.

The ICE data sets differ from the Switchboard data sets in the sense that they

contain both spoken and written material. Following Theijssen (2010), we include

medium (spoken or written) as an additional feature, and add all interactions of

medium with the twelve features of the previous section. This leads to a total

number of 25 features. When removing non-significant main effects, we never

remove those that are part of a significant interaction. For the Switchboard data,

containing only spoken material, we include only the twelve main features.

5.2 Results for the ICE data

We build two regression models for the ICE data: (1) a model built on the 930

instances in ICE-TRAD, and (2) a model built on the 889 instances in ICE-AUTO. The

model quality of these models (and an additional one that will be introduced later in

this section) can be found in Table 7. The models fit the data well: the prediction

accuracy is over 87%. This is significantly better than the majority baseline of

always selecting the double object construction. Also, the concordance C is above

94% for all three models. In a tenfold cross-validation setting, the regression models

show only a slight decrease in prediction accuracy and concordance C, which means

there is hardly any overfitting.

21 We use the function lmer() in the lme4 package in R (R Development Core Team 2008).
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The results in Table 7 give an indication of the quality of the regression models.

For the qualitative evaluation, we inspect the significant effects in the two models,

shown in Tables 8 and 9.

Four of the five significant features in the traditional model are also found to be

significant by the automatic model (printed above the horizontal line in Table 9).

The effect that is missing in the automatic model is the pronominality of the theme.

Instead, we have a significant effect for the pronominality of the recipient. For three

features that are significant in both models (givenness of the theme, length

difference and person of recipient), the signs of the b-coefficients are the same. This

shows that the features have similar effects in both models. The exception is the

animacy of the recipient, for which the sign is different in the two models. However,

there are indications that both in the traditional model and in the automatic model,

the effect is not very stable. First of all, the significance varies across the tenfolds:

the average p-value is above 0.06, and the standard deviation is above 0.04. Second,

we see a significant interaction of animacy with medium in the automatic model, in

which the coefficient has the same direction as in the traditional model. Third, in a

model that we built on ICE-AUTO without any interactions, the animacy of the

recipient looses significance completely (p > 0.90). It also misses significance

(p < 0.10) in a main-effects only model built on ICE-TRAD.

The automatic model has five additional significant effects (and a non-significant

effect for medium that we kept because of the interactions), presented below the

horizontal line. The definiteness of the theme is not significant across the ten folds,

but its interaction with medium is. Also significant are the interaction of medium

Table 7 Prediction accuracy and concordance C for the model fit (Acc, C) and in tenfold cross-vali-

dation (av. Acc, av. C), for ICE-TRAD, ICE-AUTO and ICE-SEMI

Data set Majority N Acc av. Acc SD C av. C SD

ICE-TRAD 0.723 930 0.915 0.896 0.036 0.973 0.962 0.016

ICE-AUTO 0.731 889 0.880 0.871 0.045 0.947 0.933 0.025

ICE-SEMI 0.791 633 0.930 0.918 0.055 0.969 0.954 0.035

The majority baseline and the number of instances are also provided

Table 8 Significant features in the model built on the 930 instances in ICE-TRAD

Feature b av. b SD p av. p SD

(Intercept) 1.34 1.30 0.17 0.033 0.056 0.042

PrnTh = p 1.47 1.46 0.24 0.002 0.007 0.007

GivTh = non -1.97 -1.98 0.15 0.000 0.000 0.000

LenDif -2.11 -2.12 0.04 0.000 0.000 0.000

AnRec = in 0.77 0.77 0.16 0.037 0.068 0.055

PrsRec = non 2.24 2.25 0.14 0.000 0.000 0.000

The coefficients b for the model fit are provided, together with the average bs in the ten separate models

in the tenfold cross-validation, and their standard deviation. Also, the p-values for the model fit are

shown, as well as the average p-values in the ten separate models, with their standard deviation
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with the animacy of the recipient, the concreteness of the theme, and the

pronominality of the recipient. Three of the five additional features thus involve the

medium. In Sect. 3 we saw that the FDG parser has more problems with spoken data

than with written data (resulting in a much lower precision). Now we see that this

has substantially affected the regression model. Apparently, ICE-AUTO differs so

much from the ICE-TRAD that it results in a qualitatively different model.

There are three ways to diminish the discrepancy between ICE-TRAD and

ICE-AUTO: (1) by improving the precision of the detection of the cases, (2) by

improving the recall of the detection of the cases, and (3) by improving the accuracy

of the feature extraction. The second option would mean we either have to use a

different parser, or we would have to extend the searches in the FDG parses. We

believe this is beyond the scope of this article, and we will address this point in our

general discussion in Sect. 6. The third option seems inefficient, since the accuracies

reached by the feature extraction algorithm are already so high that they are surely

very difficult to improve (cf. Table 6). We therefore choose to improve our data set

with the first option: we improve the procedure by inserting a manual step between

the detection of the candidates and the feature extraction, in which we manually

filter the candidates found.22 The result is the set of 633 instances, automatically

annotated for the features (from now on referred to as ICE-SEMI). There is no

significant difference between the proportion of instances from spoken material in

ICE-SEMI (60.8%, 385/633) and in ICE-TRAD (60.0%, v2 = 0.07, df = 1, p > 0.75).

This is not true for the proportion of double object constructions: For ICE-SEMI, it is

79.1% (501/633), which is significantly different from the 72.3% in ICE-TRAD

(v2 = 9.18, df = 1, p < 0.01). But since the feature effects in logistic regression are

Table 9 Significant features in the model built on the 889 instances in ICE-AUTO

Feature b av. b SD p av. p SD

(Intercept) 2.17 2.16 0.16 0.000 0.000 0.000

GivTh = non -1.55 -1.55 0.13 0.000 0.001 0.000

LenDif -1.80 -1.81 0.06 0.000 0.000 0.000

AnRec = in -0.77 -0.77 0.15 0.038 0.063 0.046

PrsRec = non 1.10 1.11 0.08 0.003 0.005 0.003

ConTh = in -1.46 -1.48 0.09 0.000 0.000 0.000

DefTh = in 0.86 0.86 0.16 0.039 0.062 0.046

PrnRec = p -1.18 -1.19 0.14 0.000 0.001 0.001

Medium = W 0.16 0.16 0.16 0.711 0.691 0.200

DefTh = in, Medium = W -1.48 -1.47 0.15 0.006 0.012 0.010

AnRec = in, Medium = W 1.33 1.33 0.20 0.011 0.022 0.019

Again, the coefficients b for the model fit are provided, together with the average bs in the ten separate

models in the tenfold cross-validation, and their standard deviation. Also, the p-values for the model fit

are shown, as well as the average p-values in the ten separate models, with their standard deviation

22 All instances in the traditional set have already been checked manually by Theijssen (2010). In

practice, we thus checked only the candidates that were not part of the traditional set.
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very robust against (increasing) class imbalance (Owen 2007), this will not

influence our models.

For ICE-SEMI, the model we found was very similar to the traditional model, with

one main difference: the concreteness of the theme. It is highly significant in the

semi-automatic model, while it did not come even near significance in the

traditional model. After all our efforts in developing algorithms to establish

concreteness automatically (see also Theijssen et al. 2011), we thus have to

conclude that concreteness is too dependent on the context and on world knowledge

to establish it automatically. For this reason, we decided to leave it out, and build a

model with 23 features instead, i.e. all features we used before except the

concreteness of the theme and its interaction with medium. The resulting model is

the model presented in Tables 7 and 10.

We see that the effects found are indeed very similar to the ones for ICE-TRAD in

Table 8; the correlation between the five bs that are overlapping (those for Intercept,

PrnTh, GivTh, LenDif and PrsRec) is 0.97.23 In comparison with ICE-AUTO, the

rather unstable effect for the animacy of the recipient has now dropped out of

significance, and the pronominality of the theme has become significant. In the

comparison between ICE-TRAD and ICE-AUTO, we saw that the model built on ICE-

AUTO contained five significant effects more than the model built on ICE-TRAD.

When comparing the model built on ICE-SEMI (Table 10) to the one built on ICE-

AUTO (Table 9), we see that three of these have now neatly disappeared: the

interaction of medium with the animacy of the recipient, the definiteness of the

theme and its interaction with medium.

The only extra effect that we have in comparison with the ICE-TRAD model is that

for the pronominality of the recipient. If we look at the distribution of this feature in

the two data sets, we see that the proportion of pronominal recipients is higher in

ICE-SEMI (75.7%) than in ICE-TRAD (65.6%). For both data sets, pronominal

recipients occur more frequently in double object constructions than in prepositional

dative constructions: 88.9% is in a double object construction in ICE-SEMI, and

Table 10 Significant features in the model built on the 633 instances in ICE-SEMI

Feature b av. b SD p av. p SD

(Intercept) 1.85 1.85 0.40 0.018 0.040 0.030

PrnTh = p 1.17 1.18 0.27 0.040 0.070 0.050

GivTh = non -2.20 -2.22 0.25 0.000 0.000 0.000

LenDif -2.64 -2.66 0.12 0.000 0.000 0.000

PrsRec = non 1.23 1.24 0.24 0.015 0.028 0.027

PrnRec = p -1.56 -1.57 0.20 0.001 0.000 0.000

Again, the coefficients b for the model fit are provided, together with the average bs in the ten separate

models in the tenfold cross-validation, and their standard deviation. Also, the p-values for the model fit

are shown, as well as the average p-values in the ten separate models, with their standard deviation

23 The b for LenDif was first standardised by multiplying it by the standard deviation of LenDif in the

data set.
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87.0% in ICE-TRAD. For non-pronominal recipients, there is no clear preference:

48.7% are in a double object constructions in ICE-SEMI, and 44.1% in ICE-TRAD. The

pronominality of the recipient thus seems to have a similar distribution with respect

to the dative alternation in the two data sets. It only shows up as significant in the

ICE-SEMI model because pronominal recipients form a bigger proportion of that set.

We thus conclude that once the low precision of the automatic instance detection

is cured, and the concreteness of the theme is left out of consideration, the model is

very similar to what we find with a data set that was established completely

manually. The semi-automatic model is not really affected by the recall of the

detection or the smaller size of the data set. Although we aimed for a completely

automatic approach, we have to conclude that human intervention is required, at

least when using an off-the-shelf parser like the FDG parser we employed.

5.3 Results for the Switchboard data

In this section, we perform an extrinsic evaluation on the test data, the Switchboard

data. Given the conclusions of the previous section, we compare the following two

models: (1) a model built on the 2,349 instances in SWB-TRAD, and (2) a model built

on the semi-automatic set with the 1,292 instances that were also found

automatically (SWB-SEMI). In SWB-SEMI, the proportion of double object construction

is 83.0% (1,073/1,292), being significantly higher than the proportion of 78.8% in

SWB-TRAD (v2 = 9.43, df = 1, p < 0.01). Again, this is not a problem because

logistic regression is robust against class imbalance.

The concreteness of the theme was again excluded from the feature set. The

quality of the models is summarised in Table 11. Both models show a very good fit

to the data, with hardly any overfitting.

The significant effects in the regression models can be found in Tables 12 and 13.

Both show significant effects for the definiteness of the recipient and the theme, the

givenness of the theme and the length difference between the theme and the recipient.

The coefficients also show the same polarity, and their correlation is high (0.97).24

The semi-automatic model contains one extra effect: the number of the recipient.

As we found for the person of the recipient in the intrinsic evaluation (Sect. 4), this

difference seems to be the result of slight differences in the annotation guidelines.

Whereas we use a purely syntactic definition, the annotation in Bresnan et al. (2007)

is semantic. For instance, when speaking about a hypothetical person, speakers

sometimes switch to plural them to refer to such persons. We label them as plural,

while the annotations in SWB-TRAD call it singular. This was the case in 38 of the 64

disagreeing annotations. For 14 more, the disagreement was caused by a different

treatment of the noun people, being semantically plural (a group of persons), but

syntactically singular (plural: peoples).

The traditional model contains four more significant effects that were not found

in the semi-automatic model: the pronominality of the theme, the animacy of the

recipient, the givenness of the recipient and the pronominality of the recipient.

24 Again, we standardised length difference by multiplying the b by the standard deviation of the feature

in the data.
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For the latter three, the problem is that they are correlated: all three very frequently

have the same value. This is because many recipients consist of personal pronouns

only, and they are always pronominal, definite and discourse given, and animate

most of the time. Because these features are correlated, it is not surprising that not

all of them show up in the semi-automatic model, which is based on fewer data

points than the traditional model.

Table 11 Prediction accuracy and concordance C for the model fit (Acc, C) and in tenfold cross-

validation (av. Acc, av. C), for SWB-TRAD and SWB-SEMI

Data set Majority N Acc av. Acc SD C av. C SD

SWB-TRAD 0.788 2,349 0.933 0.927 0.015 0.972 0.967 0.014

SWB-SEMI 0.830 1,292 0.957 0.954 0.026 0.975 0.969 0.021

The majority baseline and the number of instances are also provided

Table 12 Significant features in the model built on the 2,349 instances in SWB-TRAD

Feature b av. b SD p av. p SD

(Intercept) 0.30 0.32 0.14 0.605 0.602 0.153

DefRec = in 0.89 0.89 0.09 0.003 0.007 0.008

DefTh = in -1.62 -1.63 0.13 0.000 0.000 0.000

PrnRec = p -0.78 -0.78 0.09 0.008 0.015 0.011

PrnTh = p 1.49 1.48 0.08 0.000 0.000 0.000

GivTh = non -1.43 -1.43 0.11 0.000 0.000 0.000

GivRec = non 1.31 1.32 0.08 0.000 0.000 0.000

LenDif -1.61 -1.62 0.07 0.000 0.000 0.000

AnRec = in 1.87 1.88 0.07 0.000 0.000 0.000

The coefficients b for the model fit are provided, together with the average bs in the ten separate models

in the tenfold cross-validation, and their standard deviation. Also, the p-values for the model fit are

shown, as well as the average p-values in the ten separate models, with their standard deviation

Table 13 Significant features in the model built on the 1,292 instances in SWB-SEMI

Feature b av. b st.dev p av. p st.dev.

(Intercept) 1.54 1.57 0.15 0.009 0.012 0.008

DefRec = in 3.55 3.56 0.20 0.000 0.000 0.000

DefTh = in -2.09 -2.10 0.20 0.000 0.001 0.002

GivTh = non -1.58 -1.59 0.20 0.004 0.007 0.005

LenDif -3.60 -3.62 0.16 0.000 0.000 0.000

NrRec = sg -0.93 -0.93 0.06 0.003 0.005 0.002

Again, the coefficients b for the model fit are provided, together with the average bs in the ten separate

models in the tenfold cross-validation, and their standard deviation. Also, the p-values for the model fit

are shown, as well as the average p-values in the ten separate models, with their standard deviation
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As with the models for the ICE data, we see some differences between the

models built on SWB-TRAD and on SWB-SEMI. But these differences do not seem to be

caused by the quality of the automatic approach, but by difficulties in the data itself:

the use of different annotation definitions and the correlation of many of the

features. The low recall of 55.0% may explain the lack of significance for some of

those correlated features.

6 General discussion

Besides the difficulty of collecting a suitable data set that can be used to model

variation in language (e.g. syntactic alternation), linguists taking such a modelling

approach have a more fundamental challenge to meet. When using modelling

techniques such as logistic regression, one models the data that is offered. Two

different data sets, though drawn from the same population, can result in different

models because their composition differs. Because we use two different samples

(traditional and automatic) from the English language as represented in the ICE-GB

and Switchboard corpora, this accidental composition could affect the models. It is

not clear whether the traditional set is closer to the actual English language than the

automatic set. The models found for either of the data sets are not necessarily true, and

the features that show no significance in our models could still play a role in another

data set. Moreover, there is still no consensus about the definitions of the features we

have employed. The definitions we used for this article are chosen such that they allow

comparison with previous work (Bresnan et al. 2007; Theijssen 2010), but they are by

no means definitive. Moreover, we have seen that even the definitions of which we

believed they were the same, appeared to be slightly different after all.

The effect of the composition of a data set usually grows when data sets become

smaller. In the near future, we will therefore apply the procedure to a larger corpus:

the one-hundred-million-word British National Corpus (BNC Consortium, 2007).

The results found for this data set may show whether the almost significant effects

turn up really significant when larger amounts of data are considered. A possible

drawback is that we have shown that a fully automatic approach is not accurate

enough. Instead, we need a semi-automatic approach in which we manually filter the

candidates suggested by the parser. For a large corpus as the BNC, this step may

take considerable time. However, some preliminary annotation work shows that the

manual checking is not as time-consuming as one would think: with the help of a

user-friendly interface, one can check up to 200 candidates per hour. Moreover, the

inter-annotator agreement for this task is comforting: an average j of 0.74 (for four

annotators who all checked the same 100 candidates).

One might wonder if the human intervention is still needed when employing a

different parser. In this article, we have decided to use an off-the-shelf syntactic

parser that distinguishes both dative constructions explicitly. Parsers that have this

information available are rare, and we believe human intervention will always be

necessary. Of course, such a manual step, in which one checks the candidates

suggested by the parser, can also be performed on the output of other parsers that

may or may not recognise dative constructions explicitly. One could for instance
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decide to employ a parser that does not distinguish between prepositional dative

constructions and locative constructions (e.g. I brought him to school), but that

yields a higher recall. Another possibility is to improve an existing parser by

training on data that is similar to the data studied. However, this is a difficult

procedure that requires one to have experience with parsing. Our approach has

shown that even with an off-the-shelf parser, that yields a low recall, sensible data

sets can be obtained. This is a promising result for corpus linguists who study a

syntactic phenomenon but do not have access to syntactically annotated data.

In fact, the semi-automatic approach is also suitable for research on different

syntactic alternations. One could select a parser that seems to perform well on the

construction in question, and then manually check the proposed candidates. When

seeing recurring patterns, one can add simple heuristic rules like we formulated for

the dative alternation. Next, one can use the feature extraction script presented in

this article.25 Many of the features included in the script are generally known to be

relevant for other syntactic alternations, as already noted in Sect. 1. The script

should be provided with three bits of information for each noun phrase that needs

annotation: (1) which word is the syntactic head, (2) what are the lemmas of the

words in the noun phrase, and (3) what are the POS tags of these words. Using a

different parser would thus mean that the extraction script needs some adjustments.

For establishing the discourse givenness, it also needs to have the preceding context.

The selection of a corpus thus also leads to the need for some minor changes in the

extraction script, so it can deal with the corpus input provided.

7 Conclusion

In this article, we have addressed the question of whether automatically obtained

and enriched data is suitable for use in linguistic research on syntactic alternations,

even if the data may contain errors. We have taken the English dative alternation as

a case study. This offered us a way to evaluate the automatically obtained data

extrinsically, namely by employing it to build logistic regression models like those

in Bresnan et al. (2007). We employed two data sets that were manually obtained:

930 instances collected by Theijssen (2010) from the ICE-GB corpus of spoken and

written British English (ICE-TRAD), and 2,349 instances collected by Bresnan et al.

(2007) from the Switchboard corpus of spoken American English (SWB-TRAD). The

first data set has been employed to tailor the automatic approaches, and to evaluate

the errors made. The second data set has not been seen previously, and has been

used as a test set in quantitative evaluations. With respect to the aforementioned

question, there are two main conclusions to be drawn.

First, we have to conclude that the FDG parser that we employed is not very

successful in detecting instances of the dative alternation. In combination with our

filtering heuristics, the recall was 66.6% for the instances found automatically in the

ICE-GB (ICE-AUTO) and 55.0% for those found in Switchboard (SWB-AUTO). For

precision, we reached 69.6% for ICE-AUTO and only 48.0% for SWB-AUTO. The

25 The feature extraction script can be downloaded from http://lands.let.ru.nl/*daphne/downloads.
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analysis of the errors in ICE-AUTO showed that the FDG parser has most difficulty with

spoken material, with longer sentences and with PP-attachment. Parse errors were the

main cause of missing instances (decreasing recall) and incorrectly accepting

candidates (decreasing precision). Seeing the nature of the Switchboard data

(spontaneous speech only, with many disfluencies), it is not surprising that the FDG

parser has great difficulty recognising dative constructions. The regression model for

ICE-AUTO contained four significant effects that were not found for ICE-TRAD. We

concluded that ICE-AUTO contained too many errors to give the same—or at least

similar—results as those obtained for ICE-TRAD. We solved this problem by inserting

one (simple) manual step: manually checking the relevance of the candidates that

were found automatically, before annotating the approved instances automatically.

The model built on only the 633 instances that were manually approved (ICE-SEMI)

appeared to be very similar to the one found for ICE-TRAD. This is also what we found

for the 1,292 approved candidates in the semi-automatic Switchboard set (SWB-SEMI).

Second, we conclude that our rather straight-forward feature extraction algorithm is

suitable for automatically annotating the instances with information that is syntactic

(e.g. number), semantic (e.g. animacy) and discourse-related (e.g. givenness) in

nature. The j scores between the manual and the automatic annotations were similar to

scores found between human annotators, except for the intuitively most difficult

features: animacy, concreteness and discourse givenness. Only the automatic

annotation of the concreteness of theme was so dissimilar from the human annotations

that it notably influenced the regression models. When excluding this feature, the

models built on ICE-SEMI and SWB-SEMI (with the automatic annotations) were very

similar to the ones obtained for ICE-TRAD and SWB-TRAD (with manual annotations).

The differences we found did not seem to be caused by the errors in the automatic

annotations, but by properties inherent to the data sets: multiple correlations between

the features, and the presence of different definitions for the same feature.

In sum, we see that the models found for the automatic data sets are especially

hampered by the presence of candidates that are not really instances of the dative

alternation, but that were included due to errors in the automatic analyses. We also

have to conclude that establishing the concreteness of nouns automatically is a

bridge too far. But when the instances found are manually checked for relevance,

and concreteness is left out of consideration, the models found are very similar to

the ones found for traditionally established data sets.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

Appendix: annotation of the features in the traditional sets

Animacy of recipient (AnRec)

Following Bresnan et al. (2007), the animacy of the recipient was annotated as a

binary feature: it was labelled either animate (human and animal) or inanimate (not
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human or animal). Companies and organizations were considered animate when it

was evident from the context that the writer meant the people working in these

institutions.

Concreteness of theme (ConTh)

For the annotation of the concreteness of the theme, the instructions in Bresnan

et al. (2007) were not very clear, except that the feature again allowed only two

values: either concrete or abstract. We decided to follow Garretson (2003), in which

a noun phrase is deemed concrete if it is prototypically concrete. We assumed that

prototypically concrete objects have a known physical size. The themes that did not

fit this description were labelled abstract.

Definiteness of recipient and theme (DefRec, DefTh)

For both the recipient and the theme we annotated the definiteness. All (syntactic)

object heads that were preceded by a definite article, a genitive form or a definite

pronoun (e.g. demonstrative and possessive pronouns), and all objects that were

proper nouns or definite pronouns themselves, were annotated as definite. The

remaining objects were given the value indefinite.

Discourse givenness of recipient and theme (GivRec, GivTh)

A recipient or theme was labelled given when it was mentioned in the preceding

context (maximally 20 clauses before). We also considered an object given when it

was stereotypical of something mentioned in the preceding context, or when it was

part of the writing context (e.g. the newspaper article itself, or the reader). You, one
and us as impersonal pronouns were annotated as given as well. All remaining

objects received the value new.

Number of recipient and theme (NrRec, NrTh)

Recipients and themes were annotated for number: singular or plural. In case a

recipient or theme could refer to something singular or plural (which is especially

the case with the pronoun you), the antecedent was checked.

Person of recipient (PrsRec)

Person of recipient was annotated by giving it the value local or nonlocal. Local recipients

are in first or second person (e.g. I, me, yourself), non-local ones in third person.

Pronominality of recipient and theme (PrnRec, PrnTh)

We also annotated whether the recipient and the theme were (syntactically) headed

by a pronoun and thus pronominal, or not (nonpronominal). We treated all types of
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pronouns as such, including for instance indefinite and relative pronouns like all and

that.

Length difference (LenDif)

An important factor in clause word order is the so-called principle of end weight
(e.g. Quirk et al. 1972), which states that language users tend to place the more

complex constituents at the end of an utterance. Bresnan et al. (2007) therefore

included a feature indicating the length difference between the recipient and the

theme. Following their approach, we used a Perl script that counts the number of

words in the recipient and the theme by splitting on white space, and takes the

natural log of these lengths to smoothen outliers. The length difference is then

calculated by subtracting the recipient length from the theme length.
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Daudaravičius, V., & Marcinkevičiene, R. (2004). Gravity counts for the boundaries of collocations.

International Journal of Corpus Linguistics, 9(2), 321–348.

Evaluating automatic annotation 597

123

http://www.natcorp.ox.ac.uk
http://www.csie.ntu.edu.tw/cjlin/libsv


Fellbaum, C. (Ed.). (1998). WordNet: An electronic lexical database. Cambridge, Massachusetts, USA:

MIT Press.

Garretson, G. (2003). Coding manual for the project ‘‘Optimal typology of determiner phrases’’.
Unpublished manuscript, Boston University.

Girju, R., Roth, D., & Sammons, M. (2005). Token-level disambiguation of VerbNet classes. In K. Erk,

A. Melinger, & S. Schulte im Walde (Eds.), Proceedings of the interdisciplinary workshop on the
identification and representation of verb features and verb classes (pp. 56–61).

Godfrey, J. J., Holliman, E. C., & McDaniel, J. (1992). Switchboard: Telephone speech corpus for

research and development. In Proceedings of ICASSP-92 (pp. 517–520) San Fransisco, USA.

Gomes, C. A. (2003). Dative alternation in Brazilian Portuguese: Typology and constraints. Language
Design: Journal of Theoretical and Experimental Linguistics, 5, 67–78.

Greenbaum, S. (Ed.) (1996). Comparing English worldwide: The international corpus of English. Oxford,

UK: Clarendon Press.

Gries, S. T. (2010). Useful statistics for corpus linguistics. In A. Sánchez & M. Almela (Eds.) A mosaic of
corpus linguistics: Selected approaches (pp. 269–291). Germany: Peter Lang, Frankfurt am Main.

Gries, S. T., & Stefanowitsch, A. (2004). Extending collostructional analysis: A corpus-based perspective

on ‘Alternations’. International Journal of Corpus Linguistics, 9(1), 97–129.

Grimm, S., & Bresnan, J. (2009). Spatiotemporal variation in the dative alternation: A study of four
corpora of British and American English. Third International Conference Grammar and Corpora.

Grondelaers, S., & Speelman, D. (2007). A variationist account of constituent ordering in presentative

sentences in Belgian Dutch. Corpus Linguistics and Linguistic Theory, 3(2), 161–193.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data

mining software: An update. SIGKDD Explorations, 11(1), 10–18.

Harris, Z. (1954). Distributional structure. Word, 10(23), 146–162.

Hinrichs, L., Smith, N., & Waibel, B. (2007). The part-of-speech-tagged ‘Brown’ corpora: A manual of
information, including pointers for successful use. Department of English, Albert-Ludwigs-

Universität Freiburg.

Izenman, A. J. (2008). Modern multivariate statistical techniques: Regression, classification, and
manifold learning. New York, USA.: Springer

Joanis, E., Stevenson, S., & James, D. (2008). A general feature space for automatic verb classification.

Natural Language Engineering, 14(3), 337–367.

Kabadjov, M. A. (2007). A comprehensive evaluation of anaphora resolution and discourse-new
classification. PhD thesis. Department of Computer Science, University of Essex.

Keller, F., Corley, M., Corley, S., Crocker, M. W., & Trewin, S. (1999). Gsearch: A tool for syntactic

investigation of unparsed corpora. In Proceedings of the EACL workshop on linguistically
interpreted corpora (pp. 56–63).

Kipper, K., Dang, H. T., & Palmer, M. (2000). Class-based construction of a verb lexicon. In Proceedings
of the 17th national conference on artificial intelligence (AAAI-2000) (pp. 691–696).

Korhonen, A. (2009). Automatic lexical classification—Balancing between machine learning and

linguistics. In Proceedings of the 23rd Pacific Asia conference on language, information and
computation (pp. 19–28).

Kuijjer, C. (2007). Semantic lexicon expansion using bootstrapping and syntax-based, contextual
extraction patterns. Master’s thesis, Information Sciences, University of Amsterdam.

Lapata, M. (1999). Acquiring lexical generalizations from corpora: A case study for diathesis alternations.

In Proceedings of the 37th annual meeting of the association for computational linguistics (ACL’99)
(pp. 397–404).

Lapata, M., & Brew, C. (2004). Verb class disambiguation using informative priors. Computational
Linguistics, 30(1), 45–73.

Levin, B. (1993). English verb classes and alternations: A preliminary investigation. Chicago, USA: The

University of Chicago.

Li, J., & Brew, C. (2008). Which are the best features for automatic verb classification. In Proceedings of
the 46th annual meeting of the association for computational linguistics (pp. 434–442).

McCarthy, D. (2001). Lexical acquisition at the syntax-semantics interface: Diathesis Alternations,

Subcategorization Frames and Selectional Preferences. PhD thesis, University of Sussex.

Nancarrow, O., & Atwell, E. (2007). A comparative study of the tagging of adverbs in modern English

corpora. In Proceedings of corpus linguistics 2007 (CL2007).

598 D. Theijssen et al.

123



Ng, V., & Cardie, C. (2002). Identifying anaphoric and non-anaphoric noun phrases to improve

coreference resolution. In Proceedings of the 19th international conference on computational
linguistics (COLING-2002) (pp. 730–736).

Oostdijk N. (1996) Using the TOSCA analysis system to analyse a software manual corpus. In

R. Sutcliffe, H. Koch, & A. McElligott (Eds.), Industrial parsing of software manuals. Amsterdam:

The Netherlands: Rodopi.
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