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Abstract
Background: The ever-increasing flow of gene expression and protein-protein interaction (PPI)
data has assisted in understanding the dynamics of the cell. The detection of functional modules is
the first step in deciphering the apparent modularity of biological networks. However, most
network-partitioning algorithms consider only the topological aspects and ignore the underlying
functional relationships.

Results: In the current study we integrate proteomics and microarray data of yeast, in the form
of a weighted PPI graph. We partition the enriched PPI network with the novel DetMod algorithm
and we identify 335 modules. One of the main advantages of DetMod is that it manages to capture
the inter-module cross-talk by allowing a controlled degree of overlap among the detected
modules. The obtained modules are densely connected in terms of protein interactions, while their
members share up to a high degree similar biological process GO terms.

Moreover, known protein complexes are largely incorporated in the assessed modules. Finally, we
display the prevalence of our method against modules resulting from other computational
approaches.

Conclusion: The successful integration of heterogeneous data and the concept of the proposed
algorithm provide confident functional modules. We also proved that our approach is superior to
methods restricted to PPI data only.

Background
One of the key issues left at the hands of bioinformatics to
be solved, is the deciphering of the complex organization
of biological networks. In recent years, many studies have
focused on determining small-scale subnetworks with dis-
tinct functional role, called functional modules [1,2].
Toward this goal assistance is provided by high through-

put techniques such as yeast two hybrid system [3], pro-
tein complex identification by mass spectrometry [4,5]
and microarray expression profiles [6,7] that generated
large amounts of data regarding proteins and genes. How-
ever, the challenging task is to integrate these data sources
in a manner that will lead to more reliable and valid func-
tional modules.
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Following this concept all state-of-the-art approaches
have elaborated on protein-protein interaction (PPI) net-
works, where the in-between interactions reflect the direct
collaboration of proteins to achieve a certain task. Never-
theless, this data is flooded with many false interactions,
thus it is already established that functional modules
descending solely from this data are often considered as
unconfident and misleading. In literature several are the
studies that concentrated on an unweighted PPI graph,
despite the disadvantages posed by topology. The study of
Rives and Galitski applied a hierarchical clustering algo-
rithm based on shortest-distance as a metric to unravel the
modular organization of yeast network [8]. Spirin and
Mirny combined clique detection, superparamagnetic
clustering (SPC) and Monte Carlo optimization (MC) to
identify functional modules [9]. Recently, works like the
one of Xiong and colleagues detected 'hypercliques', i.e.
functional modules, in the yeast protein network via an
association pattern discovery method [10].

Fewer were the attempts to enrich the PPI topology with
gene expression data in the form of a weighted graph. The
underlying concept is that genes with similar expression
profiles are under the same transcriptional control and
functionally associated [11]. Nevertheless, there are many
cases where functionally related genes show dissimilar or
even inverse expression profiles [12]. Despite the inherent
noise embedded in this data and the fact that many of the
yielded interactions are indirect, it provides significant
information about genes under more perturbations in
comparison to PPI data [13]. Lately studies that integrated
these data with various ways prevailed in terms of func-
tional modules over other methods that used PPI or gene
expression data only [14]. Expression profiles can act as
reinforcement on the PPI graph resulting to more valid
and densely connected modules. The concept of integra-
tion has already been examined by works like [15], which
validated that the members of permanent complexes are
co-expressed, whereas the scene changes in transient com-
plexes or in PPIs resulting from yeast two hybrid assay.
Earlier studies also [16,17] examined the correlation
between expression levels and protein abundance. In
addition, recent studies concentrated on inferring gene
function based on both data sources [18-20].

Recently, the majority of contemporary studies integrate
PPI and gene expression profiles to detect biologically
meaningful clusters or modules [21,14,22]. However
most of the applied clustering techniques suffer from seri-
ous restraints. Studies like the one of Segal and colleagues
have developed a probabilistic model where the input
number of clusters was predefined and proteins were
assigned to one cluster only [23]. Another deficit of these
methods is that they produce discrete protein clusters,
depicting roughly the real network that is characterized by

inter-module crosstalk and overlap among the module
members. Other shorthand is that graph clustering algo-
rithms ignore proteins that are not topologically favored,
even if these interactions are experimentally proved
[9,24].

In current study we propose a method for determining
functional modules based on the integration of PPI and
gene expression profiles. The extraction of functional
modules is performed by a novel graph clustering algo-
rithm named DetMod (Detect Modules) that overcomes
all the drawbacks mentioned above. Firstly DetMod algo-
rithm identifies valid modules and subsequently allows
the modules to merge, in cases where the merging proce-
dure leads to better results.

One of the main characteristics of DetMod is that the
extracted modules may display a controlled degree of
overlap concerning their members, thus the inter-module
crosstalk is preserved and a more realistic estimation of
the protein network is acquired. In the literature there are
other algorithmic approaches that can produce overlap-
ping modules [24,25]. However most of them suffer from
certain disadvantages like in the case of [25], where there
is a loss of information, since the clustering of the graph
is based on the selection of a certain number of "inform-
ative proteins" and not over the whole number of proteins
as in the case of DetMod. Other applications like MCODE
[24], fail to associate a large number of proteins with any
functional module [26,27].

We validate the functional modules extracted from Det-
Mod through biological and topological criteria, and by
comparing our method with other PPI module detecting
approaches and graph clustering algorithms [28].

We prove based on data of Saccharomyces cerevisiae that
our method provides modules with functional and topo-
logical consistency and prevails over similar studies in lit-
erature.

Results
We realized the concept of our approach based on yeast
proteomics and microarray datasets. Firstly we integrated
these datasets in the form of a weighted PPI graph. Next
the enriched PPI graph was partitioned according to Det-
Mod algorithm. The proposed algorithm performs cluster-
ing on the weighted graph structure determining
functional modules with controlled overlap as described
in detail at the Methods section. The 335 identified func-
tional modules were tested concerning their connectivity
density, their coverage in protein complexes and their
functional enrichment in biological process GO terms. At
the same time we compare, by means of these validation
criteria, our modules with artificial modules and modules
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resulting after applying MCL algorithm (called also PPI
method) to our PPI dataset [29,30].

Although, during the last years several algorithms [24-26]
have been applied to the problem of determining func-
tional modules, there are studies [27] that have shown
that MCL is especially efficient, compared to others, in
identifying protein complexes from PPI nets. The concept
of MCL is to find clusters through iterations of expansion
and inflation that promote the densely connected regions
and decline the sparsely connected regions, respectively.
In the end the process converges toward a partition of the
graph, where the high-flow regions (clusters) are sepa-
rated with limits from regions with no flow.

Data sources
We tested the performance of our method based on data
of Saccharomyces cerevisiae. An important issue is reliabil-
ity, when dealing with PPI data from high-throughput
techniques [31,32,5]. We decided to use highly reliable
data descending from two studies [33,34], which assigned
a confidence score to every interaction. From the first
study we selected interactions of high and medium confi-
dence and excluded the low ones. The second study
assigned a likelihood ratio to every interaction and we
chose interactions with likelihood ratio larger than 1, a
limit also regarded as reliable by the authors. After com-
bining these data sources, we ended up with 3250 pro-
teins and 10750 interactions among them (without self
connecting links). The final network consists of a large
component of 2800 proteins and 137 smaller compo-
nents with less than 5 members.

The gene expression data of the corresponding proteins is
derived from a study that contains cell cycle related pro-
files using cdc15 synchronization over three cell cycles
[35]. The expression data is available in the form of a
matrix with N rows and D columns. The columns repre-
sent the 24 time points and the rows the gene profiles dur-
ing the cell cycle. We selected cell cycle data because it
elevates the dynamic character of genes during the phases
of the cycle and appoints the periodicity of specific genes
at certain phases, revealing their cell-cycle regulation.

The initial stage of our approach involved the clustering of
expression profiles by SSFKCN algorithm [36]. SSFKCN
uses GO information to semi-supervise the clustering of
gene expression profiles, and can automatically determine
the number of clusters. We enhanced the performance of
SSFKCN by providing GO information for 15% of the
genes, to acquire more biologically valid clusters with
their members sharing the same functional annotation.
The algorithm resulted in 18 clusters and their functional
enrichment in biological process GO terms was checked
via the SGD GO Term Finder http://db.yeastgenome.org/

cgi-bin/GO/goTermFinder[37]. This tool showed that all
clusters display statistical over-representation of GO terms
beyond what would be expected by chance, with the
respective p-values smaller than e-10.

Next we weighted the PPI graph according to the proce-
dure described in the Methods section. Lastly, DetMod
algorithm was applied in the enriched large component of
the graph and 335 modules were determined. In these
335 modules, 2384 proteins (85.2%) of the large compo-
nent are contained. In regard to the overlap displayed
between modules, we set such parameters to the algo-
rithm so that the allowed overlap was limited to 35%.
After examining all 335 modules, we observed that 181
(54.2%) modules had no common members with any
other modules.

Connectivity density
The first criterion applied to our 335 determined modules
is connectivity density. This metric is the ratio of the total
in-module degrees of the vertices to the total number of
their connections and depicts how well connected are the
members of the module. Many studies have used this top-
ological metric, which ranges between 0 and 1, and it has
already been established that functional modules should
have connectivity density between 0.5 and 1 to fit this def-
inition [14]. As the value of this metric, increases more
dense structures are acquired.

Apart from just analysing our modules in terms of this
metric we compared their connectivity density with artifi-
cial modules. We achieved this, through a randomization
procedure, where we replaced 25% of the members of the
modules with others that connect to the members of the
modules but do not belong to the original ones. This ran-
domized replacement was realized iteratively 10 times for
each one of the 335 modules, and the average connectiv-
ity density was estimated.

Additionally, we calculated the connectivity density of
another set of modules that descended after applying the
MCL algorithm to our PPI dataset. In Figure 1, we com-
pare the density of the DetMod modules with the artificial
and MCL modules (called otherwise control methods).
All DetMod modules have superior connectivity density
comparing to the modules of control methods. This
observation elevates the ability of DetMod to produce
modules with self-reliance and topological consistency.

GO annotations
The second criterion involved the GO (Gene Ontology)
annotation scheme. To gain insights into the underlying
biological processes of the modules, we used the SGD GO
term Finder [37]. This tool estimates the p-value of the
biological process GO terms found in a module. This p-
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value represents the probability of observing the co-occur-
rence of certain proteins with the same GO annotation in
a module by chance based on binomial distribution. The
statistical significance of a module in a GO term is
increased as the p-value gets lower.

Specifically, we examined DetMod modules and control
(artificial and MCL) modules to see in which case the p-
values were better. It is apparent from Figure 2, that 65%
of DetMod modules have p-value bins larger than 9. On
the contrary, the majority (85%) of artificial modules has
p-value bins ranging between 1 and 9 and the majority
(85%) of MCL modules have p-value bins fluctuating

between 1 and 12. This observation is a very strong indic-
ative that our integrated method encapsulates in the same
module proteins that participate in the same biological
processes and even a partial replacement of these proteins
(i.e. artificial modules) ruins the functional robustness of
the module. DetMod, also outperforms MCL algorithm,
indicating once again that the integration of the two kinds
of data and the concept of DetMod are superior to meth-
ods restricted to PPI data only.

Protein complex overlap
A significant validation criterion of our approach was to
analyze modules in terms of protein complexes they con-

Scatter plots of statistical metrics for DetMod and control modules (artificial and MCL)Figure 1
Scatter plots of statistical metrics for DetMod and control modules (artificial and MCL). Each data point repre-
sents statistical value for a specific DetMod functional module (x-axis) and its corresponding control modules (y-axis). The 
dashed line corresponds to the line y = x. When a data point is below the line then the control module has a lower statistical 
value than the actual one, while the opposite stands for the case a data point is above the line. When the data point is on the 
line it means that the derived and its corresponding control module have the same value. In the case of artificial modules each 
datapoint is the average of 10 randomized replacements. It is evident that all DetMod modules have better connectivity density 
than the control modules.
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tain. It is known that protein complexes are by definition
very close to the concept of functional modules, since they
represent assemblies of proteins that interact up to a great
degree and carry out distinct biological activities [38].
Thus, it was important to clarify whether or not our mod-
ules encompassed whole protein complexes (annotated
by the Comprehensive Yeast Genome Database at MIPS
[39]) in their entirety or just parts of them. This database
contains 315 protein complexes and it is worth mention-
ing that 188 complexes (59.7%) have less than 5 mem-
bers, 127 complexes (40.3%) have 5 or more members
and 111 complexes have strictly 5 members. The overlap
between each complex and a functional module was iden-
tified and the degree of overlap to complex size was calcu-
lated. As it is shown in the histogram of Figure 3, 115
complexes were detected in their entirety. Knowing that
small complexes with 5 or less members could be incor-
porated in modules by chance, we investigate separately
the overlapping degree of complexes with more than 5
members (inset histogram). It is evident in this case also
that 42 such complexes (33.1% of the 127 complexes)
were almost completely identified while 85 complexes
(67% of the 127 complexes) were found up to a great
degree (80% coverage).

Additionally it was of great importance to prove that the
modules of our integrated approach were biologically
more meaningful than the modules extracted from other
methods. In order to have a more objective comparison
we have evaluated our approach and DetMod algorithm,
against not only the PPI method but also with other clus-
tering algorithms that could provide overlapping modules

as well as against a method that could benefit from the
enriched graph structure we have created.

A characteristic example of an algorithm that can produce
overlapping clusters is the case of MCODE [24]. One
major drawback of this algorithm is that a large portion of
the proteins are not part of any modules. Indeed when we
applied MCODE with the default settings, on our data set
(results not shown) we found that more than 40% of the
proteins were not members of any functional module.
Next step was to compare our method against a clustering
algorithm that could be applied to the enriched weighted
graph we have created. An algorithm such as this is k-
metis [28] that has been applied with success in various
fields including the one of Systems Biology. We have
applied k-metis on the weighted graph that we applied
DetMod, providing this way k-metis with the same
amount of information as we did for DetMod. One of the
disadvantages of k-metis is that it cannot determine auto-
matically the number of the clusters. We have run the
algorithm ten different times and kept the best results.

The plot of Figure 4, shows that all DetMod modules have
by far higher degree of protein complex overlap than MCL
modules and few are the cases were these degrees are
equal. This remark corroborates that the corner-stone of
our method, i.e. the integration of different kinds of data,
fulfils more successfully the biological interpretation of
the term 'functional module'. Additionally, DetMod algo-
rithm proved to be able to acquire by far better results
than other graph clustering algorithms, like k-metis, when
given the same amount and kind of biological data.

In this diagram the functional enrichment of modules in biological process GO terms is checked by means of p-valueFigure 2
In this diagram the functional enrichment of modules in biological process GO terms is checked by means of p-
value. As the p-value bin gets larger the more robust is a module with regard to the biological process it carries out. It is evi-
dent that the majority of control modules have p-value bins ranging between 1–12, while DetMod modules between 9 and 18.
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Discussion
In this study, we integrated gene expression and protein-
protein interaction data of Saccharomyces cerevisiae in the
form of a weighted PPI graph. Then, we applied the novel
DetMod partition algorithm at the main component of
the graph and 335 functional modules were identified in
the yeast protein-protein interaction network. We vali-
dated these modules by examining their connectivity den-
sity, their functional enrichment in biological process GO
terms and their coverage in protein complexes.

The challenging task was to unify the two types of data in
a manner that would lead to more valid functional mod-
ules. Our network in particular is very complex since it
consists of 3250 proteins with 10750 interactions. We
chose to weight every interaction via the corresponding
gene expression profiles to lessen the burden of false inter-

actions and acquire better functional modules. Interest-
ingly, the weight serves in many cases as a savior for
interactions that are not favored topologically but are
experimentally verified. After all it is already established
that domain knowledge over the strength of connections
can promote network analysis [40,41]. Then the DetMod
clustering algorithm incorporates the weights into the par-
titioning process, leading to more confident modules. Fol-
lowing the definition of our weight metric, small weight
represents enhanced relation. This means that transient or
unstable interactions will have large weights due to the
less correlated expression profiles. However, the proposed
algorithm takes into account not only the weights but the
topology as well, because it is highly desirable the
obtained modules to be densely connected. Therefore,
while the topology emphasizes the significance of, includ-
ing highly interacting partners the weights reassure that

In this histogram the degree up to which protein complexes are incorporated in DetMod functional modules is displayedFigure 3
In this histogram the degree up to which protein complexes are incorporated in DetMod functional modules is 
displayed. Thus all protein complexes annotated by CYGD were set against DetMod modules and the ratio of overlap to 
complex was estimated. The inset histogram refers to the fraction of protein complexes with five or more protein members.
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the resulting modules will be biologically valid. Several
studies like [14] have already shown that the subnetworks
obtained from a weighted graph have higher probability
to represent the real functional modules.

The fast DetMod algorithm we propose was proved suc-
cessful in the detection of functional modules. Its concept
surpasses many drawbacks of current graph clustering
algorithms, such as the input number of clusters [23]. It is
already mentioned that DetMod incorporates in its proce-
dure another algorithm called DMSP, which starts from a
randomly selected 'seed' protein. DetMod produces
through the merging procedure, modules that display
overlap concerning their members and this attribute
makes our modules more realistic. In order for us to show
the superiority of our integrated approach and the con-
cept of DetMod, we applied the MCL algorithm to our PPI

dataset. Furthermore, we created artificial modules, result-
ing from partial replacement of the members of DetMod
modules. These two control methods were checked by all
validation criteria as a measure of comparison.

Specifically, the first validation criterion is connectivity
density, a topological metric that shows how densely con-
nected are the modules. We proved that DetMod modules
have by far improved connectivity density from both con-
trol methods. An example is the module (12 members)
characterized by the GO terms mRNA processing (GO:
0006397) and mRNA polyadenylation (GO: 0006378)
with p-value smaller than e-15. The second term refers to
the enzymatic addition of a sequence of 40–200 adenylyl
residues at the 3' end of a eukaryotic mRNA primary tran-
script [42]. This module has connectivity density over 0.8
and is a representative example of our approach, because

In this plot DetMod, MCL, and Metis extracted modules are compared in terms of protein complex overlapFigure 4
In this plot DetMod, MCL, and Metis extracted modules are compared in terms of protein complex overlap. In 
the x-axis we represent the degree of overlapping found for a specific protein complex, in a specific functional module. In the 
y-axis we represent the number of protein complexes found for a specific degree of overlap.
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it depicts the ability of DetMod to detect modules where
all members share the same functional annotation. In case
of another clustering algorithm where the input number
of clusters is predefined, this small module would proba-
bly be part of a larger one; thus it would lose the distinct
identity that has in our partitioning process. It was consid-
ered significant from the beginning that the obtained
modules should contain as many members so that the
connectivity density does not drop over 0.5. The identifi-
cation of this module by DetMod can be interpreted
byway; it incorporates members that entered the module
after complying with the gene expression requirements
but also its members have strong functional correlation
on the PPI network.

The second criterion involves the characterization of func-
tional modules in terms of biological process GO terms. It
is essential for the modules to comprise proteins that carry
out a certain task and this estimation is quantified using
p-value. An example is a 12 member module character-
ized by the terms 'mitochondrial translocation' (GO:
0006628) and 'organelle organisation and biogenesis'
(GO: 0006996) with p-value smaller than e-15 in both
cases. The first term refers to the translocation of proteins
across the mitochondrial membrane. In the presence of a
translocating chain, the outer membrane import machin-
ery (MOM complex) and the inner membrane import
machinery (MIM complex) form translocation contact
sites as a part of the membrane preprotein import
machinery [43]. However this term is considered obsolete
and its updated annotation is 'protein targeting to mito-
chondrion' (GO: 0006626) or its children. The second
term is a process that is carried out at the cellular level
resulting in the formation, arrangement of constituent
parts, or disassembly of any organelle within a cell. It is
obvious that the two terms are correlated with the second
having a broader meaning.

Another interesting example is two modules (16 and 23
members) that have 3 common members and both are
characterized with the GO term 'ubiquitin-dependent
protein catabolic process' (GO: 0006511). It involves all
the chemical reactions and pathways responsible for the
breakdown of a protein or peptide by hydrolysis of its
peptide bonds, starting from the covalent attachment of
an ubiquitin moiety, or multiple ubiquitin moieties to the
protein. One would expect that these two modules should
be merged into one module but this split occurred for var-
ious reasons. Firstly the PPI data used in our study is ade-
quate but in some cases can be proved insufficient. The
two modules are topologically separated due to sparse
connections between them. Additionally, these few con-
nections had quite large weight, thus during the construct-
ing procedure they were considered as barrier between
two densely connected modules. Nevertheless, this aspect

should not be regarded as a defect of our method, because
the introduced merging of modules bridges the gap men-
tioned above. Figure 2 constitutes the proof that our mod-
ules surpass the control modules in regard to GO terms. It
was expected the MCL modules would have smaller p-
value bins, because this algorithm produces necessarily
modules based solely on the topology. Another explicit
property of DetMod algorithm is that the partitioning pro-
cedure starts from a seed protein, directing in this way the
clustering process toward specific domains of the net-
work.

Finally, we substantiated our functional modules by
quantifying the overlap of our modules to well estab-
lished protein complexes. There are several studies that
exploit the unique nature of protein complexes to validate
functional modules [44,45,14]. After all, complexes them-
selves can be characterized as functional modules since
the two definitions are similar. An example is the 19
member module dominated by the coat complexes
(COP), in which DetMod managed to encapsulate 19 out
of its 25 members. The role of COPII coat (11 members)
is to sprout vesicles from the ER for anterograde transport,
whereas COPI coat (8 members) is responsible for retro-
spective transport of recycled proteins from Golgi and pre-
Golgi compartments back to the ER [46]. The rest 6 pro-
teins belong to other coat complexes that are not included
to our PPI dataset. The given seed protein in this case was
SEC31 (YDL195w) and it is worth mentioning that Det-
Mod provided a module restricted to this complexes only,
leaving no space for other proteins. Responsible for this is
partially DMSP algorithm embedded in DetMod algo-
rithm. This algorithm constructs modules around a seed
protein and it is noteworthy that the size of module
remained the same even after the DMSP stage. DetMod
algorithm builds biologically concise modules, in contrast
to other well-known graph clustering algorithms [26,47].

Another representative example is the module (7 mem-
bers) characterized by the eIF3 (7 members) complex,
which is responsible among with other eIFs for the initia-
tion of protein synthesis in eukaryotic cells by stimulating
the binding of mRNA and methionyl-initiator tRNA
(tRNAi-Met) to 40S ribosomes to form the 48S pre-initia-
tion complex [48]. Once again this example highlights the
adaptability of DetMod against a large pool of PPIs and
weights; it is of great importance for an algorithm to rec-
ognize biological frontiers encrypted both in topology
and in the form of weights. Moreover, the results suggest
that our modules have better complex coverage in com-
parison to control methods, indicating once again the
capability of DetMod for detecting subnetworks that rep-
resent real functional modules. Also the prevalence of
DetMod modules over the MCL modules corroborates the
important role that expression profiles played for acquir-
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ing these results. This study proves indisputably the bene-
fits gained after integrating different types of data.

Lastly an issue worth discussing is the overlap displayed
between modules. Most of the graph partitioning algo-
rithms neglect the inter-module crosstalk, which is crucial
for the stability of the whole network, and provide com-
pletely separated clusters. In the path of extracting func-
tional modules from a network, one should bear in mind
that the identification and preservation of links is of equal
importance. Toward this goal DetMod succeeded in
detecting modules with varying overlap in terms of pro-
teins and interactions. Besides it is already widely
accepted that proteins can by nature take part in many dis-
tinct tasks, or to be members of more than one functional
module. Thus, we chose to embody this network property
into our integrated approach and our modules as pro-
vided are consistent with this concept.

Conclusion
The post genomic era demands the consolidation of dif-
ferent types of data, which all depict the dynamics of the
living cell through different perspective. This study is a
proposal toward the identification of functional modules
in biological networks. We successfully integrated pro-
teomics and microarray datasets, with the first having the
leading role and the second acting as reinforcement.

We have proved based on data of the model organism Sac-
charomyces cerevisiae that the novel algorithm DetMod
detected highly confident functional modules onto the
PPI network. Then, we examined these modules by valida-
tion criteria, which in turn substantiate that our subnet-
works deserve the characterization 'functional module'.
Specifically, we checked them by measuring their connec-
tivity density, their enrichment in biological process GO
terms and their coverage in protein complexes. These
parameters were also estimated in two control methods,
i.e. artificial modules and modules descending from a
method restricted to PPI data. We observed that the
obtained by DetMod modules surpass the control meth-
ods in all criteria and the difference is not random.

Methods
At this section we analyze in detail the basic concepts of
our method. Firstly we elucidate the integration of PPI
and gene expression data and the reasons why this proce-
dure can lead to biologically more meaningful functional
modules. Then we describe in detail the graph clustering
algorithm DetMod, which is responsible for the determi-
nation of functional modules on the PPI network. The
proposed algorithm identifies functional modules on a
PPI graph, which is weighted with the gene expression
information. The first step of DetMod algorithm involves
the construction of modules starting from a 'seed' protein.

Next DetMod algorithm merges modules by examining a
score we compute for each one of the extracted modules.
The procedure of merging is preferred in cases, where the
score of the merged cluster is better than the score of the
forerunning clusters. However if the merged cluster does
not significantly overlap in respect to its members with
one of the forerunning clusters, then both the merged as
well as the old cluster are preserved.

Data Integration
In our work we chose to unify the above types of data for
various reasons. Firstly PPI data descending from high-
throughput techniques suffers from many false interac-
tions [49]. Also protein interaction measurements stem
from a certain range of experimental conditions, thus they
manage to identify only a small portion of all possible
protein-protein interactions. It is evident that the direc-
tion of just clustering the PPI graph (without considering
gene expression data) leads to partially valid functional
modules due to the exclusion of interactions that would
lead to even more coherent modules. Moreover it is com-
mon among graph clustering algorithms to neglect
peripheral proteins that link loosely to clusters, even if
these few interactions are true and experimentally con-
firmed [9,24]. However an important aspect of PPI net-
works is that they provide information about direct
partners, property lost when dealing with co-expression
networks. On the other side gene expression data provides
information of the genome under many different experi-
mental conditions despite the embedded noise [13].
Although co-expression between two gene profiles
implies that they are under the same transcriptional con-
trol and functionally correlated, the resulting interactions
are often indirect.

Specifically we used highly confident PPI data in the form
of a graph G (V, E), where vertices represent proteins and
edges represent interactions. Then we applied a clustering
algorithm at the respective gene expression profiles. The
number of clusters was appointed both by the algorithm
itself as well as by the functional enrichment of clusters in
GO (Gene Ontology) terms. Next we weighted the inter-
action between two proteins according to the weight func-
tion:

W (x,y) = n1 (||x - Kx||2 + ||y - Ky||2 )+ n2||Kx - Ky||2

||·|| stands for the distance metric and there are many
metrics for measuring it, in this study we have used Eucli-
dean distance. Kx and Ky symbolize the centroids of the
clusters that genes x and y respectively, belongs to. The
constants n1 and n2 add an extra confidence score to the
factors of the weight function. They can have the same or
different values according to which member (if any) of the
function we want to enhance. We chose n2 > n1 (specifi-
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(page number not for citation purposes)



BMC Systems Biology 2008, 2:93 http://www.biomedcentral.com/1752-0509/2/93
cally n2 = 0.7, n1 = 0.3) because we consider the distance
between centroids more significant comparing to the dis-
tance of each gene from its centroid. This selection was
motivated by the noise (outliers) of gene expression pro-
files. Based on several runs of the algorithm and the corre-
sponding results, in the current study we have set the
values of the two variables as n2 = 0.7, n1 = 0.3, but in gen-
eral we systematically found better results when the value
of n2 was larger than n1.

The outcome of our integration method is a weighted PPI
graph, at which the proposed algorithm will be applied in
order to detect functional modules that are supported by
both types of data.

Basic notations
As we have already mentioned, in the approach we have
followed, we combine gene expression profiles and PPI
data, in the form of a weighted graph, G(V, E). By N(x) we
denote the neighbours of a node x, or in other words the
set of nodes that are connected to x. Then, the degree of x
is equivalent to the number of neighbours of x |N(x)|. For
a given subgraph G1 of a larger graph G we define the
internal degree |NG1

INT| as the number of edges connect-
ing x with other vertices belonging to G1 and external
degree as the number of nodes with which x is connected
and exist in G but do not belong to G1.

The above concepts can be expanded to the weighted
graphs easily. Weighted degree of a node is the sum of
weights of the edges between x and its neighbours divided
by |N(x)|. Weighted internal degree of a node x is the sum
of weights of the edges between x and its neighbours
within G1 over |NG1

INT|:

Correspondingly we define the term of weighted external
degree.

The density of a graph G(V, E) is generally measured by
the proportion of the number of edges in the graph to the
number of all possible edges, which is equal to |V|(|V|-1)
for an undirected graph. Weighted density of a graph or
subgraph Dw(G), is the sum of the weights of actual edges
over the number of possible edges among all nodes in G:

Detect module from 'seed' protein
DetMod incorporates in its first phase the application of
another algorithm called Detect Module from Seed Pro-

tein (DMSP) [22] which operates in two phases. Firstly
accepts one 'seed' protein and selects a subset of its most
promising neighbours, subsequently expands this initial
kernel to accept more proteins. This expansion is based on
certain assumptions, concerning the number of neigh-
bours for the specific protein as well as the weights of
these connections.

DMSP algorithm initiates its function by selecting only a
certain number of the neighbours of the 'seed' protein
(named hereafter s). These adjacent nodes are sorted in
descending degree of significance and this subset of nodes
– proteins is named kernel.

The two criteria by which the original kernel is selected are
the density of the kernel and the weighted internal and
external degrees of it. Initially, the kernel Ks is equal to all
the neighbours of s. Then for each one of the neighbours
ui belonging to Kernel(s) we find the NINT(Ks), NEXT(Ks),
as well as the βINT and βEXT. The objective for selecting the
kernel of the seed node is two-fold. Firstly we check so
that the number of edges of a kernel node within the rest
of the kernel is larger or at least equal to the number of the
edges that a node has outside the group. We accomplish
this by requesting for the internal and external degrees of
each node:

In this study we selected p1 to have value over 45%. At the
same time and after we have confirmed that a selected
node fulfils the first condition, we request that the same
node has smaller weighted internal degree than its corre-
sponding weighted external degree. Nodes that fail to pass
the above criteria are discarded, while those that do, are
sorted based on the level that each one of them manages
to do so.

This original subset of proteins is further distilled, in order
to acquire an even more coherent kernel. This can be
achieved by minimizing Dw(Ks) as:

In this step, DMSP removes one at a time, each one of the
sorted per significance nodes starting from the most insig-
nificant until it reaches a minimum value of weighted
density.
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After the creation of the initial kernel, DMSP iteratively
adds adjacent nodes based again on certain criteria. The
depth of the neighbours (referring to the initial kernel)
checked by DMSP vary per specific problem and data set,
meaning that as long as the criteria we will mention are
true the algorithm can go beyond the 2nd and 3rd level or
not. The first criterion the algorithm checks is the same as
the first one of the initial stage of DMSP described by (2).
After this criterion has been checked then we select a node
to be added to the module, if it satisfies the following:

G is the final module that is built from the initial kernel
(i.e. initially G = Ks), we select the constant p2 to be any-
where between 0.9 and 1.0 (in the specific study we have
set the value of p2 to 0.9). Ideally the value of p3 should be
equal to 1.0 but given that we work on a real and very
complex biological problem we allow the value to range
down to 0.9. The experiments we have conducted showed
that a lower value could create artifacts in the final deter-
mination of modules. Relation (4) states that in order for
an adjacent node ui of some kernel node v, to become
member of the module, its weight must be less or equal to
a specific percentage of the weighted internal degree of
node v.

At this point we should emphasize, that DMSP, uses two
values describing the relation of internal and external
neighbours (2) (we are referring to the value of p1). The
distinction of this value depends on whether the current
node is a direct neighbour of the kernel or not. In this way
we have a two-layer scheme where we retain a looser cri-
terion for immediate neighbours and a stricter one for the
remote neighbours of the initial kernel (specifically we
have set the value of p1 in equation (2) to 0.75 when
DMSP checks for members in the remote neighbours of
the initial kernel).

DetMod analysis
In the first phase, DetMod iteratively applies DMSP to
every node of the overall graph, therefore each node is
regarded as a seed protein and based on this a possible
functional module is created. Each newly constructed
module is checked in terms of overlap with the rest of the
modules that have been previously created. If this overlap-
ping degree is above a certain threshold then the module
is discarded. We give below the pseudocode for the first
part of DetMod:

Procedure Create_Basic_Modules

1) G' = G;

2) Modules_List = Empty

3) While G' != empty

I) Retrieve randomly a node v from G'

II) Apply DMSP to create a new functional module M with
v as seed, M = DMSP(G, v)

III) For all modules in Modules_List

i) Check if there is a module with more than p% overlap
with M

ii) If there is, find = true then break

IV) End_for

4) If find! = true

I) Keep M in Modules_List

II) Keep v in Nodes_List

5) End_If

6) Delete v from G'

7) End while

As we have seen DetMod allows every node to be part of
more than one module. In this way DetMod manages to
compromise between the complexity of genes or their
products and their tendency to participate in different
groups towards achieving different goals. For this reason
we insert the term of node score (easily extended to mod-
ule score). This metric has dual purpose, it checks if the
majority of the immediate neighbors of a respective node
are in the same cluster as well as the repetitive appearance
of a node and its immediate neighbors in many different
clusters.

Node score is an expansion of the node degree term, and
is related with the connectivity of a node in regard to its
neighbors in every module.

To compute the score of a node (example given in Figure
5), we isolate the modules in which a certain node
belongs, and then we check the common modules for
each one of its neighbors. We add an imaginary neighbor
to the total number of neighbors of v, every time the
actual neighbor and the node have a common module. In
mathematical terms it is:

W p vvu G
INT

i
≤ ⋅ ( )2 b (4)

N v uv
TOT

i

i

N

= ( )
=
∑Ξ ,

1

(5)
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with:

where, vc is the set of modules the node belongs to, and N
is the set of the real neighbors of v. Given the total number
of neighbours for a node under the scheme we described,
we can calculate the score of a node which is given as:

After determining the score of every node we can calculate
the score of a module by averaging the score of the nodes
that constitute it.

In the second phase of the algorithm, the retrieved func-
tional modules of the first phase are checked in order to
determine whether or not they could be merged.

Specifically DetMod, checks every pair of connected mod-
ules, in order to determine whether or not a probable
merging operation among them will lead to a new mod-
ule which will have a higher score than one or both of its
predecessors.

Procedure Merge

N = number of modules

1) For i = 1:N-1

2) For j = i+1:N

I) If Modi and Modj are connected

i) Modnew = merge(Modi, Modj)

ii) If Score(Modnew) > Score(Modi) AND Score(Modj)

(a) If Modnew has no overlap conflict save in
Merge_Modules

(b) Delete the other two modules

iii) If Score(Modnew) > Score(Modi) OR Score(Modj)

(a) If Modnew has no overlap conflict save in
Merge_Modules

(b) Delete the module with the worst score

II) End_If

Ξ v u
v u v u

else
C C C C,

,

,
( ) =

∩ ∩ ≠ ∅⎧
⎨
⎪

⎩⎪1
(6)

S
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INT v
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G =
( )
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In this figure we describe an example of the score we set to a certain node vFigure 5
In this figure we describe an example of the score we set to a certain node v. In (A) we can depict the real neighbor-
hood of v. The sub-figures in the left (B-D) are three possible modules that could be extracted from the main graph in (A). 
According to the neighbors of v present in each one of the modules we set a score for v in the specific module. The scores are 
normalized so as to have sum equal to unity. It is clear that the best score for node v is for sub-figure (C), since in this module 
v is connected to the majority of its neighbors.
Page 12 of 14
(page number not for citation purposes)



BMC Systems Biology 2008, 2:93 http://www.biomedcentral.com/1752-0509/2/93
3) End_For

4) End_For
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