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Abstract

Background: Gene network inference (GNI) algorithms can be used to identify sets of coordinately expressed
genes, termed network modules from whole transcriptome gene expression data. The identification of such
modules has become a popular approach to systems biology, with important applications in translational research.
Although diverse computational and statistical approaches have been devised to identify such modules, their
performance behavior is still not fully understood, particularly in complex human tissues. Given human
heterogeneity, one important question is how the outputs of these computational methods are sensitive to the
input sample set, or stability. A related question is how this sensitivity depends on the size of the sample set. We
describe here the SABRE (Similarity Across Bootstrap RE-sampling) procedure for assessing the stability of gene
network modules using a re-sampling strategy, introduce a novel criterion for identifying stable modules, and
demonstrate the utility of this approach in a clinically-relevant cohort, using two different gene network module
discovery algorithms.

Results: The stability of modules increased as sample size increased and stable modules were more likely to be
replicated in larger sets of samples. Random modules derived from permutated gene expression data were
consistently unstable, as assessed by SABRE, and provide a useful baseline value for our proposed stability criterion.
Gene module sets identified by different algorithms varied with respect to their stability, as assessed by SABRE.
Finally, stable modules were more readily annotated in various curated gene set databases.

Conclusions: The SABRE procedure and proposed stability criterion may provide guidance when designing systems
biology studies in complex human disease and tissues.
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Background
Gene network inference (GNI) from whole transcrip-
tome expression data is a fundamental and challenging
task in computational systems biology, with potentially
important applications in translational research. Often, a
major aim is to identify sets of coordinately expressed
genes, termed network modules, and to study their
properties and how they change across conditions [1–6].

These gene network modules may represent novel,
context specific, functional biological units, and
identifying and studying such modules has become an
important tool of systems biology [7–10]. Although
diverse computational and statistical approaches have
been devised to identify such modules [11–18], their
performance behavior is still not fully understood,
particularly in complex human tissues. This situation
is understandable – objective assessment is challen-
ging in this context. Nevertheless, these tools are
being applied to the study of complex diseases [19, 20],
and evaluating the performance, as well as understanding
the limitations of state-of-the-art methods in this context,
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is important. This is particularly true for translational re-
search where studies tend to be smaller, and are often per-
formed in complex tissues and/or highly heterogeneous
patient populations. While it is challenging to directly as-
sess the accuracy of inferred networks derived by these
methods in real-world expression datasets, the resulting
gene modules have properties that may be objectively
measured in such data.
One such property is module reproducibility. A com-

prehensive review of various means of assessing module
reproducibility was published by Langfelder et al. [21].
In that study, the authors outlined two broad categories
of module preservation statistics: cross-tabulation and
network topology derived (including density, connectiv-
ity, and separability), and chose to focus on the latter as
a means of assessing module reproducibility, in part
because of the difficulty of assessing cross-tabulation
module preservation statistics in the absence of an inde-
pendent validation dataset. Re-sampling approaches,
such as cross-validation or bootstrapping, have previously
been used to overcome this, however [21–23]. Cross-
tabulation reproducibility measures are of particular inter-
est because they can be readily applied to a broad range of
gene module identification strategies, including popular
clustering approaches [24–26] that do not yield a nodes-
and-edges network structure and, therefore, cannot be
assessed by network topological metrics.
Here, we introduce a flexible strategy for assessing the

reproducibility of gene modules that does not rely on
network topology and leverages bootstrap re-sampling in
place of an independent validation dataset. Even though
the idea of using bootstrap re-sampling to evaluate mod-
ule stability is not new (e.g., [21–23]), a systematic ap-
proach to summarize the results obtained across many
re-samplings into an easy-to-interpret criterion of
module stability, has yet to be described. We demon-
strate that the proposed procedure can provide a useful
measure of module stability – how sensitive a module’s
gene membership is to changes in the set of samples that
were used to identify it – in a large (n > 200), highly
relevant clinical dataset: gene expression profiling of
peripheral whole blood, a highly heterogeneous tissue, in
chronic obstructive pulmonary disease (COPD), a
complex human disease. COPD is a progressive disease,
characterized by non-reversible loss of lung function and
sporadic worsening of symptoms (shortness of breath,
cough, etc.) termed acute exacerbations of COPD
(AECOPD). These exacerbations lead to substantial
morbidity and mortality [27]. Additionally, some pa-
tients experience exacerbation episodes more fre-
quently, and there is interest in understanding the
molecular basis, if any, of this phenotype. Since most
exacerbations are associated with bacterial or viral re-
spiratory tract infections [28], immune system

monitoring using whole blood, transcriptome-wide,
gene expression profiling could provide useful insights
[25]. We explored this notion by identifying gene net-
work modules from this gene expression data using
three popular strategies: weighted gene co-expression
analysis (WGCNA) [11], a method based on the par-
tial least squares regression (PLS) technique described
by Pihur, Datta and Datta [18], and a clustering-based
approach described by Chaussabel et al. [24].
The proposed procedure is more formally defined below

(cf. Methods section). Briefly, the ability to recover similar
modules across many re-sampled datasets reflects module
stability. We propose to estimate gene module stability by
looking for concordance between a reference module set
derived from the entire data and a large number of com-
parator module sets derived from re-sampled datasets.
Concordance can be determined using some similarity
measure; we propose a variation on the Jaccard similarity
coefficient, a statistic commonly used to assess the similar-
ity of sets. The stability of a particular module can be esti-
mated by inspecting the distribution of similarity scores
across a large number of repeated re-samplings. A sche-
matic representation of the procedure, termed SABRE
(Similarity Across Bootstrap RE-samplings) is shown in
Additional file 1: Figure S1.
To facilitate the prioritizing of modules, we introduce a

criterion that summarizes the distribution of similarity
measures obtained for a particular reference module
across bootstrap re-samplings, and explore some useful
properties of this criterion. We hypothesized that modules
identified by various algorithms, such as WGCNA and the
approaches described by Pihur, Datta and Datta, or
Chaussabel and others, vary with respect to their stability
and that this quality may provide a useful means of priori-
tizing specific modules for further study. Moreover,
changes in module stability across conditions may suggest
loss of regulation, which could be of biological interest.

Methods
Dataset
We obtained PAXgene blood samples from 238
patients with chronic obstructive pulmonary disease
(COPD), who were enrolled in the Evaluation of COPD
Longitudinally to Identify Predictive Surrogate Endpoints
(ECLIPSE) study [29]. These patients were clinically stable
at the time of blood collection and their demographics are
summarized in Additional file 2: Table S1.

RNA extraction and microarray processing
Blood samples for all subjects and timepoints were
collected in PAXgene tubes and stored at −80 °C until
analysis. Total RNA was extracted using PAXgene Blood
RNA Kits (QIAGEN Inc., Germantown, MD, USA), and
integrity and concentration determined using an Agilent
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2100 BioAnalyzer (Agilent Technologies Inc., Santa
Clara, CA, USA). Affymetrix Human Gene 1.1 ST
(Affymetrix, Inc., Santa Clara, CA, USA) microarrays
were processed at the Scripps Research Institute
Microarray Core Facility (San Diego, CA, USA) in order
to assess whole transcriptome expression. The microar-
rays were checked for quality using the RMAExpress
software [30] (v1.1.0). All microarrays that passed quality
control were background corrected and normalized
using quantile normalization (as in RMA) [30] and
summarized using a factor analysis model (factor
analysis for robust microarray summarization [FARMS])
[31], via the ‘farms’ R package. FARMS includes an
objective feature filtering technique that uses the
multiple probes measuring the same target transcript as
repeated measures to quantify the signal-to-noise ratio
of that specific probe set. Informative probe sets, as
identified by FARMS (2512), were used for all down-
stream analyses. Limiting the feature space in this
manner had the additional benefit of speeding up identi-
fication of gene network modules in the next step, an
important consideration given the proposed bootstrap-
ping procedure.

Identification of gene modules
We identified network modules using three different ap-
proaches: weighted gene co-expression network analysis
(WGCNA) [11], via the ‘WGCNA’ R package [32], a
method based on the partial least squares regression
(PLS) technique described by Pihur, Datta and Datta
[18], and a k-means clustering-based approach to
identifying sets of coordinately expressed transcripts
described by Chaussabel and others [24]. In WGCNA,
the unsigned gene-gene correlation matrix was weighted
to produce a network with approximately scale-free
topology, characteristic of biological systems [32].
Average linkage hierarchical clustering is then applied to
this weighted gene co-expression network, and the
resulting dendrogram cut at a height of 0.15 to produce
modules with minimum size of 50. The total number of
modules identified in this manner was not fixed. We
adopted a similar strategy to identify modules using the
approach described by Pihur and others, this time
applying average linkage clustering to the gene-gene
interaction matrix output from the PLS procedure and
cutting the resulting dendrogram at a heaight of 0.15, as
before. The Chaussabel approach employs the k-means
clustering algorithm to identify co-clustering genes. This
algorithm uses a top down strategy in which genes are
randomly divided into a predetermined number of
clusters. Genes are then iteratively re-assigned to their
nearest cluster by some distance function (Euclidean
distance, in this case), and cluster centers re-computed
under the new configuration. This process is repeated until

the algorithm converges. The number of clusters, or gene
modules, was necessarily fixed in this case. We used the
elbow criterion to determine the point at which the inclu-
sion of additional clusters no longer provides a large in-
crease in proportion of variance explained. Because the
initial centers are arbitrarily chosen, the solution is unlikely
to be the minimal sum of squares of all possible partitions.
Rather a local minimum is returned where any further re-
assignment of a gene from one cluster to another will not
reduce the within cluster sum of squares. To address this
we used 10 random initial configurations and retained the
solution with minimal sum of squares. Although this pro-
vides a minimum over several partitions, it does not guar-
antee a global minimum solution.

Assessing the stability of gene modules
All three approaches were applied as described to all 238
peripheral whole blood expression profiles to identify
modules of coordinately expressed transcripts. These are
termed the reference module sets for each approach. To
assess stability of all modules within the reference
module sets, bootstrap re-sampling was used to generate
1000 random sets of 238 subjects. All three network
module identification approaches were applied to all
re-samplings to produce 1000 bootstrapped sets of
modules, in each case.
In order to describe how we propose to assess the sta-

bility of the reference modules, we must first introduce a
few related concepts. We start with the concept of
module accuracy, defined as follows: for each reference
module q, a set of genes of size |q|, and a test module q
′, where |q ∩ q′| is the number of genes in common
between the two. Accuracy is then defined as:

Accuracyq ¼
q∩q′j j
jqj ∈ 0; 1½ � ð1Þ

We instead propose to use the closely related Jaccard
similarity coefficient, a statistic commonly used to assess
the similarity of sets:

Jaccardqq′ ¼ q∩q′j j
jq∪q′j ∈ 0; 1½ � ð2Þ

Comparison of a reference module to a test module
that is an exact subset should be considered a perfect
match from a stability standpoint (the similarity measure
used should return 1 in this case). In order for the
similarity measure used to reflect this, we modify (2) as
follows:

Similarityqq′ ¼
q∩q′j j

minfjqj; jq′jg ∈ 0; 1½ � ð3Þ

This is analogous to the Simpson index that can be
computed for bipartite networks [33], but note that
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similarity is defined only in terms of the degree of
overlap between modules members or nodes. The mod-
ules are treated as simple sets in (3).
Finally, gene module stability can be very naturally

estimated via a random re-sampling with replacement
procedure, termed bootstrapping [34], by looking for
concordance between a reference module set derived
from the entire data and one derived from a re-
sampled dataset. Concordance can be determined
using the similarity measure defined above (3). When
comparing a module q to a module set Q = {q1, q2,
q3,…,qn}, the best match for q is defined to be q′,
such that (3) between q and q′ is the highest among
all possible comparisons between q and members of
Q. The best match similarity coefficient is then (3)
between q and q′, and the stability of a particular
module q can be estimated by looking at the distribu-
tion of best match similarity scores across a large
number of repeated re-samplings, {Rj; j = 1,2,…,n}. In
order to rank modules by their stability, we summarize
these distributions for each module to a single number,
the Hirsch index (H-index), as follows:

H−index qð Þ ¼ maxh
1

1000

X1000

j¼1
Rj ≥ h
� �� �

≥ h

� �
∈ 0; 1½ �

ð4Þ

For a reference module with H-index = 0.8, 0.8 similar-
ity or greater was observed in 80 % of bootstrap runs. A
more qualitative interpretation would be that we expect
this reference module, derived from all available sam-
ples, to have 80 % similarity to a hypothetical module
derived from a whole population dataset.

Construction of random gene modules
To get a sense of the stability that could be expected
of a module containing genes with minimal relation
to each other, we carried out a simulation study.
Modules of size 50–400 (by increments of 50) were
created by sampling from the all 2512 gene symbols
in the FARMS filtered dataset. This was done 100
times for each size of module. Then, for each of these
random modules, the best match Jaccard similarity
coefficient was recorded across all 1000 module sets
generated during the previously described bootstrap
procedure. The resulting distribution was summarized
using the H-index.

Stability of network modules, sample size, and module
size
In order to study the relationship between network
module stability, sample size, and module size, a slight
variation of the bootstrap re-sampling strategy was used.
We randomly sampled, without replacement 10, 20, 40,

80, 120, or 160 expression profiles from the 238 peripheral
whole blood expression profiles described above. In each
case, a reference module set was produced, 100 bootstrap
re-samplings of the selected expression profiles generated,
and the stability of the reference module set across
bootstrap re-samplings determined as before. This was
repeated 10 times to capture the effect the original
selection had on generation of the reference module set.

Stability of network modules and network topology
The relationship between module stability and various
network topology measures was also of interest. We
constructed an undirected network using the ‘igraph’ R
package [35]. We defined a gene-gene edge as that
where the absolute correlation for that gene pair was at
least two standard deviations away from the mean cor-
relation observed across all possible gene pairs. Various
topology measures were then calculated for each of the
reference modules: average number of neighbors per
gene (divided by module size), number of instances in
which a gene appears in a shortest path between two
other genes, and number of triads (divided by number of
possible triads in the module), and compared to their
stability.

Stability of network modules and functional annotation
Finally, we explored the relationship between stability
and our ability to functionally annotate gene modules.
We hypothesized that stable or reproducible gene mod-
ules should correspond well to known biological pro-
grams more often than unstable ones. To test this, we
compared the gene membership of our reference mod-
ules to the MSigDB collections (v5.0) [36]. We also in-
cluded the recently described Blood Transcriptome
Modules (BTMs), a collection of blood-specific tran-
scriptomic modules derived from an analysis of over
30,000 human blood transcriptome profiles from more
than 500 studies whose data are publicly available [26].
Annotation was done by testing for over-representation of
genes from the MSigDB gene sets using a hypergeometric
test, a simple statistical method commonly used to quanti-
tatively measure enrichment [37]. To quantify how well a
particular module was annotated in the gene set collec-
tion, we computed the sum of the –log10 of the p-values
for the hypergeometric test across all gene sets in the col-
lection and compared it to its stability, separately in each
of the collections (MSigDB Hallmark, C1-C7, and BTMs).

Results
We first identified sets of gene modules by using all
available samples and by employing three different ap-
proaches: weighted gene co-expression network analysis
(WGCNA) [11], a method based on the partial least
squares regression (PLS) technique described by Pihur,
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Datta and Datta [18], and a clustering-based approach to
identifying sets of coordinately expressed transcripts de-
scribed by Chaussabel and others [24]. These are termed
reference module sets.
When applied to all 238 samples, WGCNA identified 19

network modules, ranging in size from 69 to 850 probe-
sets (36 to 427 genes; Additional file 3: Table S2), with a
mean module size of 240 probe-sets (median = 157). The
method from Pihur, Datta and Datta, identified 24 network
modules, ranging in size from 69 to 554 probe-sets (32 to
210 genes; Additional file 4: Table S3), with a mean module
size of 207 probe-sets (median = 157). The Chaussabel
approach identified 20 network modules ranging in size from
44 to 302 probe-sets (38 to 167 genes; Additional file 5:
Table S4), with mean module size of 131 probe-sets
(median = 120). Modules identified by WGCNA and the
Pihur approach were highly concordant (mean Jaccard
similarity = 0.78; not shown), while those identified by the
Chaussabel approach were largely distinct (Jaccard similarity
< 0.2 for the majority of module pair-wise comparisons;
Additional file 6: Figure S2) with the exception of the
WGCNA-derived turquoise and blue modules, which were
similar to the Chaussabel-derived M17 and M19 modules,
respectively (similarity coefficient > 0.5). Annotation of the
turquoise/M17, and blue/M19 modules, was consistent
(Additional file 7: Table S5).

Assessing gene module stability using SABRE and the
H-INDEX
Next, we applied SABRE to assess the stability of these
reference modules. Refer to Methods for detail. Briefly,
each algorithm was allowed to identify a set of network
modules from each re-sampling and these re-sampled
module sets were compared to the reference module set.
For each reference module, only the highest observed
similarity coefficient within each re-sampling (that for
the best matching re-sampled module) was recorded and
the distribution of these similarity coefficients across all
bootstrap re-samplings was used to assess stability.
Modules with distribution of similarity coefficients
across all re-samplings that skewed towards one were
consistently matched to highly concordant re-sampled
modules across many random sample configurations
and are thus deemed to be relatively insensitive to sam-
ple outliers. To simplify interpretation, we summarized
the distribution of similarity coefficients for each module
to its Hirsch-index [38] (H-index), as defined in (4). A
visual derivation of the H-index is shown in Fig. 1 for
the modules identified by WGCNA.

Gene module stability increases with sample size and
module size
Gene modules are often identified in relatively small
study populations. We used a variation of the SABRE

strategy to study the effect of sample size on gene module
stability. As expected, module stability, as assessed using
the current framework, increased as the sample size was in-
creased (Fig. 2a). This relationship held for both very stable
(1st rank) and less stable (10th rank) modules. We also
observed a relationship between module stability and
module size in smaller studies (Fig. 2b; n= 10, p= 4.3 ×
10−13; n= 80, p= 0.041; Wilcoxon’s rank-sum test), but there
was no such relationship at larger sample sizes (n = 120,
p= 0.55; n= 160, p= 0.88). In all cases, modules identified
(by WGCNA in this case) were more stable than modules
assembled by randomly sampling from all gene symbols in
the filtered dataset, even when sample size was small
(Additional file 8: Figure S3).

Stability profiles differ between algorithms
The H-index was next used to rank reference modules
(Fig. 3). Modules varied with respect to their stability as
assessed by the SABRE procedure, both within sets of
modules identified by particular algorithms, as well as
across strategies. Modules identified by all three strat-
egies were significantly more stable than modules assem-
bled by randomly sampling from all gene symbols in the
filtered dataset (Additional file 8: Figure S3). The set of
network modules identified by WGCNA was more
stable (mean H-index = 0.79, standard deviation = 0.12,
range = 0.42–0.96) than that identified by either the
Pihur (mean H-index = 0.68, standard deviation = 0.12,
range = 0.44–0.91), or Chaussabel approaches (mean
H-index = 0.69, standard deviation = 0.14, range = 0.43–
0.97), though the top ranking module identified by all
three approaches had comparable stability (WGCNA:
lightgreen module, H-index = 0.96; Pihur: blue module,
H-index = 0.91; Chaussabel: M6 module, H-index = 0.97).

Stable modules are more interconnected
We might expect more connected gene network mod-
ules to be more stable. There are many proposed metrics
for measuring network connectivity. The simplest such
metric is the average number of neighbors. For our data-
set, there is no observed trend between the H-index and
the average number of neighbors within a module. A
stronger notion of connectivity is to measure the num-
ber of nodes that are in the shortest path between some
pair of nodes in the network. The higher this number,
the more tightly connected the network. Figure 4 sug-
gests that there is a relationship between this notion of
connectivity and the H-index. An even stronger notion
of connectivity described in the literature is the number
of triads, which are triplets of nodes that are directly
connected pairwise. Figure 4 indicates that there is a
weak relationship between this notion of connectivity
and the H-index, particularly for lower values of the H-
index. In sum, it appears that the notion of stability
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indicated by the H-index is related, but not identical, to 2
well-known notions of connectivity in network science.

Stable modules are more readily annotated
We hypothesized above that stable modules should cor-
respond to well-characterized biological functions. If this
is true, we would expect stable modules to be more
readily annotated than less stable ones. We explored this
notion in the BTM and MSigDB collections of annotated
gene sets and found that stable modules were indeed
more readily annotated across many of the included
collections (Fig. 5). Module stability was significantly
associated with annotatability (sum –log10 p-value of
the hypergeometric test of the overlap between
annotation and module genes) in the hallmark (H,
Spearman’s ρ = 0.39; p = 0.01), positional (C1, Spear-
man’s ρ = 0.39; p = 0.01), immunologic signatures (C7,
Spearman’s ρ = 0.31; p = 0.05), and blood transcriptomic
modules (BTM, Spearman’s ρ = 0.31; p = 0.05) collec-
tions, marginally associated in the canonical (C2,

Spearman’s ρ = 0.27; p = 0.09), and oncogenic signa-
tures (C6, Spearman’s ρ = 0.27; p = 0.10) collections,
and showed no significant association in the gene
ontology (GO, C5), motif (C3), or computational (C4)
gene set collections. Complete gene set over-
representation results are tabulated in Additional file 5:
Table S4.
Many gene modules identified by WGCNA had very

high concordance with gene sets corresponding to dis-
tinct biological functions (e.g. lightgreen: B cell activity,
antibody production; cyan: interferon signaling; brown:
heme metabolism; blue: recruitment of neutrophils and
TLR mediated inflammatory signaling). In fact, even
relatively less stable modules identified by WGCNA ap-
peared to correspond to known biological pathways (e.g.
purple module [H-index = 0.73]: MHC class II antigen
presentation). Modules identified by the Chaussabel ap-
proach had generally lower concordance to annotated
gene sets, with modules often having seemingly overlap-
ping biological function (e.g. interferon signaling pathway

Fig. 1 Visual derivation of the H-index. A visual depiction of the derivation of the H-index is shown for modules identified by the WGCNA algorithm.
A set of reference modules derived from all available samples are compared to a series of comparator module sets derived from bootstrapped re-
sampled data. For each re-sampled dataset, all reference modules are compared to all newly identified modules using the Jaccard similarity coefficient.
For each reference module, the best match Jaccard similarity coefficient value is recorded. Finally, these best match similarity coefficients are sorted
and a measure of the area under the resulting curve (Hirsch-index) used to estimate the reference module’s stability
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activity was assigned to both modules M04 and M06). In
fact, nearly half of gene modules identified by the
Chaussabel approach were enriched in genes associ-
ated with translation (7/20 modules had significant
enrichment with KEGG ribosome, KEGG translation) and
mRNA transcription (4/20 modules had significant en-
richment with KEGG spliceosome, REACTOME metabol-
ism of mRNA, REACTOME Translation, REACTOME
mRNA splicing).

Discussion
The main objective of this work was to devise a strategy
for evaluating the stability of gene modules in a manner
applicable to a broad range of gene module identification
strategies, and not reliant on the availability of additional
datasets for validation. Quantifying network module

stability would allow for prioritization of modules for
further experimental interrogation. While the use of re-
sampling strategies, such as cross-validation or the
bootstrap, in this context has been previously proposed
[21–23], a systematic approach to summarizing the re-
sults obtained across many re-samplings into an easy-to-
interpret criterion of module stability, has yet to be de-
scribed. As shown in Fig. 1, for a particular module, all
the re-sampling results can be captured by a curve. The
question we ask is how to summarize the curve with a
single value that is informative. Standard ways, such as
using the mean value, or even using the area-under-
the-curve value, do not provide a “minimum quality”
guarantee. In contrast, the proposed bootstrap re-sampling
and summarization scheme, SABRE, does provide such a
lower bound guarantee, at least across all generated

Fig. 2 Gene module stability increases with sample size and module size. For each n, we sampled without replacement from all available gene
expression profiles 10 times. In each case, a reference module set was produced (by WCGNA), 100 bootstrap re-samplings of the selected expres-
sion profiles generated, and the stability of the reference module set across bootstrap re-samplings determined as described in the Methods section.
a Stability of the modules is visualized at n = 10, 20, 40, 80, 120 and 160 for the 1st, 5th and 10th rank modules. b Stability is plotted against module
size at n = 10, 20, 40, 80, 120 and 160. The dotted line depicts the best-case stability of random modules in simulation. We compare the stability of S
(1st quartile) and XL (4th quartile) modules using Wilcoxon’s rank-sum test

Fig. 3 Stability profiles differ between algorithms. Gene module similarity across bootstrap re-samplings, for all reference network modules identified
by three gene module discovery algorithms, is visualized using box plots (a: WGCNA; b: Pihur, c: Chaussabel). The stability of the network modules is
summarized using the H-index (red). The dotted line depicts the best-case stability of random modules in simulation
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bootstrap runs. The proposed stability criterion, the
H-index of the curve, corresponding to the largest
square under the curve, is readily interpreted: for a
module with H-index = 0.8, one can say that similarity
of 0.8 or greater was observed across at least 80 % of
the bootstrap runs.
We go on to explore a number of useful characteristics

of the H-index. We show that the H-index of a module
generally increases as sample size increases and observe
that, for any given module, a stability maximum appears
to be reached between n = 80–120, at least in this tissue
and patient population. We also note that, while smaller
modules are generally less stable, this is not the case

with larger sample sizes (n > 80–120). As expected, we
find randomly assembled modules to have very low sta-
bility (H-index = 0.25), and it is comforting to note that,
even for very small studies (n = 10), modules identified
by WGCNA had worst case stability that exceeded this
value, suggesting that, for some gene modules at least,
core members may be identifiable even in very small
studies. Taken together, these observations suggest that
the identification of robust gene expression modules in
complex tissues and diseases requires large study popu-
lations (n > 100).
Next, we compare gene network modules identified

by three popular gene network module identification

Fig. 4 Stable modules are more interconnected. The relationship between module stability and a number of topological measures of network
connectivity is visualized for modules identified by WGCNA (blue) or the Chaussabel approach (red). Stability is positively associated (Spearman’s
ρ) with both number of appearance in the shortest path and number of triads in the network (* p≤ 0.05)

Fig. 5 Stable modules are more readily annotated. Module gene over-representation in annotated gene sets (sum of –log10 p-value for the
hypergeometric test) is visualized, for modules with varying stability, in the MSigDB and BTM collections. Stability is positively associated
(Spearman’s ρ) with our ability to assign module to known biology (* p ≤ 0.05; † p ≤ 0.10) in many of these collections
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strategies. WGCNA and the PLS-based approach de-
scribed by Pihur, Datta and Datta identified largely
concordant sets of gene network modules, while the
modules identified by the Chaussabel approach were
largely distinct. Given that module identification for
both WGCNA and the Pihur approach utilized aver-
age linkage hierarchical clustering on an adjacency
matrix, this is perhaps not surprising. Applying SABRE to
these modules sets allowed us to readily rank identified
gene modules from most to least stable. Modules identi-
fied by WGCNA were generally more stable than those
identified by the other two approaches. The ranking of
modules by their stability, in combinations with other
metrics, such as biological annotation, may inform
prioritization of certain modules for further study.
We found that the H-index was positively associated

with topological notions of network connectivity, as well
as our ability to assign biological function to gene mod-
ules. SABRE uncovered important qualitative differences
between module sets in this respect, however. First,
while stability was positively correlated with connectivity
across all modules, this relationship was strongest in
modules identified by the Chaussabel approach. These
modules also exhibited lower network connectivity com-
pared to those found by WGCNA. This is not surprising
since the Chaussabel approach pays no attention to the
topology of the constructed modules. A similar pattern
emerges when comparing the relationship between mod-
ule stability and annotatability in the MSigDB and BTM
gene set collections. Here again, the relationship be-
tween stability and annotatability was strongest in mod-
ules identified by the Chaussabel approach. Given the
distribution of the stability criterion, and the connectiv-
ity or annotatability measures considered, it is difficult
to determine whether the observed relationships be-
tween stability and connectivity/annotatability are true
or primarily driven by broad differences in stability be-
tween module sets identified by different strategies.
Stable gene modules that do not readily correspond to

annotated gene sets may be very interesting, of course,
as they may represent novel, disease- or tissue-specific
biological processes. Two such gene modules were iden-
tified in the current study: the lightgreen (h = 0.96) and
blue (h = 0.86) modules. In an effort to assign biological
function to these modules, we compared them to the re-
cently published Blood Transcriptome Modules (BTM).
These empirically derived sets of co-regulated genes
have very low overlap with presently available pathways
and were identified in peripheral whole blood gene
expression data. We reasoned that the highly stable,
un-annotated modules we independently identified in
this study may in fact correspond to some of these
highly stable blood modules. In fact, this was the case:
the lightgreen module was enriched for a number of

BTMs related to B cell activity, while the blue module
was matched to various innate immunity BTMs (recruit-
ment of neutrophils and TLR mediated inflammatory
signaling). Both B cells and neutrophils are known to be
implicated in COPD. [39, 40] This provided validation,
both of the modules themselves, and of the stability
ranking produced by the SABRE procedure, in that two
highly stable modules that did not correspond to any
available pathway annotations, were consistent with in-
dependently derived functional modules specific to
blood leukocyte sub-populations. These modules may
represent important and novel biological function in the
peripheral whole blood compartment of COPD patients.

Conclusions
In conclusion, we demonstrate that bootstrap re-
sampling, and the SABRE procedure described herein,
can assess the stability of gene modules identified by
three different algorithms and suggest that this could be
a useful criterion when selecting modules for further
investigation. We also show that when modules are
identified in smaller studies, more stable ones are more
likely to replicate in larger experiments compared to less
stable ones. We show a relationship between this notion
of stability, topological connectivity, and our ability to
assign biological function to gene modules. Our ap-
proach highlights the relative robustness of the WGCNA
algorithm to sample outliers and, more generally, sug-
gests that many gene module strategies should probably
be applied jointly to any given dataset. Finally, we iden-
tify and validate two highly stable modules that may rep-
resent novel, tissue-specific biological function in the
context of the peripheral whole blood of clinically stable
COPD patients.
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collections by comparing the gene set and module membership
using a simple hypergeometric test. We report both p-value and false
discovery rate adjusting for multiple comparisons using the Benjamini-
Hochberg procedure. (CSV 196 kb)

Additional file 8: Figure S3. Random module stability. To get a sense
of the stability that could be expected of a module containing genes
with minimal relation to each other, a simulation study was carried out.
Modules of size 50, 100, 150, 200, 250, 300, 350, and 400 were randomly
assembled by sampling from the all 2512 gene symbols in the filtered
dataset. This was done 100 times for each size of module. For each random
module, their best match Jaccard similarity ceofficients were computed for
each of the 1000 bootstrap results previously generated, and the resulting
distribution was summarized using the h-index. (PNG 51 kb)
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