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Abstract The continuous-time random walk (CTRW)
model is useful for alleviating the computational burden of
simulating diffusion in actual media. In principle, isotropic
CTRW only requires knowledge of the step-size, Pl , and
waiting-time, Pt , distributions of the random walk in the
medium and it then generates presumably equivalent walks
in free space, which are much faster. Here we test the useful-
ness of CTRW to modelling diffusion of finite-size particles
in porous medium generated by loose granular packs. This
is done by first simulating the diffusion process in a model
porous medium of mean coordination number, which corre-
sponds to marginal rigidity (the loosest possible structure),
computing the resulting distributions Pl and Pt as functions
of the particle size, and then using these as input for a free
space CTRW. The CTRW walks are then compared to the
ones simulated in the actual media. In particular, we study
the normal-to-anomalous transition of the diffusion as a func-
tion of increasing particle size. We find that, given the same
Pl and Pt for the simulation and the CTRW, the latter pre-
dicts incorrectly the size at which the transition occurs. We
show that the discrepancy is related to the dependence of
the effective connectivity of the porous media on the dif-
fusing particle size, which is not captured simply by these
distributions. We propose a correcting modification to the
CTRW model—adding anisotropy—and show that it yields
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good agreement with the simulated diffusion process. We
also present a method to obtain Pl and Pt directly from the
porous sample, without having to simulate an actual diffusion
process. This extends the use of CTRW, with all its advan-
tages, to modelling diffusion processes of finite-size particles
in such confined geometries.
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1 Introduction

Diffusion plays a key role in a wide range of natural and tech-
nological processes. A textbook modelling of such processes
is the consideration of the diffusion of a single memory-free
particle in a given medium. The nature of such a random walk
is governed by three probability density functions (PDFs):
of the step size, Pl(li ); of the step direction, Pn(n̂i ); and of
the waiting time between steps, Pt (ti ). These PDFs are, in
principle, position dependent, but it is standard practice to
derive (or postulate) them assuming position-independence
and that Pn(n̂i ) is uniform. The diffusion is then modelled
as a continuous-time random walk (CTRW) in free space.
Specifically, the CTRW is constructed by adding vectors of
uniformly random orientations, whose lengths are chosen
from Pl , at time intervals chosen from Pt . Averaging over
sufficiently many such independent processes, the depen-
dence of the mean square distance (MSD) on time satisfies
〈x2〉 = Dtα . In normal diffusion α = 1 and D is the stan-
dard diffusion coefficient. But when Pl and/or Pt are very
wide, the diffusion might become anomalous (α �= 1). In
particular, when Pt has a slowly decaying algebraic tail and
Pl does not, the random walk is sub-diffusive (α < 1) [1,2].
Alternatively, if Pl has a slowly decaying algebraic tail and
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Pt does not, the random walk is super-diffusive (α > 1),
resembling a Lévy flight [3]. Diffusion processes that have
the same value of α are said to be in the same universality
class [4].

Anomalous diffusion can arise from different sources,
which can only be identified by going beyond the MSD.
When single particle tracking is possible, the movement
can be evaluated by the time-averaged MSD (TAMSD),
δ2(t, T ) [5]. While the MSD is the ensemble average of
the squared distance, made during a time interval t , over
different realisations, the TAMSD, δ2(t, T ), is the average
of the same quantity along a single trajectory of length T .
Within the model of sub-diffusive CTRW, the TAMSD sat-
isfies 〈δ2〉 ∼ t · T α−1, where the angular brackets denote a
further ensemble average. In contrast, the MSD is sub-linear
in t , which makes CTRW non-ergodic—the time-average and
ensemble-average differ. In particular, the dependence of the
TAMSD on T points to the ageing nature of CTRW [5].

A key feature of sub-diffusive CTRW is the randomness of
its TAMSD. Since Pt is scale free, the longest waiting times
each individual trajectory encounters vary significantly, as do
the amplitudes of the individual TAMSDs. To quantify this,
we define the amplitude scatter, ξ = δ2/〈δ2〉. For ergodic
processes (e.g. α = 1) its PDF is P(ξ) = δ(ξ − 1) for suf-
ficiently long trajectory times. But within CTRW this PDF
broadens as α decreases. Defining the ergodicity breaking
(EB) parameter, EB = 〈ξ2〉 − 〈ξ 〉2, it can be derived ana-
lytically for CTRW processes as a monotonically decreasing
function of α.

Another cause for sub-diffusion is walking in a fractal-like
environment [6,7]. Such environment is characterised by a
network of narrow passages and dead ends at different length
scales, which hinder the walk. Unlike CTRW, this process is
stationary and therefore ergodic. The TAMSD, like the MSD,
is sub-linear in t , independent of T and its EB parameter
vanishes.

Using CTRW to model diffusion in confined geometries,
such as porous media formed by either sintered or unconsol-
idated granular materials, is very attractive [8–11] because
it alleviates the need to simulate directly the dynamics of
particles within the pore space, reducing significantly the
computational burden. In addition, it alleviates finite-size
errors due to finite samples. This practice is based on the
common assumption that Pl , Pt and Pn alone control the
random walk’s universality class. The common procedure
is to find first the forms of these distributions in a specific
medium, using either small simulations or analytic deriva-
tion under some assumptions, and then use these to carry out
a many-step CTRW in free space. It is then presumed that
the CTRW yields the same universality class as the diffusion
in the confined geometry.

The first aim of this paper is to demonstrate that this does
not apply when the size of the diffusing particle is compa-

rable to throat sizes. We do so by analysing trajectories of
individual particles diffusing in a porous sample and show
statistical deviations from CTRW predictions. We also com-
pare these simulations with an equivalent CTRW model. We
show that the effective change in the medium’s connectivity
with varying particle size affects directly the nature and uni-
versality class of the diffusion process. We conclude that the
sub-diffusion is the result of CTRW on a percolation cluster.
Indeed, a combination of underlying mechanisms, leading to
sub-diffusion, has also been observed in [12–15].

The second aim of the paper is to propose a method to
correct for the topological effect, which makes it possible to
still use CTRW, with its advantages, to model diffusion of
any finite size particle in confined geometries. To maximise
the range of validity of our results (see discussion below), we
consider very high porosity porous media. These correspond
to marginally rigid assemblies of frictional particles, whose
mean coordination number is four [16]. The least confined
of these are model systems whose each particle has exactly
four contacts.

The structure of this paper is the following. In Sect. 2 we
describe the simulated porous samples. In Sect. 3 we describe
the diffusion process, and discuss the effects of particle size.
We perform statistical analysis of the particle trajectories and
show disagreements with some predictions of the CTRW
model. In Sect. 4 we describe the equivalent CTRW simula-
tions and show that they yield different behaviour in spite of
having the same step-length and waiting-time distributions.
We propose an explanation for this discrepancy. In Sect. 5 we
propose a modification to the conventional CTRW model to
alleviate this problem, making it more suitable for modelling
diffusion of finite size particles in confined geometries. We
conclude in Sect. 6 with a discussion of the results.

2 The porous sample

To simulate a three-dimensional porous granular assembly
of coordination number four, we first generate an open-cell
structure, using Surface Evolver as follows [17,18]. Initially,
N seed points are distributed randomly and uniformly within
a cube, and the cube’s space is Voronoï-tessellated to deter-
mine the cell associated with each point. A cell around a
point consists of the volume of all spatial coordinates clos-
est to it. The resulting cellular structure is then evolved with
surface evolver to minimise the total surface area of the cell
surfaces. This procedure is used commonly to model dry
foams and cellular materials whose dynamics are dominated
by surface tension. The result is an equilibrated foam-like
structure, comprising cells, membranes, edges and vertices.
A membrane is a surface shared by two neighbouring cells,
an edge is the line where three membranes coincide, and a
vertex is the point where four edges coincide.
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Fig. 1 Pseudo-grains around the foam vertices

Next, we construct a tetrahedron around every vertex
by connecting the mid-points of the four edges emanating
from it [19]. Neighbouring tetrahedra are in contact in the
sense that they share the mid-point of an edge. This con-
struction results in a pseudo-granular structure of volume
fraction φ = 34%, in which every tetrahedron represents a
pseudo-grain in contact with exactly four others [20] (see
Fig. 1). Since neighbouring pseudo-grains share the mid-
point of the edge between them, the tetrahedra structure is
topologically homeomorphic to the original structure. The
void space surrounded by the pseudo-grains is still cellu-
lar, but a cell surface now consists of triangular facets—the
faces of the pseudo-grains surrounding it—and throats—the
skewed polygons remaining of the original cell membranes.
The membranes over the throats are disregarded, resulting
in an open-cell porous structure, in which the throats are
the openings between neighbouring cells. The pseudo-grains
volumes are smaller than those of real convex grains, which
curve out into the cells of this structure. This increases the
pore volume and forms a limiting case, which establishes
the validity of our results for any porous medium, as will be
discussed in the concluding section.

3 Diffusion in the porous sample

We model the diffuser as a sphere of radius r , measured in
units of the average effective throat radius, r0. We start by
considering particles that are considerably smaller than the
smallest throat in the structure. The particle cannot enter the
tetrahedral pseudo-grains, but only move from cell c to cell
c′ through their shared throat. The simulation progresses by

moving the particle from one cell, c, to a neighbouring cell, c′.
Each such an event is a step, lc,c′ , namely a vector extending
between the centres of these cells. We define a waiting time,
tc, which is the number of time steps spent in cell c before a
jump occurs. Inside a cell, the particle is assumed to undergo
Brownian motion and tc is proportional to (i) the square of

the effective cell radius, Rc ≡
(

3vc
4π

)1/3
, where vc is the cell

volume, and (ii) the inverse of the fraction of the cell’s open
surface through which the particle can pass to neighbouring

cells, Sc ≡ A(t)
c

A(t)
c +A(f)

c
. This is since the particle, on average,

has to make 1/Sc journeys of length Rc until it goes through a
throat rather than hits a facet of a pseudo-grain. The effective
area of a throat is the area through which a particle of radius
r can pass and A(t)

c (A(f)
c ) is the total area of throats (facets)

that make the surface of the cell. A(t)
c is then the sum of the

effective throat areas accessible for the particle to go through.
Thus, the waiting time within a cell is

tc ≡ R2
c

2dSc
= 1

2d

(
3vc

4π

)2/3
(

1 + A(f)
c

A(t)
c

)
, (1)

where d is the local diffusion coefficient, which, using the
Stokes–Einstein relation, is inversely proportional to the par-
ticle radius, d = (r0/r)d0.

The probability to exit cell c into c′, P(c′ | c), is pro-
portional to the area of the throat between them. To reduce
finite-size effects, we wrap the sample around with periodic
boundary conditions and let the particle travel larger dis-
tances by re-entering the sample. This means that the same
cell may occur at different locations along the random walk.
To avoid distorting the statistics by using the same cell too
many times, we stop the process once a cell has occurred at
more than five different locations.

We emphasise that we do not simulate the diffusion within
the cell—each step in our simulation corresponds to a transi-
tion of the particle from one cell to another, and the waiting
time associated with the step is calculated from the cell prop-
erties. This process constitutes a random walk on a graph,
whose nodes are the cell centres. After waiting for a period
of time tc in cell c, determined by Eq. (1), the particle makes
a step to a neighbour cell, according to P(c′ | c).

Before continuing, it is instructive to put the problem in
thermodynamic context. The cell can be regarded as a poten-
tial well of height ΔE , and the probability to escape from it
is P(t) = P0e−t/τ . We can then use Kramer’s escape rate
formula,

τ = 2πkT

d
√
U ′′(a)U ′′(b)

eΔE/kT , (2)

where k is the Boltzmann constant, T is the temperature and
U ′′(a) and U ′′(b) are the second derivative of the potential
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at the bottom and top of the well, respectively. Interpreting
tc as the half-life of the particle in the cell, tc = τ ln 2, we
can combine Eqs. (1) and (2) to get:

2 ln(2)πkT√
U ′′(a)U ′′(b)

eΔE/kT = 1

2Sc(r)

(
3vc

4π

)2/3

. (3)

Assuming that all cells have the same effective potential U ,
we get:

ΔE

kT
= Const. − ln T + ln

v
2/3
c

Sc(r)
. (4)

This equation establishes the height of the effective barrier
in terms of the cell volume and the fraction of its surface
through which the particle can escape.

Note that the particle’s mean free path within a cell is
assumed to be well smaller than the cell size, regardless of
the particle size, and therefore that Knudsen diffusion [21,22]
need not be considered. However, even if this assumption is
not borne out, this would only modify the coefficient d in
Eq. (1), which is arbitrary anyway in our simulations. Also
note that the above assumption, P(t) ∼ e−t/τ , means that
typical escape times do not deviate much from the mean
or half-life time. This justifies our choice of taking tc as a
representative.

For each walk we calculate the particle’s position at time
t , relative to the origin, x(t) = ∑N (t)

n=1 ln , where N (t) is the
number of steps made before time t . We then calculate the
MSD, 〈x2〉, as a function of t , where the angular brackets
denote average over 1000 walks. Figure 2a shows 〈x2〉 ver-
sus t for a particle of size r = r0/100. The linear relation
indicates normal diffusion, with a diffusion coefficient of
D = (0.65 ± 0.03)d (d = 100d0). The inset figure shows a
narrowly bounded Pt .

3.1 Large particles

We next consider particles of sizes comparable to r0. Such
particles diffuse differently due to two effects. One is delay
and trapping inside cells. The larger r is the lower the prob-
ability of passing through any particular throat, since the
effective area, which the particle can pass through, is smaller.
This reduces the overall probability to exit a cell, increas-
ing the waiting times spent inside cells. As a result, while
the waiting times are narrowly bounded for a small particle,
Pt (ti ) develops a power-law tail for sufficiently large parti-
cles, Pt (ti > t (0)) ∼ t−β

i , with β a function of r . The second
effect is that the topology changes with particle size; as it
increases, the probability of passing through some throats
vanishes identically, changing the system’s connectivity for
this particle.

Figure 2c shows Pt for a few large particles. We see that
β decreases with r , corresponding to longer waiting times.
Figure 2d shows the MSD versus time for the same particles.
We see that beyond a certain particle size (r ∼ 1.2r0) α starts
to decrease—the diffusion becomes anomalous. To quantify
this relation, we choose a larger set of radii and plot α(r)
versus β(r) (blue dots in Fig. 3). We see that for smaller par-
ticles β 	 2 and α = 1, corresponding to normal diffusion
with narrow waiting-time PDFs. As r increases, β decreases
and the walks eventually become sub-diffusive with α < 1.
We measure a transition at β

(sample)
t = 2.53 ± 0.03.

A short comment on scaling windows is due—α is eval-
uated along t ∈ (103.5, 105) (see Fig. 2d). At much longer
times, the diffusion is normal for all particle sizes. This is
merely a consequence of the finite system size—there are no
cells with longer waiting times than ∼105.

To investigate the diffusion process further, we calculate
the TAMSD, δ2, and its average over 1000 walks, 〈δ2〉. Fig-
ure 2e, f shows 〈δ2(t, T )〉 versus the time lag, t , and versus
the overall trajectory time, T , respectively. 〈δ2〉 is sub-linear
in t , deviating from the linear t-dependence in the CTRW
model, and it is nearly independent of T . This behaviour is
the same as for a random walk on a fractal. In contrast, the
amplitude scatter, ξ , follows the CTRW prediction: Fig. 2g
shows the PDF of ξ for three different particle sizes of order
r0. The dramatic broadening of the PDF as r increases indi-
cates that the process is non-ergodic and that there is ageing
[5]. Figure 2h shows that the corresponding EB parameters,
i.e. the variance of these PDFs, follow the theoretical expec-
tation from CTRW.

4 Modelling the diffusion as isotropic CTRW

Next we show that an attempt to simulate this process with
straightforward isotropic CTRW fails. This may not come
as a surprise, as the statistical analysis showed some devia-
tions from the traditional CTRW, but it is still constructive
to describe the CTRW simulation to better understand its
adjustments in Sect. 5. For such a simulation we use the
r -dependent PDFs, Pl and Pt , that the particle experiences
while diffusing in the confined structure. Recall that these
PDFs refer to the transition between cells, rather than the
movement within a cell. One way to obtain these PDFs is to
measure them empirically during a diffusion process. How-
ever, more efficient is to compute them directly from the
structural statistics of the porous medium, as we outline next.

A derivation of Pl and Pt from structural statistics should
be made cautiously because a straight-forward histogram of
the waiting times of all cells in the sample ignores the inherent
correlation between the probability to visit a cell, P(c), and
the waiting time [23]. Cells that are difficult to get out of (long

123



Modifying continuous-time random walks to model finite-size particle diffusion in granular porous. . . Page 5 of 9 13

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Statistical analysis of diffusion in the porous sample. All aver-
ages are over 1000 walks. a MSD versus time for a small particle
(r = r0/100), for which α ∼ 1, indicating normal diffusion. Inset:
overall waiting-time distribution of the walks. b Step-length distribu-
tion, Pl (li ), calculated directly from the sample, with a normal fit. Pl is
nearly constant for all particle sizes, as the cells positions are fixed. Pl
is narrow, and thus does not affect the universality class of the walk. c, d
Waiting-time distributions (left) and MSD versus time (right) for large
particles (r/r0 = 1, . . . , 1.35). Both α and β decrease with increasing
r . All power-law relations hold for at least 1.5 orders of magnitude. e,

f Ensemble-averaged TAMSD, 〈δ2〉, versus t (left) and versus T (right)
for the same large particles. For t > 102.5, 〈δ2〉 becomes sub-linear in t ,
like the MSD, and is nearly independent of T . g PDF of the amplitude
scatter, ξ , from 2000 individual walks of three different particle sizes.
The distribution broadens dramatically with particle size, which indi-
cates the walk is non-ergodic. h The EB parameter for the same three
particle sizes, as well as for r = r0/100, versus the anomaly param-
eter, α. The solid line is the expected relation for CTRW, which goes
through all points. Error bars denote 2σ ranges, and were established
by the variance of ten independent measurements

waiting times) tend to have a lower probability of getting into
and are therefore visited less frequently. In particular, some
cells are completely inaccessible for particles above a certain
size.

To this end we use the observation that, to a very good
accuracy in our diffusion process, P(c) is linear in the cell’s
total effective throat area, A(t)

c . This observation, which is
independent of the cell volume, can be seen over 3.5 orders
of magnitude in Fig. 4. Furthermore, this holds for all particle
sizes, both well smaller and comparable to r0. This allows
us to estimate P(c) for a particular particle size by using
the effective A(t)

c —a direct structural characteristic of the
medium. In principle, one expects the visiting probability to
be correlated with the visiting probabilities of neighbouring
cells, but Fig. 4 shows that this effect is negligible.

We can now estimate more accurately Pt , and, particularly,
the power-law β, for every particle size, by manipulating the
waiting-time histogram as follows. For every bin consisting
of the waiting times of cells {c1, . . . , cn}, we multiply the
bin’s height by

∑n
1 P(ci ) and normalise the histogram into

a PDF. This suppresses long waiting times in Pt .
Collecting the statistics of all possible steps in the sam-

ple, we get a PDF described well by the Gaussian Pl(li ) ∼
exp{−(li − l̄)2/2σ 2}, with σ/l̄ = 0.15 ± 0.02 (see Fig. 2b).
As Pl is narrow, it does not affect the universality class of

the walk. Pl stays narrow, and indeed nearly constant, for all
particle sizes, as the cells positions are fixed. Note that it is
also possible to derive Pl analytically, given the cell volume
distribution and nearest neighbour volume–volume correla-
tions. This, however, is somewhat downstream from the main
thrust of this paper.

We are now able to obtain accurate step-length and
waiting-time PDFs for every particle size, which could be
used as input into unconstrained CTRW. Figure 3 shows
results of CTRW simulations (green triangles) using these
PDFs. The fit to this curve (solid green line) differs from
the theoretical prediction [24], α = β − 1, due to finite
time and size effects. Our measured transition for CTRW
is β

(CTRW)
t = 2.01 ± 0.02, in agreement with the theoretical

prediction.
A key observation is that the CTRW exhibits a normal-

to-anomalous transition at a lower values of β than in the
actual sample. Since both processes have the same step-
length and waiting-time distributions, but one is performed
on a graph and the other in free space, the discrepancy
must stem from the connectivity of the sample, which the
CTRW model cannot account for. This is supported by the
statistical analysis of the diffusion in the porous sample
(Sect. 3), that show behaviours typical to random walks on a
fractal.
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Fig. 3 Two sets of simulations—diffusion in a porous sample (blue
dots) and CTRW in unconfined space (green triangles). Each simulation
(dot) represents a particular particle size, and is described by the power-
law of the waiting-time distribution, β, and the anomaly parameter, α.
Small (large) particles appear at the top right (bottom left) corner of
the graph—they experience a narrow (wide) waiting-time distribution
and undergo normal (sub-) diffusion. The blue and green lines are fits
of the form α = 1 − 1

2 exp{−(β − βt − 1
2 )/τ }, with (β(sample)

t =
2.53, τ = 0.42) and (β(CTRW)

t = 2.01, τ = 0.40), respectively. The
theoretical CTRW prediction of a universality class transition at β = 2
is denoted by the black dashed line. The red lines mark the range of
β’s that corresponds to the percolation threshold of the sample. This
range matches the universality-class transition for confined diffusion.
Error bars denote 2σ ranges, and were established by the variance of
20 independent measurements (colour figure online)

Fig. 4 Visiting probability, P(c), versus the cell’s total effective throat
area, A(t)

c , in a diffusion process with r = r0

As mentioned above, the size of the diffusing particle
determines the effective throat sizes, and hence the connec-
tivity of the porous sample. Moreover, above some size there
is no path percolating between the sample’s boundaries. Fig-
ure 5 shows the dependence of the percolating accessible

Fig. 5 The percentage of cells belonging to the incipient-cluster versus
the particle radius (in units of r0). The percolation range is marked in
red. The corresponding β range is marked in Fig. 3 (colour figure online)

volume on r , where a range of radii around the percolation
threshold is marked by red lines. The same range is marked in
Fig. 3. We see that the universality class transition in the sam-
ple occurs within this range. This is more evidence that the
connectivity plays an important role in determining the uni-
versality class. Specifically, around the percolation threshold
the incipient cluster assumes a fractal-like structure, further
inducing sub-diffusion [6,7]. We conclude that our simu-
lations of diffusion in porous media are best described as
CTRW on a percolation cluster.

5 Anisotropic CTRW

To retain the usefulness of the CTRW model, it would be
desirable to modify it to capture the effect of connectivity.
We next propose such a modification, inspired by the PDF
of the angle between successive steps in the porous sample
(Fig. 6). There is a finite probability to make a backward
step, i.e. go back through the throat the particle entered a
cell, Pback ≡ Pθ (θ = π). For very small particles Pback =
0.087±0.001. This is in contrast to the conventional CTRW
model, where the next step direction is uniformly distributed.
Moreover, we see that Pback > 1/13.7 ≈ 0.073, which is the
inverse of the average number of throats per cell, and is the
expected value for Pback when all steps are equiprobable.
This is because the mean size of an entrance throat is larger
than the mean size of all the throats. The enhanced backward
step probability can be regarded as a correlation between
successively visited throats. As r increases, the total available
throat area decreases and Pback increases, as can be seen in the
right panel of Fig. 6. For very large particles, Pback dominates
the walk. This can be seen as the ‘lowest order’ effect of
connectivity, which we next try to capture within CTRW.
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Fig. 6 Left the PDF of cos(θ), with θ the angle between successive
steps of a diffusion process in the porous sample for r = r0/100. The
singular point at cos(θ) = −1 marks the finite probability of a backward
step Pback = 0.087 ± 0.001. In addition, P(−1 < cos(θ) < −0.88) =
0. Right the dependence of Pback on r . For large particles, backward
steps dominate the walk

We examine two methods to modify the CTRW model,
both introducing a backward bias. In the first, we add to Pl
and Pt a third distribution, Pθ , of step direction relative to
the previous step. In this method, the particle ‘remembers’
the direction of the previous step, and a relative angle is cho-
sen from the non-uniform distribution Pθ (θ), e.g. the one in
Fig. 6. Pθ can be calculated directly from the porous structure
for any particle radius r , similarly to Pl and Pt (see Sect. 4).
A random step is then made at the angle θ relative to the pre-
vious step direction. The waiting time and step length at each
step are chosen as before. This method introduces a correla-
tion between consecutive steps, which is present unavoidably
in the diffusion of large particles in the sample. Testing this
method by a set of simulations, we find that the universality
class transition occurs at β

(anisotropic)
t = 2.1 ± 0.03—closer

to the one measured in the porous sample.
The second method is more drastic: at every step of the

CTRW we construct a new cell, according to the structural
statistics of the porous sample. We choose the cell’s volume,
the number of throats, and the throats’ areas from the corre-
sponding distributions, derived from the sample. Using these
and the particle size, we calculate the waiting time for the new
cell. Then we choose randomly an accessible exit throat. The
probability to exit through the throat is proportional to its
effective area. The particle then makes a step in the direction
of the exit throat. Another cell is then constructed around it.
The step length is the sum of the radii of these two cells. This
process is then iterated as many times as required.

A key feature of this method is that the particle ‘remem-
bers’ the exit direction, the last used cell and the exit throat.
The latter is used as one of the throats in constructing the
next cell. If this throat is chosen again then the last step is
retraced. We refer to this method as DA for the two variables
that the particle ‘remembers’—step direction and throat area.

Within the DA process, the particle may pass back and
forth several times through a large throat before it moves on
and loses memory of this throat. This process correlates not
only successive steps, as the previous method does, but also
successive backward steps.

Using the DA model, we obtain a universality-class transi-
tion at β(DA)

t = 2.50 ± 0.03, in excellent agreement with the
original simulation results. Thus, this model captures much
better the particle size-driven topological change.

An important feature of the DA model is that Pback is
higher than in the porous sample. To understand this, con-
sider two cells in the porous sample, connected by a large
throat, and connected to the rest of the structure by smaller
throats. Once the particle enters one of these cells, it is likely
to move back and forth several times before it emerges. How-
ever, the smaller the throats leading to this pair of cells, the
less likely is the particle to enter in the first place. This means
that the occurrence frequency of such sub-structures, which
increase Pback, is suppressed. In contrast, once a particle
passes through a relatively large throat in the DA model,
then, other than this throat, an entire new cell is generated
for each step. This results in a higher probability that the
particle oscillates across such a throat. This feature appears
to compensate for other, more complex, missing topologi-
cal features, making the DA a better model for the diffusion
process.

As a further investigation of the proposed methods, we
present the step-length correlation function for the different
models, all using r = 1.2r0 (Fig. 7). The correlation in the
sample is mainly due to the fact that each two consecutive
steps enter and exit a certain cell, c. If c is small, then the two
steps will tend to be short, and vice versa, leading to posi-
tive correlation. In addition, a high Pback means that many
consecutive steps are of exactly the same length. This further
increases the correlation for larger particles. As expected, the
traditional CTRW exhibits no correlations. Our first adjust-
ment to CTRW, introducing the possibility of a backward
step, adds correlation. However, since this is only a one-step
correlation it decays exponentially. The increase in corre-
lation within the DA process is because of the increased
probability for a long sequence of backward steps, as dis-
cussed above. As a result, the DA correlation function does
not decay exponentially, agreeing better with the diffusion
simulation in the sample. The correlation of the DA at a step
distance of one is higher than that in the simulated diffusion
process because its Pback is higher, yet the DA correlation
decays faster with the number of steps since it lacks the more
involved topological correlations.

6 Conclusions

To conclude, we compared between two numerical models
of diffusion of a finite size particle in porous media: a direct
simulation of the diffusion process in a computer-generated
sample, and what is commonly believed to be an equivalent
CTRW. We first presented a method to construct the repre-
sentative PDFs of the step-length and waiting-time, Pl and
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Fig. 7 Step-length correlation function for the four types of simula-
tions discussed in the paper, all with r = 1.2r0. Solid lines are decaying
exponentials. The correlation function of the first adjustment to CTRW
decays exponentially, and the second adjustment (DA)—more slowly

Pt , given the particle size and statistical information about
the structure of the porous media alone. Using the same
particle size dependent Pl and Pt in both models, we anal-
ysed the transition from regular to anomalous diffusion. We
showed that the the two models give different results—while
the CTRW simulations follow the theoretical prediction, up
to finite-time effects, with a transition to sub-diffusion at
β ≈ 2, the diffusion simulations in the confined geome-
try exhibit a transition at β ≈ 2.5. We established that the
difference stems from changes to the effective connectivity
available to the particle with increasing size. This particle
size-driven change in connectivity is not taken into consider-
ation in the CTRW model. We supported this conclusion by
investigation of the time average MSD and by showing that
the transition in universality class occurs at the same range
of particle sizes that corresponds to the percolation transi-
tion. Our findings show unequivocally that the discrepancy
between the two models is not due to different waiting-time
distributions, since using identical distributions do lead to
different universality classes.

It is important to comment on the range of validity of our
results. Increasing the particle size can be regarded, alterna-
tively, as shrinking the porous structure, while keeping the
particle size unchanged. Evidently, the smaller the pore space
the more restricted the diffusing particle is and the larger the
discrepancy between the simulated diffusion and the CTRW.
Thus, by starting from a medium with a very large pore space,
we established that our results hold true for a wide range of
porous media with lower porosity.

Wong et al. [10] studied experimentally a related process
of trace particles diffusing in biological networks of entan-
gled F-actin filaments. There, the diffusion of particles, of
size comparable to the typical network mesh size, is sub-

linear and Pt decays algebraically. The universality class
they observe is a function of the particle-to-mesh size ratio,
in agreement with our results. However, they do not observe
size-driven topological effects and their values of α and β are
in good agreement with the CTRW model. This is because of
the flexibility of the gel-like network, which allows trapped
particles to eventually escape by deforming the filament net-
work, a phenomenon also modelled recently in [25]. The
rigidity of the structure considered here precludes this parti-
cle escape mechanism and is the reason for this difference.
A potentially related process of large particles, diffusing in
rigid porous media, was studied experimentally in [26]. That
study focused on hydrodynamic in-pore effects, which might
be interesting to eventually include in our model.

The main advantages of the CTRW model are that it over-
comes potential finite-size problems and is less demanding
computationally. However, as we have demonstrated here,
this is achieved at the expense of ignoring topological infor-
mation about local connectivity. To preserve the advantages
of CTRW, these need to be taken into consideration. To
this end, we introduced two anisotropic CTRW models. One
includes memory of the last step direction and a non-uniform
distribution of step direction. The other, the DA model, adds
memory of the area of the last throat visited, effectively cor-
relating successive backward steps. The DA model shows
a universality-class transition at β

(DA)
t = 2.50 ± 0.03, in

good agreement with the one measured in our simulations of
the diffusion process in the confined geometry of a porous
medium. We conclude that the DA model is a better alter-
native to the traditional CTRW for modelling diffusion of
finite size particles in such media. It combines the CTRW
advantages, overcoming the finiteness of the sample and con-
venience of application, with a better capturing of topological
effects.
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