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Abstract Classical and nonclassical contributions to Author’s resultant Shannon- and
Fisher-type measures of the information content in general electronic state ϕ(r) =
R(r) exp[iφ(r)], due to the state probability density p(r) = R(r)2 and its phase φ(r)
or current j(r) = (h̄/m)p(r)∇φ(r) distributions, respectively, are reexamined. The
components of the overall entropy,

S[ϕ] ≡ −
∫

p(r)[ln p(r) + 2φ(r)] dr ≡ S[p] + S[φ],

are shown to determine the real and imaginary parts of the state complex Shannon
entropy,

H [ϕ] ≡ −2 〈ϕ| ln ϕ|ϕ〉 = S [p] + iS[φ],

a natural quantum-amplitude generalization of the classical Shannon entropy. Its con-
tributions are related to the associated terms in the state resultant Fisher information,

I [ϕ] ≡ −4〈ϕ|∇2|ϕ〉 ≡
∫

p(r){[∇ ln p(r)]2 + [2∇φ (r)]2} dr ≡ I [p] + I [φ]

= I [p] +
∫

p(r)[(2m/h̄)j(r)/p(r)]2 dr ≡ I [p] + I [j],
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and the gradient entropy:

Ĩ [ϕ] ≡ 〈ϕ|[(∇ ln p)2 + (i2∇φ)2]|ϕ〉 = I [p] − I [φ] = Ĩ [p] + Ĩ [φ].

Keywords Complex entropy · Fisher information · Information theory ·Nonclassical
information · Resultant information measures · Shannon entropy

1 Introduction

The crucial problem in entropic theories of molecular electronic structure is the quan-
tum generalization of the classical entropy/information concepts of Fisher [1] and
Shannon [2], appropriate for complex amplitudes (wavefunctions). Both the particle
probability distribution and its phase or current densities ultimately contribute to the
resultant information descriptors of molecular systems. Such resultant measures of
the information content in electronic states, combining the classical contributions due
to wavefunction modulus and their nonclassical supplements due to state phase, have
been recently proposed, e.g., [3–8]. The electron density generates only the classical
part of the overall information content, while the wavefunction phase or its gradient
(probability-current) generate its nonclassical complement in the associated resul-
tant measure. The quantum extension of the classical Fisher (gradient) information
has been proposed using its association with the average kinetic energy of electrons
and the corresponding resultant global entropy has been subsequently inferred using
the relation between densities of the classical Fisher and Shannon measures [3–8].
Although, for simplicity, in what follows we assume the one-electron case the modu-
lus (density) and phase (current) aspects of general electronic states can be separated
using the Harriman [9], Zumbach and Maschke [10] construction of Slater determi-
nants yielding the specified electron density [4,11].

In the present communication we relate the classical and nonclassical components
of such generalized entropy/information descriptors of molecular states to the real and
imaginary parts of the complex entropy concept, a natural extension of the classical
Shannon entropy, provided by the functional of the system complex electronic wave-
function (quantum probability amplitude).

2 Information components

The average Fisher [1] measure of the gradient-information content in the probability
density p(r) = |ϕ(r)|2 = R(r)2 of the single-particle state |ϕ〉 described by the
wavefunction ϕ(r) = 〈r|ϕ〉 = R(r) exp[iφ(r)] is reminiscent of von Weizsäcker’s
[12] inhomogeneity correction to the kinetic energy functional,

I [p] =
∫

[∇ p(r)]2/p(r) dr =
∫

p(r)[∇ ln p(r)]2 dr ≡
∫

p(r)Ip(r) dr

= 4
∫

[∇R(r)]2 dr ≡ I [R]. (1)
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Its amplitude form I [R] reveals that it measures the average length of the modulus-
gradient. This classical descriptor characterizes an effective compactness (“narrow-
ness”) of the particle position distribution. The complementary descriptor of the
classical Shannon [2] entropy,

S[p] = −
∫

p(r) lnp(r) dr ≡
∫

p(r)Sp(r) dr ≡ −2
∫

R2(r) ln R(r) dr ≡ S[R],
(2)

reflects the average indeterminacy (“spread”) of this random variable. It provides the
amount of information received, when this uncertainty is removed by an appropriate
localization experiment: I S[p] ≡ S[p]. The densities-per-electron of these probabil-
ity/modulus functionals are seen to satisfy the classical (nonlinear) relation

Ip(r) = [∇Sp(r)]2. (3)

The resultant entropy/information descriptors of state |ϕ〉 combine these familiar
classical contributions and the associated nonclassical supplements due to the state
spatial phase or probability current [3–8]:

I [ϕ] = −4〈ϕ|∇2|ϕ〉 ≡ 〈ϕ|Î|ϕ〉 = 4
∫

|∇ϕ(r)|2 dr ≡
∫

p(r)I (r) dr

= I [p] + 4
∫

p(r)[∇φ(r)]2 dr ≡
∫

p(r)[Ip(r) + Iφ(r)] dr ≡ I [p] + I [φ]

= I [p] +
(
2m

h̄

)2 ∫
j2(r)/p(r) dr

=
∫

p(r)[Ip(r) + I j (r)] dr ≡ I [p] + I [j], (4)

S[ϕ] = − 〈ϕ| ln p + 2φ|ϕ〉 ≡ 〈ϕ|Ŝ|ϕ〉 =
∫

ϕ(r)∗Ŝ(r)ϕ(r) dr

=
∫

p(r)[Sp(r) − 2φ(r)] dr ≡
∫

p(r)[Sp(r) + Sφ(r)] dr

=
∫

p(r)S(r) dr ≡ S[p] + S[φ], (5)

Ĩ [ϕ] = I [p] − I [φ] ≡ Ĩ [p] + Ĩ [φ] =
∫

p(r)
[
Ĩ p(r) + Ĩφ(r)

]
dr

≡
∫

p(r) Ĩ (r) dr. (6)

Above, these information components have been expressed as expectation values of
the related real (multiplicative) “operators” in position representation, measuring the
resultant densities-per-electron of the gradient information and entropy,

I (r) = [∇ ln p(r)]2 + 4[∇φ(r)]2 and Ĩ (r) = [∇ ln p(r)]2 − 4[∇φ(r)]2,
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and of the overall entropy:

S(r) = −[ln p(r) + 2φ(r)].

The generalized gradient-information of Eq. (4), the expectation value of quantum-
mechanical operator Î = −4∇2 = (8m/h̄2)T̂, is proportional to the average kinetic
energyT [ϕ]=〈ϕ|T̂|ϕ〉 corresponding to theHermitian operator T̂(r)=−[h̄2/(2m)]�,

I [ϕ] = (8m/h̄2)T [ϕ], (7)

and reflects the state gradient-deterministic aspect. The nonclassical densities of the
resultant gradient information [Eq. (4)] and global entropy [Eq. (5)], respectively, obey
the classical relation of Eq. (3):

Iφ(r) = [∇Sφ(r)]2. (8)

One observes, however, that in the resultant gradient-entropy [Eq. (6)], which describes
the state gradient-indeterminicity facet, the nonclassical contribution changes sign,
Ĩ [φ] = −I [φ], so that the nonclassical Shannon and Fisher entropy densities satisfy
the modified relation:

Ĩφ(r) = −[∇Sφ(r)]2. (9)

3 Complex entropy concept

Thus, the resultant entropy/information functionals combine the classical and nonclas-
sical contributions, which separately obey the nonlinear relation of Eqs. (3) and (8).
However, the nonlinear character of the mutual dependencies between these Shannon
and Fisher components precludes this relation to be also satisfied by the resultant den-
sities themselves, unless the two Shannon components are regarded as components
of the vector entity �S(r) ≡ epSp(r) + eφSφ(r), in the geometrical framework of the
probability and phase degrees-of-freedom then determining the independent (orthog-
onal) directions represented by the perpendicular unit vectors ep and eφ, ep · eφ = 0
[3],

I (r) = Ip(r) + Iφ(r) = [∇ · �S(r)]2 = [∇Sp(r)]2 + [∇Sφ(r)]2. (10)

However, this vector interpretation does not justify the change of sign in Eq. (9).
The proper explanation calls for the density of the complex entropy concept, defined
in an alternative vector framework of the complex plane,

H(r) = Sp(r) + iSφ(r) ≡= −[ln p(r) + 2iφ(r)], (11)

with the Shannon phase-entropy component Sφ (r) being then attributed to the imagi-
nary part. This generalized entropy indeed naturally follows from the classical entity,
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when one refers to the multi-valued logarithmic function of the complex argument
z = |z| exp(iα),

Lnz = ln |z| + i(α + 2πk), k = 0,±1,±2, . . . , (12)

or its single-valued branch k = 0:

ln z = ln |z| + iα. (13)

Indeed, the resultant entropy of Eq. (5) then reflects the expectation value of the
complex (multiplicative) logarithmic operator of Eq. (11) expressed in terms of the
electronic state ϕ itself,

Ĥ(r) = H(r) = −2 ln ϕ(r) = −[ln p(r) + 2iφ(r)] ≡ Hp(r) + Hφ(r), (14)

H [ϕ] = 〈ϕ| − 2 ln ϕ|ϕ〉 ≡ 〈ϕ|Ĥ|ϕ〉 = S[p] + iS[φ]
= S[R] + iS[φ] ≡ H [p] + H [φ] (15)

The complex entropy thus provides a natural complex-amplitude generalization of the
the familiar classical measure of the entropy content in probability distribution. The
non-Hermitian entropy operator Ĥ = −2 ln ϕ [Eq. (14)] then generates the probability
and phase Shannon-type contributions as the real and imaginary parts of the resultant
complex entropy.

Thus, the Hermitian operator Î = −4∇2 = (8m/h̄2)T̂ gives rise to the real expec-
tation value of the state resultant information content I [ϕ], while the non-Hermitian
entropy operator Ĥ(r) = −2 ln ϕ(r) generates the state complex average quantity
H [ϕ]. The gradient analogs in Eq. (6) then follow from the same type of a mutual
relation [Eqs. (3) and (8)] between the information and entropy densities [compare
Eq. (9)]:

Ĩ p(r) = [∇Hp(r)]2 and Ĩφ(r) = [∇Hφ(r)]2 = [i∇Sφ(r)]2 = −[∇Sφ(r)]2. (16)
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