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Abstract The energy balance method is utilized to ana-

lyze the oscillation of a nonlinear nanoelectro-mechanical

system resonator. The resonator comprises an electrode,

which is embedded between two substrates. Two types of

clamped–clamped and cantilever nano-resonators are stud-

ied. The effects of the van der Waals attractions, Casimir

force, the small size, the fringing field, the mid-plane

stretching, and the axial load are taken into account. The

governing partial differential equation of the resonator is

reduced using the Galerkin method. The energy method is

applied to obtain an analytical solution without considering

any linearization or small parameter. The results of the

present study are compared with the results available in the

literature. In addition, the results of the present analytical

solution are compared with the Runge–Kutta numerical

results. An excellent agreement between the present ana-

lytical solution, numerical solution, and the results available

in the literature was found. The influences of the van der

Waals force, Casimir force, size effect, and fringing field

effect on the oscillation frequency of resonators are studied.

The results indicate that the presence of the intermolecular

forces (van der Waals), Casimir force, and fringing field

effect decreases the oscillation frequency of the resonator.

In contrast, the presence of the size effect increases the

oscillation frequency of the resonator.

Keywords Energy balance method � Nonlinear

oscillator � Van der Waals � Fringing field effects

Introduction

Nano/micro-actuators are wildly utilized in the micro/na-

noelectro-mechanical systems (NEMS/MEMS). The res-

onators are a new type of electronic components which can

oscillate in very high frequencies. A double-side resonator

is a new type of resonators, composed of a movable elec-

trode, placed between two conductive substrates (Mobki

et al. 2013; Azimloo et al. 2014). Applying an external

voltage difference between the moveable electrode and the

substrates induces an electrostatic field which attracts the

moveable electrode into the substrates (Mobki et al. 2013).

The moveable electrode and the substrates can be seen as a

capacitor (Ansari et al. 2014). The bucking of the moveable

electrode does change the capacitive properties of the ca-

pacitors, which later can be detected by electronic systems.

Recently, the nano-actuators are applied as sensors for

gas detection (Martin et al. 2014) and force measurement

(Jóźwiak et al. 2012). They are also applied as gravimetric

(Ekinci and Roukes 2005) and the biomolecular finger-

printing (Guthy et al. 2013) sensors. The nano-actuators are

good potential candidates for NEMS nonvolatile memories

(Choi et al. 2008) and switches (Dumas et al. 2011).

In nanoscale, the influence of the van der Waals at-

tractions on the behavior of the actuator becomes sig-

nificant when the separation space between the electrode

and the substrate is very small (typically in separation

spaces below 20 nm) (Mastrangelo and Hsu 1993). The
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van der Waals attraction is a function of the material

properties and is proportional to the inverse cubic power of

the separation space (Soroush et al. 2012; Farrokhabadi

et al. 2013; Koochi et al. 2013; Sedighi and Daneshmand

2014). It is also demonstrated that the characteristics of the

constructive material of miniature structures depend on the

size of the structure. As NEMSs are very small in size, the

size effect plays a considerable role on the behavior of

these devices. Sadeghian et al. (2010) experimentally ex-

amined the size-dependent elastic behavior of silicon

NEMS, and Beni et al. (2011) utilized the modified couple

stress theory to study the size dependency for NEMS.

The presence of van der Waals attraction as well as the

size effect inhere nonlinear effects, which can change the

oscillating frequency of the nano-resonators. Therefore,

analysis of these effects is crucial in sensing applications.

In a recent study, Fu et al. (2011) analyzed the nonlinear

oscillation of a double-side micro-resonator subject to

electrostatic forces. They found that an increase of the ap-

plied voltage difference between the electrode and substrate

decreases the oscillating frequency of the system. In the

present study, the work of Fu et al. (2011) is extended to a

model for nano-resonators, considering the effects of van

der Waals attractions and the size effects. The energy bal-

ance method is applied to obtain an analytical solution for

the nonlinear oscillation of the double-side nano-resonators.

Mathematical model

Consider a nano-resonator, composed of a moveable

electrode and two fixed substrates. The moveable electrode

could be considered as a clamped–clamped or a cantilever

beam with a rectangular cross-section, embedded between

two fixed substrates. A schematic view of a clamped–

clamped resonator is illustrated in Fig. 1. The geometrical

details are also shown in the figure.

As seen, the resonator is symmetric, where g0 is the initial

gap space between the electrode and the substrates. There is a

total logical applied external voltage difference, V, between

the electrode (?V/2) and the substrates (-V/2). The gov-

erning equation of the nano-oscillator, considering the size

effects, mid-plane stretching effects, and nonlinear forces, is

written as (Fu et al. 2011; Noghrehabadi et al. 2013):

ÊI þ lbhk2
� � o4ŵ

oX4
þ qbh

o2ŵ

ot2

¼ vtype Np þ
Êbh

2l

Z l

0

oŵ

oX

� �2

dX

 !
o2ŵ

oX2
þ Fe X; tð Þ ð1Þ

where ŵ is the displacement of the beam. N̂ is the axial

force, and Fe represents the nonlinear forces. l is the shear

modulus, k is the length scale parameter, and q is the

density of the moveable electrode. The effective modulus Ê

simply becomes the Young’s modulus (E) for narrow

beams (ŵ\ 5 h) and becomes the plate modulus E/(1 -

t2) for wide beams (ŵ[ 5 h) where t is the Poisson ratio

(Ramezani et al. 2007). vtype = 1 for a clamped–clamped

beam, and vtype = 0 for a cantilever beam. The boundary

conditions for a clamped–clamped beam are written as:

ŵ 0; tð Þ ¼ 0;
oŵ

oX
0; tð Þ ¼ 0; ŵ l; tð Þ ¼ 0;

oŵ

oX
l; tð Þ ¼ 0

ð2aÞ

and for a cantilever beam as:

ŵ 0; tð Þ ¼ 0;
oŵ

oX
0; tð Þ ¼ 0;

o2ŵ

oX2
0; tð Þ ¼ 0;

o3ŵ

oX3
l; tð Þ ¼ 0

ð2bÞ

Fig. 1 The schematic view of a

clamped–clamped nano-

resonator and the geometrical

details
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In Eq. (1), Fe is the sum of the electrostatic forces (Felc),

the fringing field effects (Ffr), and the van der Waals force

(FvdW). The electrical force per unit length of the beam can

be evaluated as (Fu et al. 2011; Haung et al. 1993):

Felec ¼
e0bV

2

2

1

g0 � ŵð Þ2
� 1

g0 þ ŵð Þ2

 !

ð3Þ

where e0 is the permeability of the vacuum as

8.854187817620 9 10-12 C2 N-1 m-2 (Ramezani et al.

2007). The fringing field effect can also be evaluated as

(Haung et al. 1993; Ramezani et al. 2007):

Ffr ¼ 0:65
e0V

2

2

1

g0 � ŵð Þ �
1

g0 þ ŵð Þ

� �
ð4Þ

As mentioned, the van der Waals force per unit length of

the beam is a cubic function of distance between the

electrode and the substrate as (Ramezani et al. 2007):

FvdW ¼ Ab

6p
1

g0 � ŵð Þ3
� 1

g0 þ ŵð Þ3

 !

ð5Þ

where A is the Hamaker constant. The Casimir force per

unit length of the beam is related to the inverse fourth

power of distance between the electrode and substrate as

(Ramezani et al. 2007):

FCa ¼
p2�hcb
240

1

g0 � ŵð Þ4
� 1

g0 þ ŵð Þ4

 !

ð6Þ

Invoking the following non-dimensional parameters:

w ¼ ŵ

g
; x ¼ X

l
; s ¼ t

ffiffiffiffiffiffiffiffiffiffiffi
ÊI

qbhl4

s

; avdW ¼ Abl4

6pg4
0ÊI

;

aCa ¼
p2�hcbl4

240g5
0ÊI

; d ¼ lbhk2

ÊI
; c ¼ 0:65

g

b
; N ¼ N̂l2

ÊI
;

b ¼ e0bV
2L4

2g3
0ÊI

; a ¼ 6
g0

h

� �2

: ð7Þ

the non-dimensional governing equation is obtained as:

1 þ dð Þ o
4w

ox4
þ o2w

os2
¼ vtype N þ a

Z 1

0

ow

ox

� �2

dx

 !
o2w

ox2

þ avdW

1

1 � wð Þ3
� 1

1 þ wð Þ3

 !

þ aCa
1

1 � wð Þ4
� 1

1 þ wð Þ4

 !

þ b
1

1 � wð Þ2
� 1

1 þ wð Þ2

 !

þ cb
1

1 � w
� 1

1 þ w

� �
ð8aÞ

subject to the following non-dimensional boundary

conditions:

w 0; sð Þ ¼ 0;
ow

ox
0; sð Þ ¼ 0; w 1; sð Þ ¼ 0;

ow

ox
l; sð Þ ¼ 0

ð8bÞ

where d and avdw and aCa show the non-dimensional size

effect parameter, and the non-dimensional van der Waals

parameter and the non-dimensional Casmir parameter, re-

spectively. b and c represent the non-dimensional electro-

static and the non-dimensional fringing field effects; N and

a denote the non-dimensional axial load parameter and the

non-dimensional stretching parameter, respectively. For a

specific nano-resonator with defined design parameters

(fixed geometry and material) the value of the non-di-

mensional voltage parameter (b) is directly a function of

cubic value of the applied voltage. The non-dimensional

axial load parameter (N) is a direct function of the internal

force, which could be controlled by the synthesized method

of fabricating the resonator. The values of the size effect

parameter (d) are mostly controlled with the length scale

parameter (k) which is a function of the material and size

of the actuator. The values of the non-dimensional fringing

field, stretching, Casimir, and van der Waals parameters are

mainly a function of the geometry of the resonator and can

be controlled by design parameters. The effect of variation

of the non-dimensional parameters on the natural fre-

quency of resonator will be analyzed in the present study.

A general non-dimensional analysis provides results for

understanding the behavior of different sizes and working

voltages of nano-resonators.

Now, assuming w x; sð Þ ¼ / xð Þu sð Þ, the solution of

Eq. (1) is decomposed into two parts (Fu et al. 2011);

where /(x) is the first Eigen mode of the clamped–clamped

beam and represents the geometrical shape of the resonator,

and u sð Þ constricts the time-dependent part of the solution.

The first Eigen mode, satisfying the boundary conditions

beam, can be expressed by a polynomial as (Batra et al.

2006; Moghimi and Zand 2009):

/ xð Þ ¼ 16x2 1 � xð Þ2: Clamped � clamped

/ xð Þ ¼ x2 1

2
� x

3
þ x2

12

� �
: Cantilever

ð9aÞ

or a harmonic expression as (Moghimi and Zand 2009):

/ xð Þ ¼ cos h nxð Þ � cos nxð Þ � cos h nð Þ � cos nð Þ
sin h nð Þ � sin nð Þ

� sin h nxð Þ � sin nxð Þð Þ : Clamped � clamped

/ xð Þ ¼ cos h nxð Þ � cos nxð Þ � cos h nð Þ þ cos nð Þ
sin h nð Þ þ sin nð Þ

� sin h nxð Þ � sin nxð Þð Þ : Cantilever ð9bÞ
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where n = 4.730040745 for a clamped–clamped beam, and

n = 1.8751 for a cantilever beam. Multiplying both sides

of Eq. (8a) by 1 � wð Þ4
1 þ wð Þ4

and invoking w x; sð Þ ¼
/ xð Þu sð Þ give

1 þ dð Þ 1 � 4/2u2 þ 6/4u4 � 4/6u6 þ /8u8
� �

/ ivð Þu

þ 1 � 4/2u2 þ 6/4u4 � 4/6u6 þ /8u8
� �

/€u

� Nvtype 1 � 4/2u2 þ 6/4u4 � 4/6u6 þ /8u8
� �

/00u

� vtypea/
00 1 � 4/2u2 þ 6/4u4 � 4/6u6 þ /8u8
� �

�
Z 1

0

/02dx

� �
u3

� aCa 8/uþ 8/3u3
� �

� avdW 6/u� 4/3u3 � 2/5u5
� �

� b 4/u� 8/3u3 þ 4/5u5
� �

� cb 2/u� 6/3u3 þ 6/5u5 � 2/7u7
� �

¼ 0 ð10Þ

Now, applying the Bubnov–Galerkin method (Batra et al.

2006; Moghimi and Zand 2009) gets

Z 1

0

1 þ dð Þ 1 � 4/2u2 þ 6/4u4 � 4/6u6 þ /8u8
� �

/ ivð Þu

þ 1 � 4/2u2 þ 6/4u4 � 4/6u6 þ /8u8
� �

/€u

� vtypeN 1 � 4/2u2 þ 6/4u4 � 4/6u6 þ /8u8
� �

/00u

� vtypea/
00 1 � 4/2u2 þ 6/4u4 � 4/6u6 þ /8u8
� �

�
Z 1

0

/02dx

� �
u3

� aCa 8/uþ 8/3u3
� �

� avdW 6/u� 4/3u3 � 2/5u5
� �

� b 4/u� 8/3u3 þ 4/5u5
� �

� cb 2/u� 6/3u3 þ 6/5u5 � 2/7u7
� �

0

BBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCA

/ dx ¼ 0

ð11Þ

Equation (10) can be simplified as:

a2 � 4a4u
2 þ 6a6u

4 � 4a8u
6 þ a10u

8
� �

€u

þ 1 þ dð Þb1 � vtypeNc1 � 8aCaa2

�

� 6avdWa2 � 4ba2 � 2cba2Þu
þ �4 1 þ dð Þb2 þ 4vtypeNc2 � vtypeac1a0

�

� 8aCaa4 þ 4avdWa4 þ 8ba4 þ 6cba4Þu3

þ 6 1 þ dð Þb3 � 6vtypeNc3 þ 4vtypeac2a0 þ 2avdWa6

�

� 4ba6 � 6cba6Þu5

þ �4 1 þ dð Þb4 þ 4vtypeNc4 � 6vtypeac3a0 þ 2cba8

� �
u7

þ 1 þ dð Þb5 � vtypeNc5 þ 4vtypeac4a0

� �
u9

� vtypeac5a0

� �
u11 ¼ 0 ð12Þ

where the coefficients of a1–a10, b1–b5, and c1–c5 are given in

‘‘Appendix’’. These coefficients can be evaluated using the

first eigenmode /(x) [i.e. either Eqs. (9a) or (9b)]. For

convenience, Eq. (12) is rewritten in a more compact form as:

a2 � 4a4u
2 þ 6a6u

4 � 4a8u
6 þ a10u

8
� �

€uþ E1uþ E2u
3

þ E3u
5 þ E4u

7 þ E5u
9 þ E6u

11 ¼ 0 ð13Þ

where the coefficients E1–E6 are

E1 ¼ 1 þ dð Þb1 � vtypeNc1 � 8aCaa2 � 6avdWa2

�

�4ba2 � 2cba2Þ
E2 ¼ �4 1 þ dð Þb2 þ 4vtypeNc2 � vtypeac1a0

�

� 8aCaa4 þ 4avdWa4 þ 8ba4 þ 6cba4Þ
E3 ¼ 6 1 þ dð Þb3 � 6vtypeNc3 þ 4vtypeac2a0 þ 2avdWa6

�

� 4ba6 � 6cba6Þ
E4 ¼ �4 1 þ dð Þb4 þ 4vtypeNc4 � 6vtypeac3a0 þ 2cba8

� �

E5 ¼ 1 þ dð Þb5 � vtypeNc5 þ 4vtypeac4a0

� �

E6 ¼ � vtypeac5a0

� �
ð14Þ

An initial displacement with the magnitude of A and zero

velocity can be assumed as initial conditions for Eq. (13):

u 0ð Þ ¼ A; €u 0ð Þ ¼ 0 ð15Þ

It is worth noticing that assuming such initial condition for

the free vibration does not affect the final solution (Fu et al.

2011; Batra et al. 2006; Moghimi and Zand 2009). In the

next section, the energy balance method is applied to ob-

tain an analytical solution for Eq. (13) subject to the initial

condition of Eq. (15).

Analytical solution using the energy balance
method

The idea of the energy balance method comes from the fact

that when h = 0 the whole energy of the system is in form

of the kinetic energy, and when h = p/2 the whole energy

of the system is in the form of the potential energy. Hence,

in h = p/4, a balance between the kinetic and the potential

energy of the system can be assumed. The energy balance

method utilizes the advantage of this point to collocate a

solution at h = p/4. More details of the energy balance

method can be found in Mehdipour et al. (2010). Following

the energy balance method, the variational principle of

Eq. (13) is obtained as:

J uð Þ ¼
Z s

0

� 1

2
€u2 a2 � 4a4u

2 þ 6a6u
4 � 4a8u

6 þ a10u
8

� �
þ F uð Þ

ð16Þ

where J is the variational principle of Eq. (13) and F(u) is

as follows:

F uð Þ ¼
Z

E1uþ E2u
3 þ E3u

5 þ E4u
7 þ E5u

9 þ E6u
11

� �
du

ð17Þ

The Hamiltonian of Eq. (16) is written as (Mehdipour et al.

2010):

H ¼ 1

2
€u2 a2 � 4a4u

2 þ 6a6u
4 � 4a8u

6 þ a10u
8

� �
þ F uð Þ

¼ F Að Þ ð18Þ
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which can be extended as:

H ¼ 1

2
€u2 a2 � 4a4u

2 þ 6a6u
4 � 4a8u

6 þ a10u
8

� �

þ 1

2
E1u

2 þ 1

4
E2u

4 þ 1

6
E3u

6 þ 1

8
E4u

8 þ 1

10
E5u

10 þ 1

12
E6u

12

� �

¼ 1

2
E1A

2 þ 1

4
E2A

4 þ 1

6
E3A

6 þ 1

8
E4A

8 þ 1

10
E5A

10 þ 1

12
E6A

12

� �

ð19Þ

Now, the following trial function is assumed to determine

the angular frequency of the system (x) (Mehdipour et al.

2010):

u sð Þ ¼ A cos xsð Þ ð20Þ

Substituting Eq. (20) in Eq. (19) yields

where solving for x gives

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
E1 A cos xsð Þð Þ2�A2
� �

þ 1

4
E2 A cos xsð Þð Þ4�A4
� �

þ 1

6
E3 A cos xsð Þð Þ6�A6
� �

þ 1

8
E4 A cos xsð Þð Þ8�A8
� �

þ 1

10
E5 A cos xsð Þð Þ10�A10
� �

þ 1

12
E6 A cos xsð Þð Þ12�A12
� �

0

BBBBB@

1

CCCCCA

�2A sin xsð Þ2
a2 � 4a4 A cos xsð Þð Þ2þ6a6 A cos xsð Þð Þ4

�4a8 A cos xsð Þð Þ6þa10 A cos xsð Þð Þ8

0

@

1

A

vuuuuuuuuuuuuuuut

:

ð22Þ

Finally, collocating at xs = p/4 results

Substituting the obtained value of x into Eq. (19) leads to

the equation of motion of the resonator as:

u sð Þ ¼ A cos
1

30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4725E6A

10 þ 5580E5A
8 þ 6750E4A

6

þ8400E3A
4 þ 10800E2A

2 þ 14400E1

16a2 � 32a4A2 þ 24a6A4 � 8A8A6 þ a10A8

vuuuut
s

0

BBBBB@

1

CCCCCA

ð24Þ

It is worth noticing that x is a function of the non-

dimensional time (s). The angular frequency in the unit of

Hz can be easily obtained as x(Hz) = x(s) 9 s.

Validation of the solution

Neglecting the size effect, the fringing field effect, and the

van der Waals effect, i.e. d = c=avdW = 0, the present

study reduces to the analysis of a micro-resonator, which

was examined by Fu et al. (2011). A comparison between

the results of the present study and those reported by Fu

et al. (2011) is performed in Fig. 2 when d = 0, c = 0,

avdW = 0, N = 10, a = 24, A = 0.01 and for two different

values b = 25 and b = 100. In addition, the differential

Eq. (13) subject to the initial conditions of Eq. (15) is

solved using the 4th-order Runge–Kutta method in the

present study. The details of the 4th-order Runge–Kutta

method have been extensively described in Butcher (2008)

and Tan and Chen (2012). The numerical results are also

plotted in Fig. 2.

As seen, there is an excellent agreement between the

present analytical solution, the 4th-order Runge–Kutta so-

lution, and the results reported by Fu et al. (2011) for a

clamped–clamped beam. It is worth noticing that b = 25

and b = 100 correspond to V = 10 and V = 20 in the

study of Fu et al. (2011). In practice, the resonators are

designed to work with very low amplitudes to save the

energy consumption and prevent the mechanical failure of

the resonator. Hence, the values of the initial displacement,

A, are very small and preferably lower than 10-2.

A comparison between the analytical results, evaluated

using Eq. (23), and the results of 4th-order Runge–Kutta

method is depicted in Fig. 3 for a nano-resonator when

0 ¼ 1

2
�Ax sin xsð Þð Þ2

a2 � 4a4 A cos xsð Þð Þ2þ6a6 A cos xsð Þð Þ4�4a8 A cos xsð Þð Þ6þa10 A cos xsð Þð Þ8
� �

þ

1

2
E1 A cos xsð Þð Þ2�A2
� �

þ 1

4
E2 A cos xsð Þð Þ4�A4
� �

þ 1

6
E3 A cos xsð Þð Þ6�A6
� �

þ 1

8
E4 A cos xsð Þð Þ8�A8
� �

þ 1

10
E5 A cos xsð Þð Þ10�A10
� �

þ 1

12
E6 A cos xsð Þð Þ12�A12
� �

0

BB@

1

CCA

ð21Þ

x ¼ 1

30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4725E6A10 þ 5580E5A8 þ 6750E4A6 þ 8400E3A4 þ 10800E2A2 þ 14400E1

16a2 � 32a4A2 þ 24a6A4 � 8A8A6 þ a10A8

s

ð23Þ
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d = 0.5, c = 0.65, N = 10, a = 24, b = 25, and

A = 0.01. The results are plotted for three selected values

of the van der Waals parameter (avdW).

As seen, this figure indicates excellent agreement be-

tween the analytical and numerical results in the presence

of van der Waals, fringing field effect, and size effects.

Therefore, the analytical solution, Eq. (23), is utilized to

analyze the influence of the van der Waals, fringing field,

and size effects on the resonator frequency.

The results of Figs. 2 and 3 are obtained using the

eigenmode proposed in Eq. (9a). The results were also

computed using the eigenmode of Eq. (9b). Very slight

differences were observed between the results of these two

eigenmodes. Thus, for convenience, Eq. (9b) is utilized as

the eigenmode to compute the results of the next section.

The results in the following section of the paper are

evaluated using the analytical solution reported in

Eqs. (23) and (24).

Results and discussion

Figure 4 shows the effect of van der Waals parameter

(avdW) on the frequency of the resonator for selected values

of the electrostatic parameter (b). This figure indicates that

the increase of the applied voltage (electrostatic parameter)

or the intermolecular forces (van der Waals parameter)

reduces the working frequency of the resonator. Indeed,

Fig. 5 depicts the influence of the van der Waals parameter

on the frequency of the resonator for different values of the

axial force parameter (N), the fringing field effect pa-

rameter (c), the size effect parameter (d), and the Casimir

parameter.

Figure 5 depicts that the non-dimensional parameters

exert significant effects on the prediction of the natural

frequency of the resonator. As seen, the variation of natural

frequency is a nonlinear function of the van der Waals

parameter. This is because of the nonlinear nature of this

force. The presence of the fringing field effect reduces the

frequency of the resonator (comparison between the curves

1 and 2). The presence of the fringing field increases the

Fig. 2 A comparison between the results of the analytical solution,

4th-order Runge–Kutta and Fu et al. Sadeghian et al. (2010) for a

clamped–clamped micro-resonator

Fig. 3 A comparison between the results of the analytical solution

and 4th-order Runge–Kutta method for a clamped–clamped nano-

resonator

Fig. 4 Effect of van der Waals parameter on the frequency of the

clamped–clamped nano-resonator for selected values of the voltage

parameter
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magnitude of the acting forces on the electrode, and hence,

it decreases the oscillation frequency of the resonator. In

contrast, an increase of the axial load parameter increases

the oscillation frequency. The presence of an axial load

increases the stiffness of the electrode, which results in the

augmentation of the oscillation frequency (comparison

between the curves 1 and 3). The comparison between

curves of 1 and 4 indicates that the presence of the size

effect raises the frequency of the system. As the size of the

electrode decreases, the size effect increases the stiffness of

the system, which leads to the increase of the oscillation

frequency. Comparison between the curves of 4 and 5 re-

veals that the presence of the Casimir force reduces the

oscillating frequency of the oscillator. The Casimir force

increases the magnitude of the absorption force acting on

the actuator, and hence, the oscillating frequency

decreases.

Figures 4 and 5 show that for high values of the van der

Waals and electrostatic parameters, the resonator frequency

suddenly drops to zero, which indicates the occurrence of

the pull-in instability. The presence of axial load and size

effects tends to postpone the pull-in instability through the

increase of the stiffness of the system. In contrast, the

presence of external loads tends to unstable the resonator.

Figure 6 depicts the effect of Casimir force (aCa) on the

non-dimensional frequency of the resonator (x(s)) for se-

lected values of the van der Waals (avdW) force. As seen,

this figure in agreement with Fig. 5 shows that the increase

of the Casimir parameter reduces the natural frequency of

the resonator. Comparison between Figs. 5 and 6 shows

that the variation of the natural frequency of the actuator

with variation of the Casimir parameter is more nonlinear

than that of the van der Waals parameter. This is because of

the fact that the van der Waals force is related to the cubic

inverse of the distance between electrodes, but the Casimir

force is a function of the fourth power inverse of the dis-

tance between the electrodes.

Figures 7 and 8 show the effect of van der Waals,

Casimir, and voltage parameters on the frequency of can-

tilever nano-resonators. As seen, the increase of the van der

Waals, Casimir, and applied voltage parameter reduces the

natural frequency of the resonator. However, the

Fig. 5 The frequency of the clamped–clamped nano-resonator as a

function of the van der Waals parameter (avdW) for different values of

the axial force (N) parameter, the fringing field effect parameter (c),

Casimir parameter (aCa), and the size effect parameter (d)

Fig. 6 Effect of Casimir parameter on the frequency of the clamped–

clamped nano-resonator for selected values of the van der Waals

parameter

Fig. 7 Effect of van der Waals parameter on the frequency of a

cantilever nano-resonator for selected values of the voltage parameter
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magnitude of these parameters is much smaller those for

the case of clamped–clamped nano-oscillators. The max-

imum applicable value of van der Waals, Casimir, and

voltage parameters for a cantilever beam resonator, in

which the resonator could possibly remain stable, is of

order 10. However, attention to Figs. 4 and 6 indicates that

the applicable value of van der Waals, Casimir, and voltage

parameters for a cantilever beam resonator is order of 100.

In addition, the natural frequency of clamped–clamped

actuators is also much higher than that of the cantilever

ones. These differences are because of the fact that the

stiffness of a cantilever beams is much lower than that of

the clamped–clamped ones. Hence, the clamped–clamped

type resonators are more of interest as resonators in devices

with high frequencies and high-voltage systems. The can-

tilever types are of interest in devices with lower fre-

quencies and low-voltage systems.

Conclusion

The resonant frequency of clamped–clamped and can-

tilever double-side nano-resonator is analyzed in the

presence of the van der Waals force, Casimir force, size

effects, the electrostatic force, the fringing field effect, the

mid-plane stretching effect, and axial loads. The energy

balance method is successfully applied to obtain a very

compact and accurate analytical solution for resonant

frequency of resonators as a function of non-dimensional

parameters. The results of the analytic solution and

Runge–Kutta method in the present study were compared

with those reported in the literature and found in excellent

agreement. It is found that an increase of the electrostatic

parameter, the van der Waals parameter, Casimir pa-

rameter, or the fringing field parameter would reduce the

resonant frequency of the nano-resonator. In contrast, an

increase of the size effect parameter or the axial load

parameter would decrease the resonant frequency of a

nano-resonator. The resonant frequency of a cantilever

resonator is much lower than that of a clamped–clamped

one.
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Appendix

a0 ¼
Z 1

0

/02dx; a1 ¼
Z 1

0

/dx; a2 ¼
Z 1

0

/2dx;

a3 ¼
Z 1

0

/3dx; a4 ¼
Z 1

0

/4dx

a5 ¼
Z 1

0

/5dx;

a6 ¼
Z 1

0

/6dx; a7 ¼
Z 1

0

/7dx; a8 ¼
Z 1

0

/8dx;

a9 ¼
Z 1

0

/9dx; a10 ¼
Z 1

0

/10dx

b1 ¼
Z 1

0

// ivð Þdx; b2 ¼
Z 1

0

/3/ ivð Þdx;

b3 ¼
Z 1

0

/5/ ivð Þdx; b4 ¼
Z 1

0

/7/ ivð Þdx;

b5 ¼
Z 1

0

/9/ ivð Þdx

c1 ¼
Z 1

0

//00dx; c2 ¼
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0

/3/00dx; c3 ¼
Z 1

0

/5/00dx;

c4 ¼
Z 1

0

/7/00dx; c5 ¼
Z 1

0

/9/00dx

Fig. 8 Effect of Casimir parameter on the frequency of the cantilever

nano-resonator for selected values of the van der Waals parameter
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