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Abstract Self-renewal is a constitutive property of stem cells. Testing the cancer stem
cell hypothesis requires investigation of the impact of self-renewal on cancer expan-
sion. To better understand this impact, we propose a mathematical model describing
the dynamics of a continuum of cell clones structured by the self-renewal potential.
The model is an extension of the finite multi-compartment models of interactions
between normal and cancer cells in acute leukemias. It takes a form of a system of
integro-differential equations with a nonlinear and nonlocal coupling which describes
regulatory feedback loops of cell proliferation and differentiation. We show that this
coupling leads to mass concentration in points corresponding to the maxima of the
self-renewal potential and the solutions of the model tend asymptotically to Dirac
measures multiplied by positive constants. Furthermore, using a Lyapunov function
constructed for the finite dimensional counterpart of the model, we prove that the total
mass of the solution converges to a globally stable equilibrium. Additionally, we show
stability of the model in the space of positive Radon measures equipped with the flat
metric (bounded Lipschitz distance). Analytical results are illustrated by numerical
simulations.
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1 Introduction

This paper is devoted to the analysis of a structured population model describing
clonal evolution of acute leukemias. Leukemia is a disease of the blood production
system leading to an extensive expansion ofmalignant cells that are non-functional and
cause an impairment of blood regeneration. Recent experimental evidence indicates
that cancer cell populations are composed of multiple clones consisting of genetically
identical cells (Ding et al. 2012) and maintained by cells with stem-like properties
(Bonnet and Dick 1997; Hope et al. 2004). Many authors have provided evidence for
heterogeneity of leukemic stem cells (LSC) attempting to identify their characteristics;
for review see Lutz et al. (2012). Heterogeneity is further supported by the results of
gene sequencing studies (Ding et al. 2012; Ley et al. 2008). However, it was shown in
these studies that a limited number of clones contribute to the total leukemic cell mass.
At most 4 contributing clones were detected in the case of acute myeloid leukemia
(AML) and at most 10 in the case of acute lymphoblastic leukemia (ALL) (Ding
et al. 2012; Lutz et al. 2012). Moreover, in most cases of ALL, the clones dominating
the relapse have already been present at the diagnosis but undetectable by the routine
methods (VanDelft et al. 2011; Choi et al. 2007; Lutz et al. 2013). Due to a quiescence,
a very slow cycling or other intrinsic mechanisms (Lutz et al. 2013; Choi et al. 2007),
these clones may survive chemotherapy and eventually expand (Lutz et al. 2013; Choi
et al. 2007). This implies that themainmechanismof relapse inALLmight be selection
of existing clones and not acquisition of therapy-specific mutations (Choi et al. 2007).
Similar mechanisms have been described in AML (Ding et al. 2012; Jan and Majeti
2013). Based on these findings the evolution of malignant cells can be interpreted as a
selection process for properties that enable cells to survive the treatment and to expand
efficiently. The mechanisms of the underlying process and its impacts on the disease
dynamics andon the response of cancer cells to chemotherapy are not understood.Gene
sequencing studies allow deciphering the genetic relations among different clones;
nevertheless the impact of many detected mutations on cell behaviour remains unclear
(Ding et al. 2012). Themultifactorial nature of the underlying processes severely limits
the intuitive interpretation of the experimental data.

To investigate the impact of cell properties on the multi-clonal composition of
leukemias and to elucidate the possible mechanisms of the clonal selection suggested
by the experimental data, a multi-compartmental model was proposed and studied
numerically in Stiehl et al. (2014). It assumes the form of the following system of
ordinary differential equations,

d

dt
c1(t) = (

2acs(t) − 1
)
pcc1(t),
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d

dt
c2(t) = 2

(
1 − acs(t)

)
pcc1(t) − dc2c2(t),

d

dt
l11(t) = (

2al
1
s(t) − 1

)
pl

1
l11(t),

d

dt
l12(t) = 2

(
1 − al

1
s(t)

)
pl

1
l11(t) − dl

1

2 l
1
2(t),

...
...

...
d

dt
ln1 (t) = (

2al
n
s(t) − 1

)
pl

n
ln1 (t),

d

dt
ln2 (t) = 2

(
1 − al

n
s(t)

)
pl

n
ln1 (t) − dl

n

2 ln2 (t),

s(t) = 1

1 + Kcc2(t) + Kl
∑n

i=1 l
i
2(t)

, (1)

with nonnegative initial data.
The model describes time dynamics of a healthy cell line, denoted by c j , j = 1, 2

and of n clones of leukemic cells lij , for j = 1, 2, and i = 1, . . . , n, at time t . Each pop-
ulation consists of two different cell types, proliferating and non-proliferating, denoted
by j = 1 and j = 2, respectively. This two-compartment model is a simplification of
the more realistic model with multiple differentiation stages; see Marciniak-Czochra
et al. (2009), Stiehl et al. (2013) for an introduction to the model and its application
to the healthy hematopoiesis; Getto et al. (2013), Nakata et al. (2011), Stiehl and
Marciniak-Czochra (2011) for its analysis; and Doumic et al. (2011) for a continuous-
structure extension. This model can be viewed as a structured population model with
a discrete structure describing two differentiation stages and n + 1 cell types.

Parameters pc > 0 and pl
i

> 0 denote the proliferation rate of the healthy cells
and the cells in the leukemic clone i , respectively, and ac and al

i
are the corresponding

maximal fractions of self-renewal, which depend on the proportion of symmetric and
asymmetric cell divisions in the respective population.More precisely, the self-renewal
fractions 0 < ac < 1 and 0 < al

i
< 1 are the fractions of the progeny cells that remain

in the compartment of proliferating cells. Consequently, (1 − ac) and (1 − al
i
) are

fractions of the dividing cells that differentiate and become non-proliferating. By
dc2 > 0 and dl

i

2 > 0 we denote the clearance rate of the non-proliferating healthy cells
and the cells in the i th leukemic clone, respectively.

The model is based on the assumption that leukemic clones and their normal coun-
terparts respond to a hematopoietic feedback signalling and compete for signalling
factors (cytokines). We assume that the feedback signal, s(t), decreases if the number
of non-proliferating cells increases. Derivation of such nonlinear feedback loop was
proposed in Marciniak-Czochra et al. (2009). It is based on a Tikhonov-type quasi-
stationary approximation of dynamics of the extracellular signalling molecules, such
as the G-CSF cytokine, which are secreted by specialised cells at a constant rate and
degraded by a receptor-mediated endocytosis. Following the evidence from clinical
trials that the mature granulocytes mediate clearance of G-CSF (Layton et al. 1989),
we assume that dynamics of the signalling molecules depends on the number of non-
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1004 J.-E. Busse et al.

proliferating cells. This assumption has been also supported by studies of receptor
expression showing that the mature cells express significantly more receptors than the
cells in bone marrow (Shinjo et al. 1997). Taking into account these observations, we
obtain a model with a nonlinear coupling depending on the level of non-proliferating
cells.

Numerical simulations of model (1) suggest that cells with a superior self-renewal
potential, i.e. a maximum value of the parameter a, reflecting the probability that a
daughter cell has the same properties and fate as its parent cell, have an advantage in
comparison to their competitors,which leads to the expansionof this cell subpopulation
(Stiehl et al. 2014). The phenomenon was shown analytically solely in the case of two
competing populations, a healthy and a cancerous cell line (Stiehl and Marciniak-
Czochra 2012).

To elucidate further mechanisms of clonal selection, we propose an infinitely
dimensional extension of the multi-compartment model (1). We introduce a con-
tinuous variable x ∈ Ω that represents the expression level of genes (yielding a
phenotype) influencing self-renewal properties of the cells. It leads to a system of
integro-differential equations describing dynamics of a structured population with the
continuum of cell clones and the two-compartment differentiation structure. Cells in
Population 1 (dividing cells) proliferate and may self-renew or differentiate into Pop-
ulation 2 cells (differentiated cells). Population 2 cells do not proliferate and die after
an exponentially distributed lifetime, as depicted in Fig. 1. Cells in both populations
are stratified by a structure variable x . We assume that the self-renewal parameter

Fig. 1 Schematic representation of model (2), consisting of two compartments corresponding to undiffer-
entiated cells (dividing cells) and mature cells (differentiated cells). Undifferentiated cells (stem cells and
early progenitors) divide symmetrically or asymmetrically. Accordingly, they produce cells of the same
type (self-renewal) and mature cells (differentiation). Mature cells do not divide and they die after an expo-
nentially distributed lifetime. The cells in each compartment are heterogenous. They are stratified by a
structure variable x that represents the expression level of genes (yielding a phenotype and eg. influencing
the self-renewal properties of the cells). Self-renewal and differentiation of cells are regulated by a cytokine
feedback which, in turn, depends on the total count of differentiated cells
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depends on x , i.e. the parameter a becomes a function a(x). These assumptions lead
to the model

∂

∂t
u1(t, x) = (2a(x)s(t) − 1) pu1(t, x),

∂

∂t
u2(t, x) = 2 (1 − a(x)s(t)) pu1(t, x) − du2(t, x),

u1(0, x) = u01(x),

u2(0, x) = u02(x). (2)

Assuming s(t) = 1/(1 + K
∫
Ω
u2(t, x)dx), we obtain a nonlocal and nonlinear

coupling of the two equations.
Our approach is motivated by the theory of selection of the most fit variants in adap-

tive evolution. Cells with different mutational variants might have different growth
properties allowing them to expand more efficiently. The phenomenon can be under-
stood as an example of a process, which is closely related to Darwinian evolution. In
our particular case, certain raremutants may have positive growth rates and be selected
in environments that otherwise result in extinction. In other words, cells with a fit-
ness advantage expand and dominate dynamics of the population leading to extinction
of the other cell clones. The model proposed belongs to the class of selection mod-
els exhibiting a mass concentration effect, similar to those presented in the books
Perthame (2007) and Bürger (2000).

In the current work, we do not model mutation events. Instead, motivated by the
experimental findings described earlier in Lutz et al. (2013), Choi et al. (2007), we
aim to understand which aspects of the dynamics of leukemias can be explained
by the selection alone. It is interesting, since the relapse caused by an expansion
of a clone that could not be detected at diagnosis due to the limited sensitivity of
detection methods, can be misinterpreted as a mutational event (Choi et al. 2007). A
computational model of the AMLwith mutations was proposed in Stiehl et al. (2014).
Following the biological evidence (Jan et al. 2012), it was assumed that new LSC
clones were formed due to mutations occurring in LSCs or due to the influx from
the so-called preleukemic cells at a rate modelled by a time inhomogeneous Poisson
process. At each point of the Poisson process a new clone with random cell properties
was added to the system. Simulations of that model demonstrate that leukemic cell
properties at diagnosis and at relapse are comparable to the scenariowithoutmutations.
Introducing mutations to the continuous models is known to make asymptotic analysis
more complicated, and therefore we do not consider this aspect in the current paper.

The mathematical angle of our study is analysis of the nonlocal effects and devel-
opment of singularities in the solutions of the integro-differential equations. We show
that the solutions of system (2) may tend to Dirac measures concentrated in points
with the largest value of the self-renewal potential. Such dynamics can be interpreted
in the terms of selection, which causes convergence of the heterogeneous initial data
to a stationary solution with the mass localised on a set of measure zero. Conver-
gence then holds in the weak∗ topology of Radon measures. Considering the space
of positive Radon measures with a suitable metric allows formulating the result on
convergence of solutions to a stationary measure in the terms of the metric instead of
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the weak∗ convergence of Radon measures. We apply the flat metric (bounded Lip-
schitz distance), which has proven to be useful in the analysis of a variety of transport
equationsmodels, for example to study Lipschitz dependence of solutions of nonlinear
structured population models on the model parameters and initial data (Gwiazda et al.
2010; Gwiazda and Marciniak-Czochra 2010; Carrillo et al. 2012); see Appendix for
the definition and properties of the flat metric.

Similar results have been recently shown for scalar equations including diffusion;
see for instance Barles and Perthame (2008), Barles et al. (2009), Lorz et al. (2011,
2013), Desvillettes et al. (2008), and Lorz et al. (2013) for a model with an additional
space structure. The equations studied in Lorz et al. (2013) and Lorz et al. (2013) have
been also applied to address cancer heterogeneity, and the influence of the selection
process on the cancer resistance to chemotherapy.

The novelty of our work lies in considering a system of two coupled equations.
Difficulty of the analysis is related to the specific nonlinearities in the model, which
do not allow for component-wise estimates. The proof of boundedness of mass in
the scalar equations is based on existence of sub- and supersolutions. In the case of
a system, we face a difficulty which appears already in the proof of boundedness of
solutions of a structure-independentmodel. The estimates cannot be concludeddirectly
from the equations. To tackle this problem,we investigate the dynamics of the quotients
of solutions of the two variables. Systems of equations also cause additional difficulties
when analysing the long-term dynamics in comparison to the scalar equations due to
the lackof a rich class of entropies.Convergence to a stationary positiveRadonmeasure
has been previously studied for a scalar integro-differential equation which is linear
in the nonlocal term as in Jabin and Raoul (2011). This is often referred to as the
Evolutionarily Stable Distribution. To deal with model nonlinearities, we make use
of a Lyapunov function established previously for a finite dimensional counterpart of
the model in Getto et al. (2013) and we show that the total masses of solutions tend
asymptotically to the same equilibria.

A system of two equations describing selection and mutation in a stage-structured
population has been investigated in Calsina and Cuadrado (2004) and Calsina and
Cuadrado (2005) in the context of adaptive dynamics. Analysis of that model is based
on a specific structure of nonlinearities appearing only in the mortality terms. Using
irreducibility of the mutation operator and the infinite dimensional version of the
Perron–Frobenius Theorem, it has been shown that solutions of the model converge
to a stationary distribution, which concentrates at the point of maximum fitness in the
case of the frequency of mutations tending to zero. The nonlinearity in our model is
related to the growth term, which requires a different approach to the analysis of the
asymptotic behaviour of the model solutions. The difference in the structure of nonlin-
ear feedbacks is related to a different biological definition of the described processes.
While the classical juvenile-adult dynamics is based on a loop of two positive feed-
backs and no self-enhancement, the model of cell differentiation involves a negative
feedback and a self-enhancement of the first population. Interestingly, the two-stage
structure in our model yields stabilisation of the total populations, while even in the
basic juvenile-adult models, the two-stage structure may lead to multiple attractors
and limit cycles; see for example Baer et al. (2006).
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The paper is organised as follows: in Sect. 2, the main results are stated. Analyti-
cal results are illustrated by numerical simulations. Proofs of boundedness and strict
positivity of the total masses and of the exponential decay of the model solutions
outside the set corresponding to the maximal value of the self-renewal parameter are
presented in Sect. 3. Section 4 contains the proof of mass convergence to a globally
stable equilibrium. Finally, the asymptotic dynamics of the model solutions is shown
in Sect. 5. Additionally, in Sect. 6, we show how to extend the analysis of our model to
the framework of positive Radon measures with a suitable metric. Finally, in Section
7 we discuss biological conclusions and ideas stemming from this work. A summary
of properties of the metrics used in Sect. 5 is provided in the Appendix.

2 Main results

We consider the following system of integro-differential equations

∂

∂t
u1(t, x) =

(
2a(x)

1 + Kρ2(t)
− 1

)
pu1(t, x),

∂

∂t
u2(t, x) = 2

(
1 − a(x)

1 + Kρ2(t)

)
pu1(t, x) − du2(t, x), (3)

u1(0, x) = u01(x),

u2(0, x) = u02(x),

where

ρi (t) =
∫

Ω

ui (t, x) dx, for i = 1, 2

and Ω ⊂ R is open and bounded.
In the remainder of this work we make the following assumptions on the model

parameters and initial data.

Assumption 1 (i) a ∈ C(Ω) with 0 < a < 1 and Ω being a closure of Ω .
(ii) p, d and K are positive constants.
(iii) u01, u

0
2 ∈ L1(Ω) are strictly positive a.e. with respect to the Lebesgue measure,

i.e.
∫
B u0i dx > 0, for every set B such that L1(B) > 0, i = 1, 2.

(iv) The set of maximal values of the self-renewal parameter a, i.e.

Ωa = argmax
x∈Ω

a(x) =
{
x̄ ∈ Ω

∣∣∣∣ā := a(x̄) = max
x∈Ω

a(x)

}
(4)

either consists of a single point or it is a set with a positive Lebesgue measure.

Remark 1 The assumption (iv) on the self-renewal fraction a(x) is made to streamline
the presented analysis. If Ωa consists of several isolated points, then the solution is
attracted by a finite dimensional subspace spanned by Dirac deltas located at the
maximum points of a; see Fig. 3. However, in this case the exact pattern may also
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1008 J.-E. Busse et al.

depend on the shape of function a(x) near its maximal points. Since analysis of this
case requires stronger assumptions on regularity of the initial data and the function
a(x), we consider it separately in Theorem 3.

Existence anduniqueness of a classical solutionu = (u1, u2)∈C1([0, T ), L1(Ω)×
L1(Ω)) follow by the standard theory of ordinary differential equations in Banach
spaces.More delicate is the question of asymptotic behaviour of the solutions of system
(3). Our goal is to show that the solution u tends asymptotically to a stationarymeasure,
as it is observed in the numerical simulations, see Figs. 2 and 3. The phenomenon is
characterised by the following Theorem.

Theorem 1 Let Assumptions 1 hold and let (u1, u2) be a solution of system (3) with
initial data (u01, u

0
2). Then, u1 and u2 converge to stationary measures with supports

contained in the set Ωa defined in expression (4), as t tends to infinity. Moreover,

(i) If Ωa consists of a single point x̄ and ā = maxx∈Ω a(x) > 1
2 , then the solu-

tion converges to a stationary measure (Dirac measure multiplied by a positive

constant (c1, c2) =
(
d
p
2ā−1
K , 2ā−1

K

)
) concentrated in x̄ . Convergence holds in

the flat metric (bounded Lipschitz distance); see Appendix for the definition and
properties of the bounded Lipschitz distance.

(ii) IfΩa is a set with positive measure and ā = maxx∈Ω a(x) > 1
2 , then the solution

converges to a stationary L1-function, such that
limt→+∞ ui (t, x) = c̃i u0i (x)1Ωa , for i = 1, 2, where 1Ωa is the characteristic

function of the setΩa, c̃1 = d
p

(2ā−1)
Ku01|Ωa | , and c̃2 = (2ā−1)

Ku01|Ωa | . Convergence is strong
in L1(Ω).

(iii) If ā = maxx∈Ω a(x) ≤ 1
2 , then the solution converges to zero, i.e.

lim
t→+∞ ui (t, x) = 0, for i = 1, 2. Convergence is strong in L1(Ω).

Remark 2 Ifa(x) ≤ 1
2 for somepoints x ∈ Ω , then the solutions of themodel converge

point-wise to zero, i.e. limt→∞(u1(t, x), u2(t, x)) = (0, 0) for every x ∈ Ω− := {x ∈
Ω

∣∣a(x) ≤ 1
2

}
. This is a straightforward consequence of Eq. (3), since ρ2 is strictly

positive, as shown in Lemma 1, and hence
(

2a(x)
1+Kρ2(t)

− 1
)

< 0 for x ∈ Ω−. Therefore,
we are interested in evolution of the system for x ∈ Ω+ := Ω\Ω−. Subpopulations
with a(x) ≤ 1

2 may affect short-term dynamics of the system; however they have no
influence on the asymptotic behaviour.

Details of the proof are presented in Sects. 3, 4 and 5. The proof is based on the
following key steps:
Step 1. Uniform boundedness and strict positivity of masses ρi (t) = ∫

Ω
ui (t, x) dx

for i = 1, 2 (Lemma 1).

Lemma 1 Let Assumptions 1 (i)–(iii) hold with ā = maxx∈Ω a(x) > 1
2 and let

(u1, u2) be a solution of system (3). Then, ρ1 and ρ2 are uniformly bounded and
strictly positive, i.e. there exists a positive lower bound, uniform in time.

Proof of this lemma is deferred to Sect. 3.1.
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Mass concentration in a nonlocal model of clonal selection 1009

Fig. 2 Numerical simulations
of the model (3) with the
self-renewal function a(x)
having a single local maximum
(shown in the upper panel).
Parameters used in the
simulation: K = 0.01, p = 1,
d = 0.2 and the initial data:
u01(x) = 1000 − 500x ,

u02(x) = 1000x2. We observe
mass concentration in the point
x̄ = argmaxx∈Ω a(x) and
convergence of the mass to a
stable stationary value

123
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Fig. 3 Numerical simulations
of the model (3) with the
self-renewal function a(x)
having two equal local maxima
(shown in the upper panel) and
the parameters the same as in
Fig. 2. We observe mass
concentration in two points
corresponding to the maximum
of the function a(x) with
unequal distribution of the mass
between the two points
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Step 2. Exponential extinction of solutions in points outside the set Ωa (Lemma 3).
We start with characterising the asymptotic behaviour of the ratios of solutions

taken at different x points.

Lemma 2 Let x1, x2 ∈ Ω such that a(x1) − a(x2) < 0. Then, there exists a constant
M3 > 0 such that

u1(t, x1)

u1(t, x2)
≤ u01(x1)

u01(x2)
e
p
2(a(x1)−a(x2))

1+KM3
t t→∞−→ 0,

a.e. with respect to the Lebesgue measure.

The proof of this lemma is deferred to Sect. 3.2.
Lemma 2 yields the following result:

Corollary 1 Let x1, x2 ∈ Ω such that a(x1) = a(x2). Then,
u1(t,x1)
u1(t,x2)

is constant in
time.

As a consequence of Lemma 2 we also obtain

Lemma 3 Suppose that Assumptions 1 (i)– (iii) hold. Then, u(t, x) → 0, exponen-
tially, as t → ∞ for x /∈ Ωa a.e. with respect to the Lebesque measure.

The corresponding proof is presented in Sect. 3.2.
Step 3. Convergence of solutions to stationary measures.
Convergence to the stationary solutions follows from the property of the totalmasses of
the solutions (

∫
Ω
u1(t, x)dx,

∫
Ω
u2(t, x)dx).We show that if ā = maxx∈Ω a(x) > 1

2 ,
then the solutions converge to the stationary state of the systemwith ā = maxx∈Ω a(x).

Theorem 2 Suppose that Assumptions 1 hold, ā = max
x∈Ω

a(x) > 1
2 and (ρ1, ρ2) =

(
∫
Ω
u1(·, x)dx,

∫
Ω
u2(·, x)dx) be total masses of solutions of (3). It holds that

(ρ1(t), ρ2(t)) → (ρ̄1, ρ̄2), as t → ∞, where (ρ̄1, ρ̄2) are stationary solutions
of the corresponding ordinary differential equations model with the maximal value of
the self-renewal parameter ā, i.e.,

0 =
(

2ā

1 + K ρ̄2
− 1

)
pρ̄1,

0 = 2

(
1 − ā

1 + K ρ̄2

)
pρ̄1 − dρ̄2. (5)

Direct calculations based on Eq. (5) yield

Corollary 2 Total masses converge to the values ρ̄1 = d
p
2ā−1
K and ρ̄2 = 2ā−1

K .

Details of the proof of mass convergence are deferred to Sect. 4.
If Ωa consists of a single point x̄ and ā = maxx∈Ω a(x) > 1

2 , then the exponen-
tial decay of the solutions outside the set Ωa together with the convergence of total
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masses, yields convergence of the solutions to a stationary measure concentrated at
x̄ (a Dirac measure multiplied by a positive constant). In the case of Ωa having a
positive Lebesgue measure, convergence of solutions together with Corollary 1 on the
stationary distribution of masses among different domain points yields convergence
of solutions to the stationary equilibrium. Further details of the proof of convergence
of solutions to the stationary measures are given in Sect. 5.

Remark 3 In the case Ωa = {x̄}, the convergence holds in the weak∗ topology of
Radon measures. In general, we cannot expect the strong (norm- total variation)
convergence of the solution to a stationary solution. If the set Ωa ⊂ R has zero
Lebesgue measure and consists of a single point [compare Assumptions 1 (iv)], then
the model solutions for any finite time point are uniformly continuous with respect to
the Lebesgue measure and ui (t, ·)L1 → ciδx̄ , weakly∗, for i = 1, 2. Here, ui (t, ·)L1

denotes the measure such that u is its Radon–Nikodym derivative with respect to L1.
Hence, the distance between the two solutions T V (ui (t, ·), ciδx̄ ) ≥ 2ci . The prob-

lem can be solved by considering convergence with respect to a suitable metric, for
example the flat metric (bounded Lipschitz distance); for details see Sect. 5.

If the support of ā is not a single point set, then the stationary distribution of
masses depends on the initial conditions. If Ωa has a positive Lebesgue measure, then
the distribution of masses results from Corollary 1. If Ωa consists of a discrete set of
points, then the stationary solution takes the form of a linear combination of Dirac
deltas; see Fig. 3. We show that in such case the limit function depends on the shape
of a(x) in the neighbourhood of the concentration points.

Theorem 3 (Co-existence of different stationary solutions) Let Assumptions 1 (i)–
(iii) hold and, additionally, the initial functions u01, u

0
2 ∈ C(Ω). Let the set Ωa of the

maximum values of the self-renewal parameter a (as defined in expression (4)) consist
of two points Ωa = {x̄1, x̄2} and u01 be strictly positive on Ωa. Then,

(i) If there exists a diffeomorphismΦ ∈ C1(U1), whereU1 is an open neighbourhood
of x̄1, such that

Φ(x̄1) = x̄2,

a(x) = a(Φ(x)) for all x ∈ U1, (6)

then solutions (u1, u2) of system (3) converge to stationary measures, which are
linear combinations of Dirac measures concentrated in x̄1 and x̄2, multiplied by
strictly positive constants.

(ii) If the mappingΦ with the properties defined by condition (6) is only a homeomor-
phism with a singular Jacobian of the inverse mapping Φ−1 at x̄2, then solutions
(u1, u2) of system (3) converge to stationary measures concentrated in x̄2.

The proof of this theorem is deferred to Sect. 5.

Remark 4 If a is an analytic function and Ω ⊂ R, then a diffeomorphism satisfying
condition (6) exists if the first nonconstant nonzero terms of Taylor expansion of the
function a(x) are of the same order.
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Mass concentration in a nonlocal model of clonal selection 1013

This observation suggests how to construct a(x) with Ωa = {x̄1, x̄2} such that
solutions extinct at one of the points of Ωa . For example, we may define a(x) with
x ∈ Ω = [0, 1] such that

a(x) :=
{

−(x − 1
4 )

2 + 9
10 f or x ∈ [0, 3

8 ),

−(x − 3
4 )

4 + 9
10 f or x ∈ ( 58 , 1].

and a smooth extension of a(x) on the interval ( 38 ,
5
8 ) satisfying 0 < a(x) < 1. We

obtain Ωa = { 14 , 3
4 }, and a mapping Φ(x) =

√
x − 1

4 + 3
4 satisfying condition (6) on

U1 = ( 14 − ε, 1
4 + ε), where ε < 1

8 . Consequently, Φ
−1(x) = (x − 3

4 )
2 + 1

4 and it is
singular at x = 3

4 . Hence, the total mass concentrates at the point x = 3
4 and there is

an extinction of mass at x = 1
4 .

3 Proof of mass concentration

3.1 Boundedness and strict positivity of masses

All considerations in this Section hold for x ∈ Ω a.e. with respect to the Lebesque
measure.

First, we notice that the solutions (u1, u2) are nonnegative, since a(x)/(1+Kρ2) <

1. Before proving Lemma 1, we show the following technical result.

Lemma 4 Under the assumptions of Lemma 1, the function U = u1
u2

is uniformly

bounded on Ω × R
+.

Proof The equation for U (t, x) = u1(t,x)
u2(t,x)

reads for t > 0

∂

∂t
U (t, x) = U (t, x)

(
p

(
2a(x)

1 + Kρ2(t)
− 1

)
+ d

−2p

(
1 − a(x)

1 + Kρ2(t)

)
U (t, x)

)
. (7)

Since

p

(
2a(x)

1 + Kρ2(t)
− 1

)
+ d ≤ 2pā + d

and

1 − a(x)

1 + Kρ2(t)
> 1 − ā,
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and the right-hand side of Eq. (7) is a logistic type nonlinearity, we conclude that

U (t, x) ≤ max

{
U (0, x),

2pā + d

2p(1 − ā)

}
=: M1 ∀ (t, x) ∈ [0, T ) × Ω.

By definition of U , we can infer that

u1(t, x) ≤ M1u2(t, x) ∀ (t, x) ∈ [0, T ) × Ω.

As a straightforward consequence of Lemma 4, we deduce

Corollary 3 Under the assumptions of Lemma 1, it holds

∫

Ω

u1(t, x) dx ≤ M1

∫

Ω

u2(t, x) dx = M1ρ2(t). (8)

Now we state another technical result in the spirit of Lemma 4.

Lemma 5 There exist constants M4 > 0 and 0 < γ < 1 such that ρ2(t) ≤ M4ρ
γ
1 (t)

for all t ≥ 0.

Proof Calculating the derivative of the quotient of ρ2(t) and ρ
γ
1 (t), we obtain

d

dt

ρ2(t)

ρ
γ
1 (t)

=
d
dt ρ2(t)ρ

γ
1 (t) − ρ2(t)γρ

γ−1
1 (t) d

dt ρ1(t)

ρ
2γ
1 (t)

=
∫
Ω

(
2(1 − a(x)

1+Kρ2(t)
)pu1(t, x) − du2(t, x)

)
dx

ρ
γ
1 (t)

− ρ2(t)

ρ
γ
1 (t)

γ
∫
Ω

(
2a(x)

1+Kρ2(t)
− 1

)
pu1(t, x) dx

ρ1

≤
∫
Ω

(
2(1 − a(x)

1+Kρ2(t)
)pu1(t, x) − du2(t, x)

)
dx

ρ
γ
1 (t)

+ ρ2(t)

ρ
γ
1 (t)

γ p

≤ 2pρ1−γ
1 (t) + ρ2(t)

ρ
γ
1 (t)

(γ p − d) ≤ 2pM1−γ
2 + ρ2(t)

ρ
γ
1 (t)

(γ p − d).

This estimate holds for arbitrary γ ∈ (0, 1), so in particular for those satisfying
γ p − d < 0. Arguing as before, we deduce that, for all t ≥ 0,

ρ2

ρ
γ
1

(t) ≤ max

{
ρ2(0)

ρ
γ
1 (0)

,
2pM1−γ

2

d − γ p

}

=: M4. (9)

Equipped with Lemmas 4 and 5, we prove Lemma 1.
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Mass concentration in a nonlocal model of clonal selection 1015

Proof (of Lemma 1) (i) First, we show uniform boundedness of masses ρ1 and ρ2,
which yields also the global existence of solutions (u1, u2) ∈ C1([0,∞), L1(Ω) ×
L1(Ω)).

To show boundedness of ρ1, we apply inequality (8) to the first equation of system
(3)

∂

∂t
u1(t, x) =

(
2a(x)

1 + Kρ2(t)
− 1

)
pu1(t, x) ≤

(
2a(x)

1 + K
M1

ρ1(t)
− 1

)

pu1(t, x)

≤
(

2ā

1 + K
M1

ρ1(t)
− 1

)

pu1(t, x).

Integrating this inequality over Ω yields

d

dt
ρ1(t) ≤

(
2ā

1 + K
M1

ρ1(t)
− 1

)

pρ1(t). (10)

Using a similar argument as in the proof of Lemma 4, we conclude that

ρ1(t) ≤ max

{
ρ1(0),

(2ā − 1)M1

K

}
=: M2. (11)

Boundedness of ρ2 results from the second equation of system (3), nonnegativity
of ρ2 and the assumptions on a. It holds

∂

∂t
u2(t, x) = 2

(
1 − a(x)

1 + Kρ2(t)

)
pu1(t, x) − du2(t, x) ≤ 2pu1(t, x) − du2(t, x).

Integrating over Ω and using (11), we obtain

d

dt
ρ2(t) ≤ 2pρ1(t) − dρ2(t) ≤ 2pM2 − dρ2(t).

Hence, we conclude that

ρ2(t) ≤ max

{
ρ2(0),

2pM2

d

}
=: M3. (12)

(ii) We show that masses ρ1 and ρ2 have a strictly positive lower bound, uniform
in time.

We estimate the growth of ρ1 using a decomposition of the domainΩ = Ω− +Ω+,
where Ω− := {x ∈ Ω

∣∣a(x) ≤ 1
2

}
and Ω+ := {x ∈ Ω

∣∣a(x) > 1
2

}
.

First, we assume that the set Ω− is nonempty, i.e.
∫
Ω− u01(x) > 0. We denote

ρ−
1 (t) =

∫

Ω−

u1(t, x) dx and ρ+
1 (t) =

∫

Ω+

u1(t, x) dx .
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Using the explicit form of the solution

u1(t, x) = u01(x)e

t∫

0

(
2a(x)

1+Kρ2(τ )
−1

)
p dτ

(13)

and the properties of the function a(x) on the two subdomains, we obtain

ρ+
1 (t)

ρ−
1 (t)

=
∫
Ω+ u01(x)e

∫ t
0

(
2a(x)

1+Kρ2(τ )
−1

)
p dτ

dx

∫
Ω− u01(x)e

∫ t
0

(
2a(x)

1+Kρ2(τ )
−1

)
p dτ

dx
≥ infΩ+ e

∫ t
0

(
2a(x)

1+Kρ2(τ )
−1

)
p dτ ∫

Ω+ u01(x) dx

supΩ− e
∫ t
0

(
2a(x)

1+Kρ2(τ )
−1

)
p dτ ∫

Ω− u01(x) dx

= e
∫ t
0

(
1

1+Kρ2(τ )
−1

)
p dτ ∫

Ω+ u01(x) dx

e
∫ t
0

(
1

1+Kρ2(τ )
−1

)
p dτ ∫

Ω− u01(x) dx
= ρ+

1 (0)

ρ−
1 (0)

. (14)

Combining estimates (9) and (14) yields

ρ2(t) ≤ M4(ρ
+
1 (t) + ρ−

1 (t))γ ≤ M4

(

ρ+
1 (t)

(

1 + ρ+
1 (0)

ρ−
1 (0)

))γ

= M5
(
ρ+
1 (t)

)γ

(15)

with M5 = M4

(
1 + ρ+

1 (0)

ρ−
1 (0)

)γ

.

With estimate (15) at hand, we show that ρ+
1 is strictly positive for every t ∈ R

+.
We estimate its dynamics

d

dt
ρ+
1 (t) =

∫

Ω+

(
2a(x)

1 + Kρ2(t)
− 1

)
pu1(t, x) dx

≥
(

2a

1 + KM5
(
ρ1(t)+

)γ − 1

)

pρ1(t),

where a = min
x∈Ω+

a(x) > 1
2 .

The term in the brackets is strictly positive for ρ+
1 small enough, i.e. for

ρ+
1 (t) ≤

(
2a − 1

KM5

) 1
γ

,

which is a positive constant, since a > 1
2 .

Hence, we obtain the estimate

ρ1(t) ≥ min
{
ρ1(0),

(
2a − 1

KM5

) 1
γ }

=: M6 ∀ t ∈ [0,∞).
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Consequently, we obtain the strict positivity of ρ1 and using the second equation
of (3), also the strict positivity of ρ2. In the case of Ω− = ∅, it holds ρ1 = ρ+

1 and the
proof is complete if we set M5 = M4.

3.2 Asymptotic behaviour of the solutions

In the next step, we show that the first component of the solution of system (3) tends
to zero for x̄ /∈ Ωa a.e. with respect to the Lebesque measure.

Proof (of Lemma 2) We choose two points x1, x2 ∈ Ω such that a(x1) − a(x2) < 0,
and calculate

∂

∂t

u1(t, x1)

u1(t, x2)
= p

u1(t, x1)

u1(t, x2)

(
2
a(x1) − a(x2)

1 + Kρ2(t)

)
≤ p

u1(t, x1)

u1(t, x2)

(
2
a(x1) − a(x2)

1 + KM3

)
.

Solving the above differential inequality for u1(t,x1)
u1(t,x2)

, we obtain the assertion of this
Lemma by the choice of x1 and x2.

Lemma 6 Let x1, x2 ∈ Ω be such that a(x1) − a(x2) < 0, then

u2(t, x1)

u2(t, x2)
t→∞−→ 0,

a.e. with respect to the Lebesque measure.

Proof We use a similar ansatz as in Lemma 2 and calculate for t > 0

∂

∂t

u2(t, x1)

u2(t, x2)
= 2

(
1 − a(x1)

1 + Kρ2(t)

)
p
u1(t, x1)

u2(t, x2)

−2

(
1 − a(x2)

1 + Kρ2(t)

)
p
u2(t, x1)

u2(t, x2)

u1(t, x2)

u2(t, x2)
.

Applying Lemma 2, we obtain

∂

∂t

u2(t, x1)

u2(t, x2)
= p

u1(t, x2)

u2(t, x2)

(
2

(
1 − a(x1)

1 + Kρ2

)
u01(x1)

u01(x2)
e
2(a(x1)−a(x2))t

1+KM3

−2

(
1 − a(x2)

1 + Kρ2

)
u2(t, x1)

u2(t, x2)

)
.

Thus, we deduce the following bound for u2(t,x1)
u2(t,x2)

u2(t, x1)

u2(t, x2)
≤

(
1 − a(x1)

1+KM3

)
u01(x1)

u01(x2)
e
2(a(x1)−a(x2))t

1+KM3

1 − a(x2)
,

where the right hand side tends exponentially to zero, as t tends to infinity.
This concludes the proof.
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Having shown the dynamics of the ratios of the values of a solution at different x
points, we prove that the solutions converge to zero outside the set of points with a
maximum value of the parameter a(x).

Proof (of Lemma 3) Let x̃ be a point different from x̄ and assume that limt→∞ u(t, x̃)
> 0. Continuity of a(x) implies that the set of x , such that a(x) > a(x̃), is an open
nonempty set and, therefore, it has positive measure. Since Lemma 2 holds for every
x, x̃ ∈ Ω such that a(x) − a(x̃) > 0, we conclude that u(t, x) tends exponentially to
+∞ for every x such that a(x) > a(x̃). This is, however, in contradiction with the
uniform boundedness of the mass

∫
Ω
u(t, x)dx .

4 Proof of convergence of the total mass

We begin the proof of Theorem 2 by showing the following lemma, which allows
comparing two dynamical systems.

Lemma 7 Let t → XF (t, ·) be a one-parameter family of C1-diffeomorphisms (semi-
flows) XF (t, (0,∞) × (0,∞)) ⊂ (0,∞) × (0,∞), for every t ≥ 0, generated by the
ordinary differential equation

du

dt
= F(u) (16)

such that V ∈ C1((0,∞) × (0,∞)), with a single minimum ū, is a strict Lyapunov
functional, i.e. d

dt XF (t, u)|t=0 ·∇V (u) = 0 for u = ū and d
dt XF (t, u)|t=0 ·∇V (u) < 0

otherwise. Then, if ũ is a solution of

dũ

dt
= F(ũ) + f, (17)

where limt→∞supτ∈[t,∞)| f (τ )| = 0 and Im(ũ(·)) := ∪t∈[0,∞){ũ(t)} ⊂ (0,∞) ×
(0,∞) is compact, then ũ(t) → ū for t → ∞.

Proof For arbitrary a > V̄ , we define a truncation

Va(u) :=
{
V (u) − a if V (u) ≥ a,

0 if V (u) < a.

Since Va ∈ W 1,∞(U ), where U is the intersection of all convex sets containing
Im(ũ(·)), U = conv(Im(ũ(·))) ⊂ (0,∞) × (0,∞), and d

dt ũ ∈ L1(Ω), then we
can define the time derivative of Va(ũ(t)) using the chain rule. ∇uVa is defined in a
classical sense only outside the set V (u) = a, but it has a Clarke derivative, i.e. a
generalised subdifferential for a locally Lipschitz function (Clarke 1983), on the set
V = a. In the following, ∇ũVa(ũ) is an extension of the classical definition, involving
the maximal element of the Clarke derivative, to the set where the classical derivative
is not defined.
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Let us define β : ImV (u) → (0,∞) such that

β(x) = inf{u∈U |Va(u)=x}

{
d

dt
XF (t, u)|t=0 · V (u)

}
.

Since β is a continuous function defined on a compact set, it achieves a strictly
positive minimum. Furthermore, for the truncation function Va , there exists a positive
constant β̃a such that β(Va) ≥ β̃aVa . Hence, we obtain

dVa(ũ(t))

dt
≤ −β̃aVa(ũ(t)) + ∇ũVa(ũ(t)) · f (t). (18)

Using compactness of the set U , we estimate ∇ũVa(ũ(t)) by its L∞ norm, which
yields the following inequality,

dVa(ũ(t))

dt
≤ −β̃aVa(ũ(t)) + C | f (t)|,

where C = ‖∇ũV ‖L∞(U ).
Integrating the above estimate, we obtain

Va(ũ(t)) ≤ Va(u0)e
−β̃a t + C

∫ t

0
| f (τ )|e−β̃a(t−τ)dτ. (19)

We show that the right-hand side of inequality (19) tends to zero for t → ∞.

∫ t

0
| f (τ )|e−β̃a(t−τ)dτ

=
∫ t

2

0
| f (τ )|e−β̃a(t−τ)dτ +

∫ t

t
2

| f (τ )|e−β̃a(t−τ)dτ

≤ sup
τ∈R+

| f (τ )|
∫ t

2

0
e−β̃a(t−τ)dτ + sup

τ∈[ t2 ,∞]
| f (τ )|

∫ t

t
2

e−β̃a(t−τ)dτ

≤ sup
τ∈R+

| f (τ )| 1

β̃a
e− β̃a t

2

(
1 − e− β̃a t

2

)
+ sup

τ∈[ t2 ,∞]
| f (τ )| 1

β̃a

(
1 − e− β̃a t

2

)
.

Since, by assumption limt→∞ supτ∈[ t2 ,∞] | f (τ )| = 0, passing to the limit, we
obtain

lim
t→∞

∫ t

0
| f (τ )|e−β̃a(t−τ)dτ = 0.

Convergence holds for every a, which yields convergence V (ũ(t)) → V̄ , i.e. to the
minimum of the function V . In turn, this ensures that ũ(t) → ū.
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Proof (of Theorem 2) To apply Lemma 7 to system (3), we consider a finite dimen-
sional model obtained by setting a(x) to a constant value ā

d

dt
v1 =

(
2ā

1 + Kv2
− 1

)
pv1,

d

dt
v2 = 2

(
1 − ā

1 + Kv2

)
pv1 − dv2,

v1(0) = v01,

v2(0) = v02 . (20)

Note that the above equation generates a C1-semiflow, which is invariant on
(0,∞) × (0,∞). We check that the two systems (20) and (25) fulfill the assump-
tions of Lemma 7.

Lyapunov function for system (20) has been previously constructed in Getto et al.
(2013). It assumes the form

V (v1, v2) := 1

pG(v̄2)
V1(v1) + 1

d
V2(v2), (21)

where

V1(v1) := v1

v̄1
− 1 − ln

v1

v̄1
,

V2(v2) := v2

v̄2
− 1 − 1

v̄2

∫ v2

v̄2

G(v̄2)

G(ξ)
dξ,

(v̄1, v̄2) is the stationary solution, and

G(v2) := 2

(
1 − ā

1 + kv2

)
for v2 ≥ 0. (22)

Lyapunov function (21) is well-defined for every (v1, v2) ∈ (0,∞) × (0,∞).
Moreover, V ∈ C∞(0,∞) × (0,∞).

Note that V1(v1) is strictly convex and therefore ∂
∂v1

V1 �= 0 for v1 �= v̄1. Similar
observation holds for V2(v2). Hence (v̄1, v̄2) is the global minimum of the Lyapunov
function.

Direct calculations, as provided in Getto et al. (2013), allow to check that

d

dt
V (v1(t), v2(t)) ≤ 0, (23)

for the solutions of system (20). Moreover, the equality d
dt V (v1(t), v2(t)) = 0 holds

only for the stationary solution (v̄1, v̄2).
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To show convergence of the total mass of the solution of system (3) to a global
equilibrium, we integrate equations (3) with respect to x and obtain

d

dt
ρ1(t) =

∫

Ω

(
2a(x)

1 + Kρ2(t)
− 1

)
pu1(t, x)dx,

d

dt
ρ2(t) = 2

∫

Ω

(
1 − a(x)

1 + Kρ2(t)

)
pu1(t, x)dx − d

∫

Ω

u2(t, x)dx,

ρ1(0) =
∫

Ω

u01(x)dx,

ρ2(0) =
∫

Ω

u02(x)dx . (24)

This can be rewritten as

d

dt
ρ1(t) =

(
2ā

1 + Kρ2(t)
− 1

)
pρ1(t) + 2p

1 + Kρ2(t)

∫

Ω

(a(x) − ā) u1(t, x)dx,

d

dt
ρ2(t) = 2

(
1 − ā

1 + Kρ2(t)

)
pρ1(t)

+ 2p

1 + Kρ2(t)

∫

Ω

(ā − a(x)) u1(t, x)dx − dρ2(t), (25)

ρ1(0) =
∫

Ω

u01(x)dx,

ρ2(0) =
∫

Ω

u02(x)dx .

By Lemma 1, Im((ρ1(·), ρ1(·)) ⊂ (0,∞)×(0,∞) and it is compact (see Lemma 1
and Fig. 4).

To show that the perturbation function on the right-hand side converges to zero as
t → ∞, we calculate

∫

Ω

(a(x)−ã) u1(t, x)dx=
∫

Ωa

(a(x)−ã) u1(t, x)dx+
∫

Ω\Ωa

(a(x)−ã) u1(t, x)dx,

where Ωa is defined in the expression (4). Consequently, using boundedness of ρ1,
boundedness of a(x) as well as Lemma 3, we obtain that

∫

Ω

(a(x) − ã) u1(t, x)dx
t→∞−→ 0,

and hence we conclude that system (25) fulfills the assumptions of Lemma 7. Con-
sequently, we obtain that the total mass of a solution of system (3) converges to a
globally stable equilibrium, which is equal to the equilibrium of the ordinary differ-
ential equations model (20) corresponding to the maximum value of the self-renewal
parameter ā. Thus, we have proven the assertion of Theorem 2.
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Fig. 4 Using the trapezoid rule to approximate the integral of ρ1(t), ρ2(t), we observe numerically the
convergence of the total mass to a constant value. The parameter set is the same as in Fig. 2

5 Proof of the convergence result

Finally, we obtain the main assertion.

Proof (of Theorem 1) Lemma 3 implies that the solutions of system (3) decay expo-
nentially to zero in all points x /∈ Ωa . We consider two cases (compare Assumptions 1
(iv)):

(i) Ωa = {x̄}:
Convergence to a stationary solution follows from the convergence of mass given
by Theorem 2. Hence, the solutions converge to measures concentrated at x̄ :

ui (t, ·)L1 t→∞−→ ciδx̄ , for i = 1, 2,

where L1 denotes a one dimensional Lebesgue measure and ui (t, ·)L1 is the mea-
sure which Radon–Nikodym derivative with respect to L1 is equal to u, δx̄ is
a Dirac measure localised at x̄ and ci , i = 1, 2, are the stationary masses, i.e.
c1 = ρ̄1 = d

p
2ā−1
K and c2 = ρ̄2 = 2ā−1

K .
The convergence result can be understood in a suitable metric on the space of
positive Radon measures. We apply here the flat metric ρF , also known as the
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bounded Lipschitz distance (Neunzert 1981). For completeness of presentation,
the definition and basic properties of this metric are provided in Appendix.
To estimate the distance between a solution ui (t, ·) and the stationary measure

ciδx̄ , i = 1, 2, we use the following inequality for the distance of two measures μ

and ν

ρF (μ, ν) ≤ min{μ(Ω), ν(Ω)}W1

(
μ

μ(Ω)
,

ν

ν(Ω)

)
+ |μ(Ω) − ν(Ω)|. (26)

For the proof of this inequality we refer to Carrillo et al. (2012) and Jabłoński

and Marciniak-Czochra (2013). Here W1

(
μ

μ(Ω)
, ν

ν(Ω)

)
denotes the Wasserstein

distance between two probabilistic measures; see Appendix for the definition of
the Wasserstein metric.
We calculate, for i = 1, 2,

ρF

(
ui (t, ·)L1, ciδx̄

)
≤ min{ρi , ci }W1

(
ui (t, ·)L1

ρi
, δx̄

)
+ |ρi − ci |. (27)

The first term on the right hand-side of inequality (27) can be estimated using the
exponential estimates of Lemma 2. To show that it converges to zero we apply
the Kantorovich–Rubinstein Theorem (Villani 2003, 2006) and use the equivalent
definition of the Wasserstein metric given as the cost of optimal transport with the
cost function |x − y|, i.e.

W1

(
μ

μ(Ω)
,

ν

ν(Ω)

)
:= inf

γ∈P(Ω)×P(Ω)

∫

Ω×Ω

|x − y| γ (dx, dy), (28)

where γ ∈ Γ
(

μ
μ(Ω)

, ν
ν(Ω)

)
is a joint distribution (probabilistic measure) with the

marginal distributions μ
μ(Ω)

and ν
ν(Ω)

, and where

Γ

(
μ

μ(Ω)
,

ν

ν(Ω)

)
=

{
γ ∈ P(Ω × Ω)γ (B × Ω) = μ(B)

μ(Ω)
,

γ (Ω × B) = ν(B)

ν(Ω)
, B ∈ B(Ω)

}
.

is the family of all joint distributions with marginal distributions μ
μ(Ω)

and ν
ν(Ω)

.
We estimate the difference between a normalised solution

πi (t) := ui (t, ·)
ρi (t)

L1

and its limit δx̄ , i = 1, 2. Using a joint distribution γi = δx̄ ⊗ πi , i = 1, 2, we
obtain

W1(πi (t), δx̄ ) ≤
∫

Ω

|x̄ − y| πi (t)(dy), (29)
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To show that the right-hand side of inequality (29) converges to zero, we define a
set Ωa−ε = {x : a(x) > ā − ε}. For ε small enough, there exists ε̃ > 0 such that
the setΩa−ε is contained in a ε̃−neighbourhood ofΩa , i.e.Ωa−ε ∈ [x̄− ε̃, x̄+ ε̃].
By Lemma 2, πi (t) (Ω\[x̄ − ε̃, x̄ + ε̃]) → 0 for t → ∞. Therefore, we obtain

W1(πi (t), δx̄ ) ≤
∫

Ω\[x̄−ε̃,x̄+ε̃]
|x̄ − y| πi (t)(dy) +

∫

[x̄−ε̃,x̄+ε̃]
|x̄ − y| πi (t)(dy)

≤ sup
x∈Ω

|x̄ − x |πi (t) (Ω\[x̄ − ε̃, x̄ + ε̃]) + ε̃ → ε̃, for t → ∞.

Since the above convergence holds for any ε̃ > 0, we conclude that

lim
t→∞ W1(πi (t), δx̄ ) = 0.

Convergence of the second term in formula (27) is due to Theorem 2. Hence, we
obtain that

lim
t→∞ ρF

(
ui (·, t)L1, ciδx̄

)
= 0.

(ii) L1(Ωa) > 0:
If Ωa is a set with positive measure, no singularities emerge due to the uniform
boundedness of the total mass. In this case, the solution tends to zero outsideΩa

and to a positive L1-function on Ωa . Following Corollary 1, we conclude that
the exact shape of the limit solution depends on the initial distribution.

(iii) If ā = maxx∈Ω a(x) ≤ 1
2 , then the solutions converge exponentially to zero,

what is a consequence of Eq. (3). We estimate

d

dt
ρ1(t) ≤

(
1

1 + Kρ2(t)
− 1

)
pρ1(t) ≤ −Cρ1(t),

where C = −
(

1
1+K mint∈[0,∞) ρ2(t)

− 1
)
p > 0, due to Lemma 1. Hence, using

the Gronwall inequality, we obtain the exponential decay to zero. Finally, con-
vergence ρ2(t) → 0 as t → ∞ follows from the estimate

d

dt
ρ2(t) ≤ 2pρ1(t) − dρ2(t).

Since the solutions (u1, u2) are nonnegative, they converge to zero in L1(Ω).

Finally, we analyse the case with Ωa consisting of two points and prove the co-
existence and the extinction result.

Proof (of Theorem 3) (i) We investigate dynamics of the mass of a solution of system
(3) around the points of Ωa . Let us assume that there exists a diffeomorphism Φ ∈
C1(U1), whereU1 is an open neighbourhood of x̄1, such that Φ(x̄1) = x̄2 and a(x) =
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a(Φ(x)) for all x ∈ U1. Using the explicit form of the solution (13) and the property
Φ(x̄1) = x̄2, we obtain

∫

U1

u1(t, x)dx =
∫

U1

u1(t, Φ(x))
u01(x)

u01(Φ(x))
dx, (30)

Changing variables on the right hand-side of (30) leads to

∫

U1

u1(t, x)dx =
∫

Φ(U1)

u1(t, y)
u01(Φ

−1(y))

u01(y)
JΦ−1(y)dy, (31)

where JΦ is Jacobian of the diffeomorphism Φ.

Since
u01(Φ

−1(y))

u01(y)
JΦ−1(y) does not depend on time and is continuous with respect

to y and since u(t, x) converges pointwise to zero outside Ωa = {x̄1, x̄2} (see Lemma
3), we obtain

lim
t→+∞

∫

U1

u1(t, x)dx = u01(x̄1)

u01(x̄2)
JΦ−1(x̄2) lim

t→+∞

∫

Φ(U1)

u1(t, y)dy, (32)

Hence, the solution converges to a measure c1,1δx̄1 + c1,2δx̄2 with strictly positive
c1,1 and c1,2 such that

c1,1
c1,2

= u01(x̄1)

u01(x̄2)
JΦ−1(x̄2). (33)

Since the total mass of u1 is equal to c1,1 + c1,2 = ρ̄1, where ρ̄1 is given in Corollary
2, the constants c1,1 and c1,2 are uniquely determined. Relationship (33) indicates that
the mass distribution between the different concentration points depends on the shape
of the function a(x) and on the initial data.

(ii) Now, we consider the case where the mapping Φ defined above is only a
homeomorphism and JΦ−1 is continuous but JΦ−1(x̄2) = 0. Hence, Eq. (32) yields
that limt→+∞

∫
U1

u1(t, x)dx = 0, which implies that the solution converges to a mass
c1,2δx̄2 with c1,2 = ρ̄1.

Remark 5 Continuity of
u01(Φ

−1(y))

u01(y)
JΦ−1(y) requires continuity of the initial data and

strict positivity of u01 on Ωa , which is reflected in the stronger assumptions of the
theorem compared to Assumption 1.

6 Extension to initial data in the space of Radon measures

The phenomenon of mass concentration provides a motivation to consider the model
in the space of positive Radon measures, as defined by the following equations
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d

dt
μ1(t)(B) =

∫

B

(
2a(x)

1 + Kρ2(t)
− 1

)
pμ1(t)(dx),

d

dt
μ2(t)(B) =

∫

B

2

(
1 − a(x)

1 + Kρ2(t)

)
pμ1(t)(dx) − d

∫

B

μ2(t)(dx), (34)

with

ρi (t) =
∫

Ω

μi (t)(dx), i = 1, 2, (35)

with the initial data

μ1(0) = μ0
1,

μ2(0) = μ0
2, (36)

whereμ0
i are nonnegative Radonmeasures for i = 1, 2. x ∈ Ω ⊂ R

n , for some n ≥ 1,
denotes the state of a cell and, for every Borel subset B ⊂ Ω , μi (t)(B) = ∫

B dμi (t),
i = 1, 2, are measures of cells in any of the states x ∈ B at time t . Variable ρi denotes
the mass of all cells from the i th compartment. Measures μ(t) are C1 functions of
time with values in the space of positive Radonmeasures with the total variation norm.
Therefore, the time derivatives in equations (34) are understood as derivatives of the
functions with values in a Banach space.

Selection-mutation models in the spaces of positive Radon measures have been
studied by many authors Ackleh et al. (1999), Ackleh et al. (2005), Bürger and Bomze
(1996), Bürger (2000), Caizo et al. (2013), Cleveland and Ackleh (2013), Desvillettes
et al. (2008). In this context, convergence of the solutionswith respect to the Prokhorov
metric has been considered in Ackleh et al. (1999). For the relation between the
Prokhorov metric and the Wasserstein distance used in our paper we refer to Gibbs
and Su (2017).

Steps of the proof of Theorem 1 can be repeated for the measure-valued solutions
with some modifications of the lemmas which rely on point-wise estimates of the
quotients of solutions. Assuming that the initial data are measures such that μ0

1 is
absolutely continuous with respect toμ0

2, Lemma 4 can be reformulated for the model
(34)–(36) by considering a Radon–Nikodym derivative

(
Dμ2(t)μ1(t)

)
(x) = lim

r→0+
μ1(t)(Bx,r )

μ2(t)(Bx,r )
(37)

instead of the point-wise quotients.
Next technical difficulty appears in Lemma 2. To show the asymptotic behaviour of

the measure-valued solutions, we can apply the framework developed in Bürger and
Bomze (1996). In the remainder of this section, we briefly discuss this extension.

123



Mass concentration in a nonlocal model of clonal selection 1027

The first equation of the model (34)–(36) can be re-defined in the terms of a
probabilistic measure modelling the frequency of a certain phenotype x ∈ B in the
population of mitotic cells μ1. It is given by the quotient

π(t)(B) = μ1(t)(B)

μ1(t)(Ω)
,

where B ⊂ Ω is a Borel set, as defined before.
Using the equation for μ1, we obtain

d

dt
π(t)(B) = 2p

1 + ρ2(t)

∫

B

(
a(x) −

∫

Ω

a(ξ) π(t)(dξ)

)
π(t)(dx). (38)

Themodel can be then formulated in the framework presented in the book byBürger
(Bürger 2000). Denoting the mean fitness by

A(t) = 2p

1 + ρ2(t)

∫

Ω

a(ξ) π(t)(dξ) (39)

and the multiplication operator A(t) by

(A(t)π(t)) (B) = 2p

1 + ρ2(t)

∫

B

a(x)π(t)(dx), (40)

we rewrite Eq. (38) as an ordinary differential equation in the space of Radonmeasures

d

dt
π(t) = A(t)π(t) − A(t)π(t). (41)

However, the obtained equation is more general than the abstract equation in Bürger
(2000), due to the dependence of A on time. Nevertheless, it holds

A(t) = (A(t)π(t)) (Ω).

Using the formof the operator (40),we rewrite it as a function of timeα(t) = 2p
1+ρ2(t)

multiplied by a time independent operator (Aπ(t)) (B) = ∫
B a(x)π(t)(dx),

A(t) = α(t)A. (42)

This structure allows to follow the lines of Bürger and Bomze (1996) and focus on
a differential equation given by

d

dt
Q(t) = A(t)Q(t). (43)
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The structure assures that the family of operators A commutes. The operator A is
bounded and it generates a positive semigroup on the space of positiveRadonmeasures
M+(Ω).

Since α is a strictly positive and bounded function, due to the properties of ρ2 shown
in Lemma 1, we can rescale time, s = ∫ t

0 α(ξ)dξ , and obtain a linear autonomous
differential equation

d

ds
Q(s) = AQ(s). (44)

Equivalence to a linear differential equation yields convergence of solutions to a
solution π(t) with the support concentrated on the set of maximal value of a(x),
ā = supx∈Ω∩supp(μ0

1)
a(x). The latter result is the extension of our Lemma 2 to the

measure-valued solutions.
In summary, by adapting the framework developed in Bürger and Bomze (1996),

our results can be extended to the measure-valued solutions in the case of the model of
the clonal evolution without mutations. Asymptotic analysis carried out in Bürger and
Bomze (1996) is based on the application of the infinite-dimensional version of the
Perron-Frobenius Theorem, which is possible in models with dynamics governed by
an irreducible operator. The latter is the case in models involving mutations described
by an integral operator satisfying irreducibility conditions. That approach cannot be,
however, directly applied to the extension of our model to the case with mutations.
The difficulty is related to the estimates for the time dependent operator A defined in
expression (40), which rely on the equations for the ratios of solutions in Lemma 4, or
Radon–Nikodym derivatives (37), which cannot be established in the model with an
additional nonlocal mutation operator. Therefore, including mutations in our model
requires a different proof of the uniform boundedness and strict positivity of ρ2 and
extension of the analysis to the model with mutations remains an open question.

7 Discussion

In this paper, a discrete multi-compartmental model of multiple cell lineages has been
extended to a model coupling a two-stage differentiation structure with a continuous
structure of phenotypes. The latter allows to investigate the role of the intra-cancer
heterogeneity, including competition between healthy and cancer cells and dynamics
of the multi-clonal structure of the system.

Based on recent analyses of the clones consisting of mutational variants in cancer
(Miller et al. 2014), it follows that the dynamics of clone distributions may in many
cases consist solely of change in relative frequencies of different clones. More specif-
ically, the clones that have been dominant in the primary tumour, are out-competed
by other clones in the relapsing or metastatic tumours, which had low frequencies in
the primary. The model in this paper provides a “mechanistic” explanation for these
observations, which is also mathematically rigorous.

Asymptotic analysis of the proposed system of integro-differential equations sug-
gests that the selection process may be governed by the cell’s property of self-renewal
that determines the fitness of each clone and ultimately leads to survival or extinction.
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Theorem 1 shows that, in a well-mixed cell production system, a negative nonlin-
ear feedback such as that the one proposed in Lander (2009), Lander et al. (2009),
Marciniak-Czochra et al. (2009), leads to the selection of the subpopulation with the
superior self-renewal potential. The assumption that the cell population is well-mixed
leads to the nonlocal effect and is modelled using the integral term. This assump-
tion reflects well the structure of the hematopoietic system. Consequently, our results
suggest that the greater clonal heterogeneity observed in solid cancers than in blood
cancers may be due to spatial effects of the cell-to-cell interactions. Additionally, The-
orem 3 suggests some explanation of the co-existence of different clones having the
same fitness.

The results stress the importance of self-renewal in cancer dynamics and allow
concluding that slowly proliferating cancer cells with a high self-renewal potential
are able to outcompete the cells that divide faster. It suggests an explanation of the
clinical dynamics such as resistance to treatment. Importance of this observation in
the context of the leukemia evolution, the response to chemotherapy and the dynamics
of the disease relapses has been discussed in Stiehl et al. (2014). The results obtained
provide an explanation of the observed clonal selection in the acute myeloid leukemia
in the course of the disease development and the relapse after chemotherapy reported
by Ding et al. (2012). Recently, fitting the AMLmodel to patients’ data has suggested
that an increased self-renewal is correlated with a poor patient prognosis (Stiehl et al.
2015).
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8 Appendix

8.1 Flat metric

We present here basic results concerning the space of positive Radon measures
equippedwith the flat metric ρF , known also as the bounded Lipschitz distance (Neun-
zert 1981).

Definition 1 Letμ, ν ∈ M+(Ω). The distance function ρF : M+(Ω)×M+(Ω) →
[0,∞) is defined by

ρF (μ, ν) := sup

{∫

Ω

ψd(μ − ν)
∣∣ ψ ∈ C1(Ω), ‖ψ‖W 1,∞ ≤ 1

}
, (45)
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where
‖ψ‖W 1,∞ := max{‖ψ‖∞, ‖∂xψ‖∞}.

The ρF distance metrizes both weak* and narrow topologies on each tight subset of
Radon measures with uniformly bounded total variation (Schwartz 1973; Ambrosio
et al. 2000).

Remark 6 Every bounded Radon measure on a bounded set Ω has an integrable first
moment and hence the distance ρF is finite.

Proposition 1 Flat metric satisfies the following properties:

– scale-invariance

ρF (θ · μ, θ · ν) = θρF (μ, ν).

– translation-invariance

ρF (Txμ, Txν) = ρF (μ, ν).

Completeness of the space
(M+(Ω), ρF

)
is the result of

(M+(Ω), ρF
)
being

a subspace of
(
W 1,∞(Ω)

)∗
and the equivalence of the flat metric convergence and

weak* convergence inM+(Ω), which is completewith respect toweak* convergence.
Inclusion

(M+(Ω), ρF
) ⊂ (

W 1,∞(Ω)
)∗

is proven using a standard approximation
argument for the test functions and Proposition 1.

ρF (μ, ν) = sup

⎧
⎨

⎩

∫

Ω

ψ d(μ − ν)

∣
∣∣ψ ∈ C1(Ω), ‖ψ‖W 1,∞(Ω) ≤ 1

⎫
⎬

⎭

= sup

⎧
⎨

⎩
1

θ

∫

Ω

ϕ d(μ − ν)

∣∣∣ϕ ∈ W 1,∞(Ω), ‖ϕ‖W 1,∞(Ω) ≤ θ

⎫
⎬

⎭

= ‖μ − ν‖(W 1,∞(Ω))
∗

Thus the flat metric is the metric induced by the dual norm of W 1,∞(Ω); see e.g.
Gwiazda et al. (2010), Gwiazda and Marciniak-Czochra (2010), Müller and Ortiz
(2004), Zhidkov (1998).

8.2 Wasserstein metric

The Wasserstein metric W1 : P(Ω) × P(Ω) −→ [0,∞) in its dual representation is
defined by

W1

(
μ

μ(Ω)
, ν

ν(Ω)

)
:= sup

{∫

Ω

ψ d

(
μ

μ(Ω)
− ν

ν(Ω)

)∣
∣∣ ψ ∈ C1(Ω), Lip ψ ≤ 1

}
.

For more information on the Wasserstein metric we refer to Villani (2006), Villani
(2003).
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