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Wireless sensor networks (WSNs) are deployed to an area of interest to sense phenomena, process sensed data, and take actions
accordingly. Due to the limited WSN node resources, distributed processing is required for completing application tasks. Propos-
als implementing distribution services for WSNs are evolving on different levels of generality. In this paper, these solutions are
reviewed in order to determine the current status. According to the review, existing distribution technologies for computer net-
works are not applicable for WSNs. Operating systems (OSs) and middleware architectures for WSNs implement separate services
for distribution within the existing constraints but an approach providing a complete distributed environment for applications is
absent. In order to implement an efficient and adaptive environment, a middleware should be tightly integrated in the underlying
OS. We recommend a framework in which a middleware distributes the application processing to a WSN so that the application
lifetime is maximized. OS implements services for application tasks and information gathering as well as control interfaces for the
middleware.
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1. INTRODUCTION

Wireless sensor networks (WSNs) have gained much atten-
tion in both public and research communities because they
are expected to bring the interaction between humans, envi-
ronment, and machines to a new paradigm. Despite being a
fascinating topic with a number of visions of a more intelli-
gent world, there still exists a huge gap in the realizations of
WSNs. In this paper, we define WSNs as networks consist-
ing of independent, collaborating nodes that can sense, pro-
cess, and exchange data as well as act upon the data content.
Compared to traditional communication networks, there is
no preexisting physical infrastructure that restricts topology.

WSNs are typically ad hoc networks [1] but there are ma-
jor conceptual differences. First, WSNs are data-centric with
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an objective to deliver time sensitive data to different destina-
tions. Second, a deployed WSN is application-oriented and
performs a specific task. Third, messages should not be sent
to individual nodes but to geographical locations or regions
defined by data content [2].

In WSNs quantitative requirements in terms of latency
and accuracy are strict due to the tight relation to the en-
vironment. In general, the capabilities of an individual sen-
sor node are limited, but the feasibility of WSN lies on the
joint effort of the nodes. Thus, WSNs are distributed sys-
tems and need distribution algorithms. Another motivation
for distribution is the resource sharing. Further, to obtain re-
sults, WSN applications typically require collaborative pro-
cessing of the nodes sensing different phenomena in diverse
areas [2].

The main focus of WSN research, as well as wireless
ad-hoc network research in general, has been on different
protocol layers, reviewed in [2, 3, 4, 5, 6, 7, 8] and on en-
ergy efficiency [9, 10]. Recently, issues concerning security,
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context-sensitivity, and self-organization have gained more
attention [11]. Surveys concerning application layer issues
and prototype implementations are fairly limited [4, 12,
13]. Furthermore, proposals implementing distribution are
emerging as the complexity of applications increases. These
are covered in [2] but the discussion of proposals supporting
application distribution is limited to few solutions for distri-
bution control.

In this paper, we focus on four essential distribution as-
pects in WSNs, namely, service discovery, task allocation, re-
mote task communication, and taskmigration. The service dis-
covery comprises of identifying and locating services and re-
sources required by a client. In homogeneous WSNs, the ser-
vice discovery is not important but when node platforms and
the composition of tasks are heterogeneous, the service dis-
covery is essential. The task allocation specifies a set of sensor
nodes, on which the execution of an application task is acti-
vated. The remote task communication covers the means for
communication between distributed tasks through a wireless
communication link. The task migration means the methods
for transferring a task executable from a sensor node to an-
other. The algorithms defining the target nodes for migration
are included in the task allocation.

Algorithms that are tightly bound to an application are
not discussed. The presented distribution aspects are selected
due to their generality for different types of WSNs and appli-
cations. We omit, for example, data fusion and data aggrega-
tion that are beneficial only for applications that gather data
to a centralized storage.

In this paper we review the application distribution for
WSNs focusing on distribution implemented in systems soft-
ware. By systems software we mean software components
providing application-independent services and managing
node resources. The proposed solutions vary according to
tools provided, requirements placed on the underlying plat-
forms, and targeted applications and environments. How-
ever, the current proposals lack an integrated solution pro-
viding a distributed operating environment for WSN appli-
cations. This approach would lead to a more efficient usage
of resources.

This paper is organized in two main parts as follows. The
first part describes the basics of objectives, challenges, and
systems software solutions of WSNs. In addition, a summary
of WSN application proposals is presented in order to define
requirements. The second part starting in Section 3 contains
the survey of distribution proposals followed by their analysis
in Section 4. Finally, conclusions are given in Section 5.

2. OVERVIEWOFWSNs

In order to give an overview of WSN applications, we review
some examples and their characteristics. These are listed in
Table 1. The selection is mainly based on prototype imple-
mentations and thus all the scopes of WSNs might not be
represented.

The first column in Table 1 lists the applications and the
second classifies them according to the main task. The third
column presents the requirements set by the application. The

networking requirements in terms of data amount and fre-
quency are defined in the fourth column, while the last col-
umn gives the scale and density of the application.

Most of the applications gather, evaluate, or aggregate
data from different types of sensors. Major differences are
in networking requirements and complexity. Unfortunately,
accurate values or limits to these properties are not often re-
ported, which complicates a fair comparison.

The nature of applications listed in Table 1 varies, but at
least four main tasks can be identified [28]. Monitoring is
used to continually track a parameter value in a given lo-
cation, and event detection recognizes occurrences of events.
Object classification attempts to identify an object or its type
and object tracking traces movements of an object.

For the presented applications, the “worst-case” WSN
would comprise of an extensive number of nodes with vary-
ing density and a network topology that constantly changes
due to the errors in communication, mobility of nodes, and
inactive nodes [3]. To complete complex tasks in the sce-
nario, the application requires distributed processing within
the network.

In our view, WSN application quality of service (QoS) is
constructed from network lifetime, network load, accuracy
of data, and fault tolerance. Network load in this case com-
prises of the required data latency, throughput, and reliabil-
ity. WSN protocols and their functions are adapted according
to the QoS requirements. Currently, security is a QoS issue
that is often omitted in WSNs. The natural reason is that se-
curity requires too much resources [2].

For the rest of the paper we define an environmental mon-
itoring application that is used for the analysis of the pro-
posed solutions. For clarification, we refer to the application
as EnvMonitor. The main task of the application is the con-
stant gathering of location-dependent information within a
defined area. In addition to the passive monitoring involved
in the environmental monitoring applications in Table 1, En-
vMonitor consists of active monitoring tasks reacting to con-
dition changes in WSN. The passive monitoring data are
gathered to a central storage and aggregated during the rout-
ing. Active in-network monitoring tasks execute signal pro-
cessing algorithms locally in order to determine threshold
values for temperature and humidity. When a threshold is
reached, a set of predefined actions modifying the applica-
tion QoS and the communication topology taken. The mod-
ifications alter the requirements for data composition, accu-
racy, and latency. The priority of active monitoring tasks pre-
cedes passive monitoring.

2.1. Systems software forWSNs

A general-purpose operating system (OS) is an example of
systems software. Early WSNs have not included systems
software due to scarce resources and simplicity of applica-
tions. However, complex applications require systems soft-
ware because it eases the control of resources and increases
the predictability of execution. The heterogeneity of plat-
forms can be hidden under common interfaces provided by
the software. Still, the major disadvantages are heavy compu-
tation and memory usage.
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Table 1: Examples of prototyped applications for WSNs.

Application Type Requirements Data amount and frequency Scale and density

Great Duck Island
[14]

Environmental
monitoring

Data archiving,
Internet access, long
lifetime

Minimal, every 5–10 min,
2–4 h per day 32 nodes in 1 km2

PODS in Hawaii [15]
Environmental
monitoring

Digital images,
energy-efficiency

Large data amounts,
infrequently

30–50 nodes in 5
hectares

CORIE (Columbia
River) [16]

Environmental
monitoring Base stations, lifetime

Moderate data amounts,
infrequently

18 nodes in
Columbia River

Peek value evaluation
[17]

Environmental
monitoring

Collaborative
processing, minimal
network traffic

Moderate data amounts,
periodically

Case dependent

Flood detection [18]
Environmental
monitoring

Current condition
evaluation

50 bytes every 30 s
200 nodes 50m
apart

SSIM (artificial
retina) [19] Health

Image identification,
realtime, complex
processing

Large data amounts,
frequently every 200ms

100 sensors per
retina

Human monitoring
[20] Health

Quality of data,
security, alerts

Moderate data amounts,
depend on the human stress
level

Several nodes per
human

Mountain rescue [21] Health
Communication
intensive

Large data amounts in high
frequency

One per rescuer in
mountain area

WINS for military
[22]

Military
Target identification,
realtime, security,
quality of data

Large data amounts,
infrequently

Several distant
nodes

Object tracking [23] Military
Collaborative
processing, realtime,
location-awareness

Large data amounts with high
frequency near an object

7 (prototype)
nodes in proximity

Vehicle tracking [24] Military
Identification and
coordination,
realtime

Large data amounts every 8 s
near an object

1024 nodes in
40 km2

Intelligent
input/output [25] Home entertainment

Communication
intensive

Large data amounts with high
frequency

One node per
input device

WINS condition
monitoring [22]

Machinery monitoring
Data aggregation,
machinery lifetime
projection

Depend on machinery
complexity and its current
status

Few nodes per
machinery

Smart kindergarten
[26] Education

Video streaming,
identification,
location-awareness

Large data amounts in
variable frequencies

Tens of sensors,
indoor

Smart classrooms
[27] Education

Context-sensing, data
exchange

Large data amounts in
random frequency

Several nodes in
classroom

The systems software for WSNs implements single node
control and network-level distribution control. The single node
control software implements the low-level routines in a node,
whereas the network-level distribution control manages ap-
plication execution within several nodes.

Single node control
The single node control operates on a physical node depicted
in Figure 1. A processing unit consists of CPU, storage de-

vices, and an optional memory controller for accessing the
instruction memory of the main CPU. A sensing unit con-
sists of sensors and an analog-to-digital converter (ADC). A
transceiver unit enables the communication with other sen-
sor nodes. A power unit can be extended by a power genera-
tor that harvests energy from environment. Other peripheral
devices, like actuators formoving the node and location find-
ing systems, are attached to the node depending on the ap-
plication requirements [3].
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Figure 1: Reference hardware platform architecture of a sensor
node.

The reference values in Figure 1 are the resources avail-
able in MICA2mote [29]. The power consumption of a node
is in order of mW when active and in order of µW when the
node is in sleep. The power unit is typically an AA battery or
similar energy source.

The single node control is accomplished by OS or vir-
tual machine (VM). In the reference platform, OS is executed
on the main CPU and it uses the same instruction and data
memories as applications. Services implemented by OS in-
clude scheduling of tasks, interprocess communication (IPC)
between tasks, memory control, and possible power control
in terms of voltage scaling and component activation and in-
activation. OS provides interfaces to access and control pe-
ripherals. The interfaces are typically associated with layered
software components with more sophisticated functionality,
for example a network protocol stack.

Network-level distribution control

Distribution control relies on networking. Figure 2 depicts
an example protocol stack for WSN in comparison to two
widely utilized stacks, the OSI model [1] and a distributed
system in a wireless local area network (WLAN). In a WLAN
computer, the TCP/IP stack is used through a sockets ap-
plication programming interface (API). The WLAN adapter
that contains the medium access control (MAC) protocol
and the WLAN radio is accessed by a device driver.

There is no unified protocol stack for WSNs and most
of the proposed stacks are just collections of known pro-
tocol functions. At the moment, the IEEE 1451.5 Wire-
less Sensor Working Group [30] is standardizing the phys-
ical layer for WSNs with an intention to adapt link layers
from other wireless standards, for example, Bluetooth [31],
IEEE 802.15.4 low-rate wireless personal area network (LR-
WPAN) [32], or IEEE 802.11 WLAN [33]. Other types of
networks posing common characteristics withWSNs aremo-
bile ad hoc networks (MANETs) [34] targeted to address mo-
bility.

In WSNs, the essential protocol layers are the MAC pro-
tocol on the data link layer and the routing protocol on the
network layer. TheMAC protocol creates a network topology

and shares the transmission medium among sensor nodes.
The topology inWSNs is either flat, in which all sensor nodes
are equal, or clustered, in which communication is controlled
by cluster headnodes. The routing protocol allows commu-
nication via multihop paths. A transport protocol that im-
plements end-to-end flow control is rarely utilized in WSNs.
The middleware layer is equivalent to the presentation layer
in the OSI model [1].

For WSNs, the development of a distributed environ-
ment requires the consideration of all four distribution as-
pects. The control actions are taken according to the applica-
tion QoS. The distribution aspects are typically implemented
on the middleware layer on top of OS. Thus, the middle-
ware component can reside in different types of platforms. In
addition to OS routines, the middleware utilizes networking
interface to implement communication between its own in-
stances on different sensor nodes. Some distribution aspects
can also be implemented directly by OS.

3. SURVEY OF DISTRIBUTION PROPOSALS

Numerous technologies for the service discovery and remote
task communication are available for computer networks.
The task migration is typically a transfer of a binary code im-
age or a Java applet. In computer networks, the task alloca-
tion is often not the main concern as resources are sufficient.
Even though not directly applicable for WSNs, the computer
network technologies define the basic paradigms and algo-
rithms for the application distribution.

Other types of wireless ad hoc networks, like MANETs
and Bluetooth, have common characteristics with WSNs.
First, communication in these networks is very similar to
WSNs. Second, the resource constraints must be considered,
even though the limits are looser than in WSNs. For this
reason we include technologies proposed for MANETs and
Bluetooth in our assessment of WSN proposals.

A distinct categorization of proposed solutions forWSNs
cannot be made since a proposal typically present a more
complete architecture addressing several distribution as-
pects. Therefore, we categorize the proposals according to
their system architecture to OSs, VMs, middlewares, and
stand-alone protocols.

3.1. Architectural paradigms

Figure 3 presents three architectural paradigms for distribu-
tion, which are client-server, mobile code, and tuple space.
In computer networks, the client-server architecture is ap-
plied for the service discovery and remote task communi-
cation. It consists of one or multiple servers hosting a set
of services and clients accessing these. A directory service is
maintained at the server in the service discovery. In the re-
mote task communication, a client outsources a task process-
ing to a server. Two alternatives are available, remote proce-
dure calls (RPCs) and object-oriented remote method invo-
cations (RMIs). As the internal data and state of objects are
accessed only through the object interface, RMI achieves bet-
ter abstraction and fault tolerance. In addition, objects can be
cached and moved [35].



778 EURASIP Journal on Wireless Communications and Networking

WSN OSI-model WLAN computer

WSN application
Application

layer Application program

Middleware
Presentation

layer Distributing middleware

Session
layer Sockets API

WSN transport
protocol

Transport
layer TCP/UDP

Multi-hop
routing protocol

Network
layer IP

Error control
Data link
layer

WLAN adapter
device driver

WSNMAC protocol WLANMAC protocol

Transceiver unit
Physical
layer

WLAN radio

OS

OS

Figure 2: OSI model, WSN, and distributed system in WLAN protocol layers.
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Figure 3: Three architectural paradigms for distribution: (a) client-server, (b) mobile code, and (c) tuple space.

Differences in programming languages and platforms
must be hidden in the remote task communication. Stub pro-
cedures are generated for this from interface definitions. A
stub procedure at the client marshals a procedure call to an
external data presentation, which is then unmarshalled back
to a primitive form at the server [35].

In the mobile code paradigm, instead of moving data
from a client to a server for processing, the code is moved to
the data origins, and data are then processed locally. A mo-
bile agent is an object that in addition to the code carries its
state and data. Furthermore, mobile agents make migration
decisions autonomously. They are typically implemented on
top of VMs for platform independency [36].

The concept of tuple space was proposed originally in
Linda [46] for the remote task communication, but it is ap-
plicable also for the service discovery. Tuples are collections
of passive data values. A tuple space is a pool of shared in-
formation, where tuples are inserted, removed, or read. Data
are global and persistent in the tuple space and remain un-
til explicitly removed. In the tuple space, a task does not

need to know its peer task, tasks do not need to exist si-
multaneously, and they do not need to communicate di-
rectly.

3.2. Computer networks

Service location protocol (SLP) [47], Jini [48], universal plug
and play (UPnP) [49], and secure service discovery service
(SDS) [50] implement a client-server architecture service
discovery in computer networks. The tuple space is utilized
in JavaSpaces [51] on top of Jini and in TSpaces [52]. For the
remote task communication, Sun RPC [53] and distributed
computing environment (DCE) [54] are well-known RPC
technologies. The best-known object-oriented technologies
are common object request broker architecture (CORBA)
[55], Java RMI [56], and Microsoft’s distributed common
object model (DCOM) [57]. The mobility of terminals is
addressed in Mobile DCE [58], Mobile CORBA [59], and
Rover Toolkit [60]. Schedulers for computer clusters imple-
ment task allocation within a cluster by allocating tasks to the
most applicable resources [61].
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Table 2: Implemented distribution aspects in single node proposals.

Proposal Target
network

Resource requirements
(CPU/code memory/
data memory)

Service discovery Task allocation
Remote task
communi-
cation

Task
migration

OS-based architectures

EYES OS [37] WSN 1MHz / 60KB / 2KB Resource requests Not supported RPC Not supported

BTnodes [38] WSN 8MHz/ 128KB/ 64KB Tuple space Not supported Callbacks Smoblets

TinyOS [39] WSN 8MHz/ 128KB/ 4KB Not supported Not supported Active messages Not supported

BerthaOS [40] WSN 22MHz/ 32KB/ 2,25 KB Not supported Not supported BBS Binary code

MOS [25] WSN 8MHz/ > 64KB/ > 1KB Not supported Not supported Not supported Binary code
download

QNX [41] LAN 33MHz/ 100KB/ N/A Network manager SMP scheduler Message passing Not supported

OSE [42] LAN N/A/ 100KB/ N/A Hunting service Not supported Phantom process Not supported

VM-based architectures

Sensorware [17] WSN N/A/ 1MB/ 128KB Not supported
Script population
specification

Not supported
TCL script
migration

MagnetOS [43] WSN N/A / N/A / N/A Not supported
Automatic object
placement

DVM [44]
Mobile Java
objects

Maté [45] WSN 8MHz/ 128KB/KB Not supported Not supported Not supported
Code capsule
update

Distribution technologies designed for computer net-
works are typically both computation and communication
intensive and cannot be implemented on sensor nodes. They
are based on the client-server architecture and use detailed
specifications for services and interfaces. These technologies
do not consider the possible mobility or unavailability of sen-
sor nodes. While mobility is addressed in Mobile DCE, Mo-
bile CORBA, or Rover toolkit, these still rely on the client-
server architecture from DCE and CORBA.

3.3. Distribution proposals forWSNs

From systems software proposals for WSNs, OSs and VMs
implement the single node control and middleware archi-
tectures implement the network-level distribution control.
These can be supported by stand-alone protocols that ad-
dress only a single distribution aspect. We contribute the
WSN proposals according to distribution aspects they imple-
ment.

OS-based architectures
The distribution aspects implemented in OSs are listed in
Table 2. In addition, the second column defines the type of
a network OS is targeted for, while the third one gives OS
resource requirements. In WSNs, OSs implement a very lim-
ited set of services and they are fairly primitive in their na-
ture. As shown in Table 2, the remote task communication is
addressed typically by providing a simple method for RPC.
The service discovery is rarely implemented in OS but on a
higher system services layer that is associated to OS. Tasks
migrate as binary code, because OSs do not support code in-
terpreting.

The service discovery is implemented in EYES OS [37]
on a distributed services layer above the OS by utilizing re-
source requests to neighbor nodes. Also Bluetooth smart
nodes (BTnodes) [38] implement distribution in system ser-
vices above a lightweight OS. BTnodes use the tuple space to
implement the service discovery. The task allocation is not
implemented in any of the proposals.

A client-server type RPC is applied to the remote task
communication in TinyOS [39], BerthaOS (for Pushpin
nodes) [40], and in EYES OS. In the component-based
TinyOS, the handler name of the remote component and re-
quired parameters are encapsulated in a TinyOS active mes-
sage. BerthaOS uses bulletin board system (BBS) for IPC and
nodes can post messages also to BBS of a neighbor node. In
EYES OS, the basic RPC between neighbor nodes is applied.
BTnodes use the tuple space also for information sharing and
for sending notifications to callbacks routines.

The taskmigration as binary code is possible in BetrhaOS
and in MultimodAI NeTworks of In-situ Sensors (MANTIS)
OS (MOS) [25]. BerthaOS allows the in-network initiation of
transfers and checks the code integrity using a simple check-
sum, but neither it nor MOS considers the vulnerability of
the system to malicious code. In BTnodes, precompiled Java
classes, smoblets, are able to migrate but they must be exe-
cuted on more powerful platforms.

Embedded OSs and RealTime OSs (RTOS), like QNX
[41] and OSE [42], support service discovery and remote
task communication in OS services. In QNX, the network
of computers is abstracted to a single homogenous set of re-
sources. QNX uses message passing to implement IPC and
hides remote locations in process and resource managers.
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The local managers interact with a network manager that
handles name resolution. OSE uses stub procedures, referred
to as phantom processes, for the remote task communica-
tion. A phantom process uses a link handler to communi-
cate with the peer phantom process on the remote node. The
remote node is discovered by a hunting system service that
broadcasts service requests to the network.

From these proposals, QNX and OSE offer a distributed
environment for applications, but they require more efficient
sensor node platforms. Their resource requirements shown
in Table 2 do not contain all the components required for
the implementation of the distributed environment. The re-
source requirements set by other OSs are in the same order of
magnitude. All the proposed OS architectures implement the
single node control over the application tasks of EnvMonitor.
The most applicable environment for EnvMonitor is available
in BTnodes, where the tuple space implements service dis-
covery and callbacks and smoblets support in-network dis-
tributed processing.

VM-based architectures

Compared to OSs, VMs offer hardware platform indepen-
dency and substitute the lack of hardware protection by the
protection implemented in code interpreters. The distribu-
tion aspects, target network, and required resources of VM
architectures are categorized in Table 2. As shown, themobile
code is a common approach to distribution, whereas service
discovery is not supported.

The task allocation is supported by Sensorware [17] and
MagnetOS [43]. The population of tool command language
(TCL) scripts in Sensorware is specified in the scripts them-
selves. MagnetOS utilizes automatic object placements algo-
rithms that adaptively attempt to minimize communication
by moving Java objects nearer to the data source. The remote
task communication is addressed only in MagnetOS that re-
lies on distributed VM (DVM) [44]. DVM abstracts network
of computers to a single Java VM (JVM).

As depicted in Table 2, the mobile code is a TCL script
in Sensorware, a custom bytecode capsule in Maté [45], and
a Java object in MagnetOS. The size of the TCL scripts and
especially the Maté code capsules is small compared to the
size of Java objects. In Maté that operates on top of TinyOS
a new code capsule is sent in TinyOS active messages to all
nodes.

From the proposed solutions, Sensorware and Magne-
tOS implement task migration and task allocation, whereas
in Maté only the latest code version is updated to all nodes.
Implementation of MagnetOS on sensor nodes is not pos-
sible, Sensorware sets considerable requirements for under-
lying platforms, and Maté is implemented to very resource
constrained nodes.

Like OSs, these proposals implement the single node con-
trol for EnvMonitor. From these proposals, Sensorware is the
most suitable for EnvMonitor due to its migration, alloca-
tion, and task coprocessing capabilities. However, the con-
trol for these actionsmust be implemented by the application
scripts.

Middleware architectures

Middleware architectures implement a higher abstraction
level environment for applications. Generally, three differ-
ent approaches in WSN middlewares can be identified. First,
a middleware coordinates the task allocation based on the
application QoS. Second, WSN is abstracted to a database
that supports query processing. Third, a middleware controls
application processing in the network based on the current
context of surrounding environment. The context depends
on the location, nearby people, hosts, and devices, and the
changes in these over time [62]. The target network and dis-
tribution aspects for proposals are listed in Table 3.

ApplicationQoS is applied for controlling the task alloca-
tion in the configuration adaptation of the middleware link-
ing applications and networks (MiLAN) [20], in the resource
management of the cluster-based middleware architecture
for WSNs [63], and in QoSProxies of the QoS-aware middle-
ware for ubiquitous and heterogeneous environments [64].
The cluster-based middleware and MiLAN adapt also the
network topology. The QoSProxy selects an application con-
figuration matching available resources and makes resources
reservations to guarantee the specified QoS for that configu-
ration. Both MiLAN and QoS-aware middleware adopt ser-
vice discovery protocols from computer network solutions.
QoS-aware middleware requires a more powerful platform
than the other two.

A database approach is taken in sensor information and
networking architecture (SINA) [24], in TinyDB [65] on top
of TinyOS, and in Cougar [66]. In SINA, database queries
are injected to network as sensor querying and tasking lan-
guage (SQTL) [71] scripts. These scripts migrate from node
to node depending on their parameters. The task allocation
in SINA is implemented by a sensor execution environment
(SEE), which compares SQTL script parameters to node at-
tributes and executes script only if these match. In TinyDB
and Cougar, the task allocation is implemented by a query
optimizer that determines energy-efficient query routes. The
query plans generated by the query optimizer are parsed in
the nodes and then executed accordingly. TinyDB supports
also event-based queries that are initiated in-network on the
occurrence of an event.

Application adaptation based on the current context
is performed by Linda in a mobile environment (LIME)
[67], mobile agent runtime environment (MARE) [21], and
reconfigurable context-sensitive middleware (RCSM) [27].
Service discovery is implemented by the tuple space in LIME
and MARE. RCSM uses a custom RKS [68] protocol that re-
duces communication by advertising services only if they can
be activated in the current context and potential clients are
in the vicinity. LIME implements task allocation by reactions
added to tuples. The MARE control manages nearby mobile
agents and allocates tasks to the agents. RCSM ADaptive ob-
ject containers (ADC) activate tasks in an appropriate con-
text.

The tuple space in LIME and MARE is used also for the
remote task communication. LIME supports also location-
dependent recipient identification. RCSM utilizes RCSM
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Table 3: Implemented distribution aspects in middleware and stand-alone protocol proposals.

Proposal Target network Service discovery Task allocation
Remote task
communication

Task migration

Middleware architectures

MiLAN [20] WSN
SLP, Bluetooth
SDP

Configuration
adaptation

Not supported Not supported

Cluster-based
middleware [63]

WSN Not supported
Resource
management

Not supported Not supported

QoS-aware
middleware [64] MANET SLP/Jini/SDS QoSProxy Not supported Not supported

SINA [24] WSN Not supported Attribute matching
in SEE

Not supported SQTL scripts

TinyDB [69] WSN Not supported
Query optimizer,
event-based queries

Not supported Not supported

Cougar [66] WSN Not supported Query optimizer Not supported Not supported

LIME [67] MANET Tuple space Context reaction Tuple space Mobile Java objects

MARE [21] MANET Tuple space MARE control Tuple space Mobile Java objects

RCSM [27] MANET RKS [68] Adaptive object
containers

R-ORB Not supported

Stand-alone protocols

GSD [69] MANET Service groups Not supported Not supported Not supported

Bluetooth SDP [31] Bluetooth Clients and servers Not supported Not supported Not supported

Task migration in [70] WSN Not supported Not supported Not supported Edit scripts

context-sensitive object request broker (R-ORB) that adapts
basics fromCORBAORB. Both LIME andMARE utilize mo-
bile agents implemented as Java objects for the task migra-
tion.

Unlike OSs and VMs, most of the middleware architec-
tures implement the network-level distribution control but
do not address the single node control. Middlewares rely-
ing on the application QoS specification address mainly task
allocation, but leave other aspects to external components.
The database abstraction is applicable to a certain type of ap-
plications, like EnvMonitor, but the expressivity of the SQTL
scripts in SINA, the event-based queries in TinyDB, and es-
pecially the query processing capabilities in Cougar do not
support complex in-network processing. As can be seen from
Table 3, context-aware proposals cover distribution aspects
extensively. They implement extensive environment for En-
vMonitor but their resource requirements are too high for
sensor nodes.

Stand-alone protocols

The environment provided by OSs, VMs, or middleware
architectures can be supported by stand-alone protocols
implementing dedicated functions. We do not cover WSN
MAC and routing protocols but focus on protocols that im-
plement any of the four distribution aspects. The protocols
and their target networks are listed in Table 3.

The group-based service discovery protocol (GSD) for
MANETs [69] and the Bluetooth service discovery protocol
(SDP) [31] implement the service discovery. In GSD, termi-

nals advertise their services and nearby service groups within
the distance of n hops. Service requests are forwarded to-
wards the service provider based on group advertisements. A
Bluetooth terminal maintains information about its services
in an SDP server. Searching and querying for existing services
are performed by an SDP client that queries one server at a
time.

An approach for minimizing the transferred binary code
size on the task migration is proposed in [70]. The proposal
transmits only the differences between the existing and the
new code. The algorithm is adopted from the diff command
of UNIX.

These protocols can be used as separate components for
EnvMonitor, but none of them provides a complete environ-
ment. GSD is communication intensive due to the multi-hop
advertisements. Bluetooth SDP does not support broadcast
queries, which restricts its applicability in large WSNs. The
task migration proposed in [70] cannot be initiated in WSNs
due to the complexity of the algorithm and the lack of in-
tegrity checking.

4. ANALYSIS OF PROPOSALS

A comprehensive comparison of the proposals is problematic
due to the diversity of platforms, applications, and imple-
mentations. However, the requirements for each distribution
aspect are similar, which makes their assessment possible. In
the analysis, we concentrate on the proposals targeted for
WSNs.
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Table 4: System testing and validation environments for distribution proposals.

Proposal Test environment
Simulation and
testing tools

Prototype
platform

Result accuracy Published results

OS-based architectures

TinyOS [39] Prototype TOSSIM [72] Motes Accurate
Component sizes, OS routine
delays, computation costs

BerthaOS [40] Prototype None Pushpin None Functionality mentioned

EYES OS [37] None None None None None

MOS [25] Prototype PC emulator
XMOS [25]

Nymph Moderate
Memory and power consumption,
test application performance results

BTnodes [38] Prototype None
Micro-size
BTnodes

Moderate
Component sizes, energy
consumption

VM-based architectures

Sensorware [17] Prototype SensorSim [73] Linux IPAQ Accurate
Framework size, execution delays,
energy consumption

MagnetOS [43]
Windows/Linux
JVM

Custom packet-
level simulator

PC None
Internal algorithm comparison
in simulator

Maté [45] Prototype TOSSIM [72] TinyOS mote Accurate
Bytecode overhead, installation
costs, code infection performance

Middleware architectures

MiLAN [20] None None None None None

Cluster-based
middleware in [63]

Algorithm
simulation

Custom
simulator

None None
Heuristic resource allocation,
algorithm performance

Qos-aware
middleware in [64] None None None None None

SINA [24] Simulations GloMoSim [74] None Poor
SINA networking overhead,
application performance

TinyDB [65]
Simulations,
prototype

Custom en-
vironment

TinyOS mote Accurate
Query routing performance in
simulations, sample accuracy and
sampling frequency in prototypes

Cougar [66] None None None None None

LIME [67] JVM None PC Poor Approximations about Java code size

MARE [21] JVM None PDA Poor Service discovery performance

RCSM [27] Prototype None
PDA with custom
hardware

RCSM poor,
RKS accurate

RCSMmemory consumption,
RKS size, communication,
energy consumption

Stand-alone protocols

GSD [69] Simulations GloMoSim [74] None Poor
Influence of internal parameters
on service discoverability

Task migration
in [70]

PC None
Tested in EYES
nodes

Accurate
Algorithm performance,
influence of internal parameters

4.1. Testing and validation ofWSN proposals

Discussed WSN architectures vary in their complexity and
requirements. In order to provide a scope for the assessment
of proposals, their testing and validation environments are
presented in Table 4. The test environment is presented in the
second column. The simulation and testing tools and proto-
type platforms identify the proposal validation tools and test
platform. The published results and their accuracies are listed
in the last two columns.

Generally, prototypes exist for the single node architec-
tures and their results are accurate including information
required for comparison. Instead, on the middleware layer,
proposals are evaluated by simulations or not at all. The
simulation results are inaccurate as they compare only the
internal algorithms and do not give any information for
a general comparison. Of course, exceptions exist in both
cases.

Even though some of the presented results in Table 4 are
accurate and their scope is adequate, the direct comparison
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Table 5: Characteristics of technologies implementing service discovery.

Technology Communication Scalability Fault tolerance Requirements Benefits (pros) Problems (cons)

Resource
requests

Requests
to neighbors

Restricted
to neighbors

Broadcasted
to all neighbors

Resource
declaration

One-hop
communication

Scalability

Tuple space Tuple operations Balancing between
memory and scale

Redundant
information

Memory pool in
each node

Source and target
independency

Communication/
memory load

Network
manager

Name resolution re-
quests to manager

Local manager area,
but extensible

Possibly redundant
network managers

Resource managers,
register to manager

Scalability due to
naming

Name resolution,
communication
load

Hunting
service

Broadcast hunt ser-
vice requests

Not restricted Lost services can be
rehunted

Remote service
identification

Lightweight after
initiation

First hunt latency
and communica-
tion load

Bluetooth
SDP

Peer-to-peer link Only nearby nodes
one at a time

Service information
only in the host

Bluetooth protocol
stack

Querying for
available services

Scalability, no
broadcast

RKS
Advertises for po-
tential clients

Only to nearby clients Advertisements
when context and
clients applicable

Context definitions
for services

Advertisements Scalability

GSD service
groups

Service and group
advertisements

n-hop diameter, but
groups span wider

Redundant
information

Service registration Request routing
based on group
advertisements

Communication
load (both ad-
vertisements and
requests used)

of distribution performance is not possible. The prototype
platforms vary in their efficiency, the simulators in their ac-
curacy, and the test applications in their requirements and
functionality. As the area is evolving rapidly, generally ac-
cepted benchmarks would ease the comparison of the pro-
posals. However, the definition of general-enough bench-
marks for WSNs is difficult due to their application-specific
nature.

4.2. Comparison of technologies

We classify the technologies for each distribution aspect sep-
arately. The classification dimensions for a technology are
communication mechanism, scalability to large WSNs, fault
tolerance, and requirements that must be met before the tech-
nology can be used. For each technology, we also assess its
pros and cons in general. These dimensions offer tools for
the evaluation of the robustness and applicability of a tech-
nology for different kinds of WSNs and applications.

Service discovery

The classification of the service discovery technologies in the
proposals according to the defined dimensions is presented
in Table 5. From the presented solutions, all but the tuple
space and GSD rely on client-server architecture. Still, the
network manager is the only centralized server. In general,
two problems can be identified from the proposals. They ei-
ther have a restricted scalability or require intensive commu-
nication.

The client-server technologies that are limited to nearby
nodes do not scale to large WSNs. GSD and the tuple space
both scale to large networks but they require more commu-
nication for locating a service. However, in both technolo-
gies the communication load can be decreased by increasing
the number of hops, to which the service information is dis-
tributed. This increases the communication during the ini-

tiation but reduces it during the discovery, with the cost of
increased memory consumption.

Task allocation
The technologies that implement a mechanism for the task
allocation and the characteristics of each technology are
listed in Table 6. As peer-to-peer communication is not
needed in all the technologies, the communication mecha-
nism is replaced by a more general outlining of the taken ap-
proach. As shown in Table 6, the variance of technologies is
greater than in the service discovery. Asmost of the technolo-
gies are middleware layer implementations, the main reason
for the variance is the three different approaches taken at that
layer.

Themost promising approach is the task allocation based
on application QoS. It does not restrict the implementa-
tion of tasks nor rely on the surrounding context. Instead,
it enables the adaptation of application operations depend-
ing on the current application requirements. The application
requirements can be adjusted depending on the output of
the application itself, which makes the technologies adaptive
to changing conditions. Generally, application-QoS-based
technologies require a central control for the task allocation,
but a distributed control lacks similar adaptability.

Remote task communication
From the remote task communication technologies classified
in Table 7, most utilize traditional RPC or RMI that are tai-
lored for resource constrained environments. The tuple space
and callbacks, which also utilize tuple space, are the only ex-
ceptions.

In general, the technologies either are restricted in their
scalability or burdenmemory and communication resources.
The problem in RPC and RMI technologies is the require-
ment for a client to know the server. In the tuple space and
callbacks this is not required. In the callbacks, the message
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Table 6: Characteristics of technologies implementing task allocation.

Technology Approach Scalability Fault tolerance Requirements Benefits (pros) Problems (cons)

SMP
scheduler

Scheduling of tasks
to free resources

Not restricted Redundant High-speed bus,
shared memory

Efficiency and
transparency

Inapplicable
requirements

Script popu-
lation
specification

Specification in mi-
grating scripts

Not restricted Multiple copies
in network

Control in appli-
cation scripts

No control
required

Expressivity of
specification

Automatic
object
placement

Activating andmov-
ing objects near to
source

Not restricted Multiple agents
available

Object placement
algorithms

Reduced data
communication

Complexity

Configuration
adaptation

Mapping tasks to
available resources

Not restricted Changes active
nodes adaptively

Feasibility analy-
sis,
state updates

Application QoS
consideration

Control
communication

Resource
management

Heuristic algorithm
balancing load [75]

Restricted to
a cluster

Continuous
allocation

Control messages Network lifetime
maximizing

Algorithm
complexity

QoSProxy

Component and
service adaptation
for resources and
application QoS

Network-wide in
small networks

Adaptation accord-
ing to conditions

Application QoS
specification

QoS adaptation
dynamically to
available resources

Server required,
complexity and
communication

Attribute
matching in
SEE

Matching script at-
tributes to node pa-
rameters locally

Not restricted Multiple copies
in network

Accurate attribute
specifications

Local late binding Restricted
expressivity

Query
optimizer

Optimizing query
routing to network

Optimization in
gateway node

Redundancy
in queries

Disseminated
query plans

Only required
set of nodes
activated

Networking load
of query plans

Event-based
queries

Initiate query on oc-
currence of event

Not restricted Possibly several
event detectors

Event identifica-
tion
capability

In-network
reaction

Loading of event
source node

Context
reaction

Reactions on tuples
and executed on
matching context

Reaction restricted
to a location

Redundancy in tu-
ple space

Location
identifying

Task executed only
when its context is
applicable

Scalability

MARE
control

Nearby agents form
an execution
environment

Restricted to nearby
agents

Possible
redundancy

Agent managers
controlling agents

Agent cooperation
in complex tasks

Scalability

Adaptive
object
containers

ADC activates tasks
in correct context

Not restricted Possible
redundancy

Context interface
specifications

Only applicable
tasks activated

Complex context
specifications

is sent to a registered callback function whenever the value
of a tuple changes. The tuple space does not support such
interests on tuples. Like in the service discovery, the com-
munication and memory load of the tuple space are ad-
justable.

Taskmigration

The technologies for the task migration are summarized in
Table 8. Most of the technologies rely on the mobile agents
due to their fault tolerance and smaller physical size. Three
technologies rely on binary code in order to lessen the com-
putation load caused by the agent interpreting.

In order to use binary code in the task migration, the
possible errors during transfers and malicious attacks must
be managed. The edit script generation algorithm is too
complex to be executed in nodes, thus making it inappli-
cable for dynamic WSNs. From the VM approaches, the
TCL and SQTL scripts and Maté bytecode capsules are more
lightweight than Java objects because of the complexity and
memory requirements of JVM.

4.3. Suitability assessment

Generally, the OS and VM proposals support the remote
task communication and the task migration but leave the
task allocation and the service discovery to an application
or other external components. On the contrary, middleware
approaches concentrate on implementing the task allocation,
leaving other aspects for the tuple spaces or some legacy pro-
tocols. MARE and LIME are the only proposals that cover all
distribution aspects. However, the utilization of JVM and the
distributed tuple space requires resources that are not gener-
ally available in current WSN platforms.

We assess the applicability of the proposals for En-
vMonitor. For a fair comparison, we separately compare
the approaches for node platforms with enough resources,
and then for platforms with limited resources defined in
Figure 1. The main aspect considered in the assessment is the
completeness of the operating environment provided for the
application. In a complete environment, the application does
not need to consider its distributed nature but the distribu-
tion is handled by the systems software. Further, the adap-
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Table 7: Characteristics of technologies implementing remote task communication.

Technology Communication
implementation Scalability Fault tolerance Requirements Benefits (pros) Problems (cons)

Active
messages

Remote handler,
data encapsulation

Not restricted N/A Awareness of
remote handler

Mapping to
TinyOS event
model

Handler name in
ASCII

BBS Message posting to
neighbor BBS

Restricted to neigh-
bor nodes

Message posted to
all neighbors

Neighbor posting
enabled by sender

One-hop
communication

Scalability,
memory load

EYES OS RPC N/A Restricted to
neighbors

N/A N/A One-hop
communication

Scalability

Callbacks Callback registered
to a tuple

Restricted to nodes
sharing tuple space

Callback registered
only in one node

Shared tuple space
between nodes

Callback fired only
on an event

Fault tolerance

Message
passing

Custom networking
(QNet) operations

Not restricted Possibility for
redundant
messages

Name resolution Mapping to local
IPC

Network naming
overhead

Phantom
process

Messages sent by
link handler

Not restricted Possible secure
channels

Created channel for
communication

Mapping to local
IPC

Required hand-
shaking,
communication
load

DVM Invocation
redirection

Not restricted N/A Compile time script
modification

Seamless IPC be-
tween objects

Communication
and processing
load

Tuple space Tuple operations Not restricted Redundant Shared tuple space
between nodes

Distributed in
space and time

Communication/
memory load

R-ORB Message-oriented
communication

Requires nearby
recipient

Activated when link
available

Context sensing Activated only in
applicable context

Scalability

Table 8: Characteristics of technologies implementing task migration.

Technology Communication Scalability Fault tolerance Requirements Benefits (pros) Problems (cons)

Binary code Binary code after
negotiation

Only to one neigh-
bor at a time

Simple
checksum

Initiated by the binary
code itself

Runtime initiation Scalability, bit er-
rors, binary size

Binary code
download

Binary code from
workstation

No in-network
initiation

No protection User initiates
downloads

Possibility to update
OS components

Errors, binary size,
user interaction

Smoblets Java applet modules Execution only in
laptops/PDAs

Java interpreter
protection

Efficient platforms Complex processing
outsourcing

Executed only in
efficient nodes

TCL script
migration

TCL scripts The scale specified
in scripts

TCL interpreter
protection

Injected to network
by a user

Dynamic migration,
small size of scripts

Complex popula-
tion specifications

Mobile Java
objects

Objects on top
of JVM

Not restricted Interpreter
protection

Event initiating
mobilization

Scalability Communication
and processing
load

Code capsule
updates

Small capsules in one
active message

Script populated
to all nodes in
network

Maté interpreter
protection

Injected to network
by a user

Small size of scripts No controlled
migration

SQTL scripts Custom query scripts The scale specified
in scripts

SEE interpreter
protection

Injected to network
by a user

Small size of scripts Communication
cost in broadcast

Edit scripts Scripts containing
changes to old code

No in-network
initiation

Erroneous/missing
scripts requested
from neighbors

Generation of edit
scripts in workstation

Small size of scripts Complexity, no in-
network operation

tivity of the proposals to changing conditions and the task
allocation for extending network lifetime are emphasized.

For resource rich environments, MARE is the most suit-
able environment. The sensing and aggregation tasks in Env-
Monitor can be allocated by theMARE control, and the active
monitoring tasks can be implemented as mobile agents that
are activated on demand.

For typical WSN platforms, MARE is not applicable
due to its resource requirements. On the other hand, BTn-
odes fit to the restricted resources. The callbacks can be
used to implement active monitoring tasks in EnvMoni-
tor. The only aspect that is not supported by BTnodes is
the task allocation so that the load is balanced between
nodes.
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4.4. Recommendations

From the systems software proposals for WSNs, OS and VM
technologies implement the single node control and separate
solutions for application distribution. The middleware pro-
posals are applicable to the network-level distribution con-
trol. However, we argue that in WSNs, OS and middleware
layers must be integrated to provide sufficient services within
the constraints set by applications and platform resources.

In this kind of an approach, OS and middleware are in-
side the same framework so that information about OS in-
ternals and network topology is applicable to the middle-
ware layer. Thus, this approach minimizes extra computa-
tion required for interfacing OS routines and communica-
tion due to the control signaling. Further, the middleware
layer is aware of the influences of its actions at both the single
node and network level. This awareness can be beneficial in
the network-level power management and in the balancing
of node loading.

For a sufficient environment for EnvMonitor, OS must
implement a preemptive scheduling of tasks, a memory and
power management, and a local IPC. The memory control
should support static and dynamicmemory andmaintain in-
formation about available memory. We recommend the us-
age of a message-passing IPC because it is easily extended
to the remote task communication. This kind of a general-
purpose OS can be implemented on limited resources as
shown in [25].

In addition to the local services, OS informs the middle-
ware about the node energy and storage consumption, net-
work role, associations, and nearby nodes and routes. An in-
ternal interface for the middleware to control tasks, power
states, and network is implemented in OS. When all distri-
bution aspects are implemented on the middleware layer, the
components are able to utilize the information from each
other more efficiently.

For service discovery we recommend the tuple space,
since the pure client-server architecture is too static for
WSNs. The resource and communication load of the tuple
space can be diminished by selectively distributing tuple stor-
ing to nodes that use the tuple data and by dividing tuples to
two-level hierarchies similar to GSD. The nodes that need a
tuple for their operation can be identified with the support
of task allocation. By sending only service group tuples to the
distant nodes, less memory is needed but requests for tuples
can still be routed accurately.

For the task allocation, the current application-QoS-
based middleware proposals implement sufficient technolo-
gies. However, simpler algorithms that require less control
communication should be used, even with the cost of accu-
racy.

For the remote task communication we recommend a
simple approach that marshals the local message passing IPC
to network packets. The remote nodes are identified by the
service discovery. To make the delivery of a packet reliable,
acknowledgements must be used. This is more lightweight
than the tuple space, and the fault tolerance does not depend
on the available recipients.

From our perspective, the task migration is required only
in very dynamic applications, like object tracking. These
applications require a VM-based environment. In OSs, the
communication cost of the large binary transfers is extensive.
Thus, the taskmigration should only be used when extremely
necessary. The transfers must be protected with checksums
and digital signatures, even though these are resource con-
suming.

We recommend also the usage of virtual clusters. A vir-
tual cluster may follow the physical topology or it can be a
set of adjacent nodes that have elected a single control en-
tity. By storing detailed tuple information and performing
task allocation within the boundaries of a virtual cluster, the
communication and memory load can be diminished.

5. CONCLUSIONS

Our survey of WSN applications and their distribution
shows that, despite many proposals, no common bench-
marks nor detailed, large-scaled experiments have been pub-
lished. The research seems to focus either on node imple-
mentations or theoretical work on distinct aspects, such as
routing algorithms, without a realistic relation to physical
platforms.

The systems software proposals are still evolving. Cur-
rently, they implement technologies and algorithms for ap-
plication distribution but lack an approach combining a dis-
tributing middleware layer to OS providing a single node
control. This kind of an approach is needed in order to im-
plement a distributed operating environment, which sup-
ports application QoS and extends network lifetime, for re-
source scarce sensor nodes.
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