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We propose a new discrete version of nonlinear oscillator with damping dynamical system
governed by a general maximal monotone operator. We show the weak convergence of solutions
and their weighted averages to a zero of a maximal monotone operator A. We also prove some
strong convergence theorems with additional assumptions on A. This iterative scheme gives
also an extension of the proximal point algorithm for the approximation of a zero of a maximal
monotone operator. These results extend previous results by Brézis and Lions (1978), Lions (1978)
as well as Djafari Rouhani and H. Khatibzadeh (2008).

1. Introduction

Let H be a real Hilbert space with inner product (·, ·) and norm | · |. We denote weak
convergence in H by ⇀ and strong convergence by → . Let A be a nonempty subset of
H ×H which we will refer to as a (nonlinear) possibly multivalued operator inH.A is called
monotone (resp. strongly monotone) if (y2−y1, x2−x1) ≥ 0 (resp. (y2−y1, x2−x1) ≥ α|x1−x2|2
for some α > 0) for all [xi, yi] ∈ A, i = 1, 2.A is maximal monotone ifA is monotone and I +A
is surjective, where I is the identity operator onH.

Nonlinear oscillator with damping dynamical system,

u′′(t) + γu′(t) +Au(t) � 0,

u(0) = u0, u′(0) = u1,
(1.1)

where A is a maximal monotone operator and γ > 0, has been investigated by many
authors specially for asymptotic behavior. We refer the reader to [1–6] and references in there.
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Following discrete version of (1.1),

un+1 = (I + λnA)−1(un + αn(un − un−1)) (1.2)

is called inertial proximal method and has been studied in [3]. This iterative algorithm gives
a method for approximation of a zero of a maximal monotone operator. In this paper, we
propose another discrete version of (1.1) and study asymptotic behavior of its solutions. By
using approximations

u′(t) =
u(t + h) − u(t − h)

2h
+ o(h),

u′′(t) =
u(t + h) − 2u(t) + u(t − h)

h2
+ o(h),

(1.3)

for (1.1), we get

un+1 − 2un + un−1
h2
n

+ γ
un+1 − un−1

2hn
+Aun+1 � 0. (1.4)

By letting β = γ/2, λn+1 = h2
n/(1 + βhn) and αn = (βhn − 1)/(βhn + 1), we get

un+1 = Jλn+1((1 − αn)un + αnun−1), n ≥ 0,

u−1 = 0, u0 = x ∈ H,
(1.5)

where αn (resp. λn) is nonnegative (resp. positive) sequence and Jλ = (I +λA)−1. This discrete
version gives also an algorithm for approximation of a zero of maximal monotone operator
A. This algorithm extends proximal point algorithmwhich was introduced byMartinet in [7]
with λn = λ and αn = 0 and then generalized by Rockafellar [8]. We investigate asymptotic
behavior of solutions of (1.5) as discrete version of (1.1) which also extend previous results
of [9–11] on proximal point algorithm.

Let wn := (
∑n

k=1 λk)
−1(

∑n
k=1 λkuk). Under suitable assumptions, we investigate weak

and strong convergence of wn and un to an element of A−1(0) if and only if {un} is bounded.
Therefore, A−1(0)/=φ if and only if {un} is bounded provided

∑+∞
n=1 λn = +∞. Our results

extend previous results in [2, 3, 5].
Throughout the paper, we denote Aun+1 = ((1 − αn)un + αnun−1 − un+1)/λn+1, and we

assume the following assumptions on the sequence {αn}:

0 ≤ αn ≤ 1, {αn} is nonincreasing and αn −→ 0 as n −→ +∞. (1.6)



Advances in Difference Equations 3

2. Main Results

In this section, we establish convergence of the sequence {un} or its weighted average to an
element of A−1(0). First we recall the following elementary lemma without proof.

Lemma 2.1. Suppose that {αn} is a nonnegative sequence and {λn} is a positive sequence such that
∑+∞

n=1 λn = +∞. If αn/λn → 0 as n → +∞, then
∑n

k=1 αk/
∑n

k=1 λk → 0 as n → +∞.

We start with a weak ergodic theorem which extends a theorem of Lions [11] (see also
[12] page 139 Theorem 3.1 as well as [10] Theorem 2.1).

Theorem 2.2. Assume that un is a solution to (1.5) and {αn} satisfies (1.6). If
∑+∞

k=1 λk = +∞ and
αn/λn → 0, then wn ⇀ p ∈ A−1(0) as n → ∞ if and only if un is bounded.

Proof. Suppose that wn ⇀ p ∈ A−1(0) by (1.5); we get

∣
∣un+1 − p

∣
∣ ≤ ∣

∣Jλn+1((1 − αn)un + αnun−1) − p
∣
∣ ≤ (1 − αn)

∣
∣un − p

∣
∣ + αn

∣
∣un−1 − p

∣
∣. (2.1)

This implies that

∣
∣un+1 − p

∣
∣ ≤ max

{∣
∣u1 − p

∣
∣,
∣
∣u0 − p

∣
∣
}
. (2.2)

Then {un} is bounded and this proves necessity. Now, we prove sufficiency. By monotonicity
of A, we have

(Aun+1, um+1) + (Aum+1, un+1) ≤ (Aum+1, um+1) + (Aun+1, un+1) (2.3)

for all m,n ≥ 0. Multiplying both sides of the above inequality by λm+1λn+1 and using (1.5),
we deduce

(1 − αn)(un − un+1, λm+1um+1) + αn(un−1 − un+1, λm+1um+1)

+ (1 − αm)(um − um+1, λn+1un+1) + αm(um−1 − um+1, λn+1un+1)

≤ λm+1(1 − αn)(un − un+1, un+1) + λm+1αn(un−1 − un+1, un+1)

+ λn+1(1 − αm)(um − um+1, um+1) + λn+1αm(um−1 − um+1, um+1).

(2.4)
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Summing both sides of this inequality from m = 0 tom = k − 1, we get

(1 − αn)

(

un − un+1,
k−1∑

m=0

λm+1um+1

)

+ αn

(

un−1 − un+1,
k−1∑

m=0

λm+1um+1

)

≤ λn+1|un+1|
k−1∑

m=0

αm|um−1 − um| +
k−1∑

m=0
(um+1 − um, λn+1un+1)

+

(
k−1∑

m=0

λm+1

)

(1 − αn)(un − un+1, un+1) +

(
k−1∑

m=0

λm+1

)

αn(un−1 − un+1, un+1)

+ λn+1
k−1∑

m=0

(
(1 − αm)

2
|um|2 − (1 − αm)

2
|um+1|2

)

+ λn+1
k−1∑

m=0

(αm

2
|um−1|2 − αm

2
|um+1|2

)

= λn+1|un+1|
k−1∑

m=0

αm|um−1 − um| + (uk − u0, λn+1un+1)

+

(
k−1∑

m=0

λm+1

)

(1 − αn)(un − un+1, un+1) +

(
k−1∑

m=0

λm+1

)

αn(un−1 − un+1, un+1)

+ λn+1
k−1∑

m=0

(
1
2
|um|2 − 1

2
|um+1|2

)

+ λn+1
k−1∑

m=0

(αm

2
|um−1|2 − αm

2
|um|2

)
.

(2.5)

Divide both sides of the above inequality by
∑k−1

m=0 λm+1 and suppose that k = nj andwnj ⇀ p
as j → +∞. By assumptions on {αn}, {λn} and Lemma 2.1, we have

(1 − αn)
(
un − un+1, p

)
+ αn

(
un−1 − un+1, p

) ≤ (1 − αn)(un − un+1, un+1) + αn(un−1 − un+1, un+1).
(2.6)

This implies that

(
(1 − αn)un + αnun−1 − un+1, un+1 − p

) ≥ 0. (2.7)

From (1.6), we get

∣
∣un+1 − p

∣
∣ + αn

∣
∣un − p

∣
∣ ≤ ∣

∣un − p
∣
∣ + αn−1

∣
∣un−1 − p

∣
∣. (2.8)

By (1.6) and boundedness of {un}, we get limn→+∞|un − p| exists. If wnk ⇀ q, we obtain
again limn→+∞|un − q| exists. Therefore, limn→+∞(1/2)(|un − p|2 − |un − q|2), and hence
limn→+∞(un, p − q) exists. This follows that limn→+∞(wn, p − q) exists. It implies that
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(q, p − q) = (p, p − q) and hence p = q and wn ⇀ p ∈ H as n → +∞. Now we prove
p ∈ A−1(0). Suppose that [x, y] ∈ A. By monotonicity of A and Assumption (1.6), we get
⎛

⎝x −
(

n−1∑

i=0

λi+1

)−1n−1∑

i=0

λi+1ui+1, y

⎞

⎠

=

(
n−1∑

i=0

λi+1

)−1n−1∑

i=0

λi+1
(
x − ui+1, y

)

≥
(

n−1∑

i=0

λi+1

)−1n−1∑

i=0

λi+1(x − ui+1, Aui+1)

=

(
n−1∑

i=0

λi+1

)−1n−1∑

i=0
(x − ui+1, (1 − αi)ui + αiui−1 − ui+1)

=

(
n−1∑

i=0

λi+1

)−1n−1∑

i=0

(
−(1 − αi)(ui+1 − x, ui − x) − αi(ui+1 − x, ui−1 − x) + |ui+1 − x|2

)

≥
(

n−1∑

i=0

λi+1

)−1n−1∑

i=0

(
1
2

(
|ui+1 − x|2 − |ui − x|2

)
+
1
2

(
αi|ui − x|2 − αi−1|ui−1 − x|2

))

.

(2.9)

Letting n → +∞, we get: (x − p, y) ≥ 0. By maximality of A, we get p ∈ A−1(0).

Remark 2.3. Since range of Jλn is D(A) (the domain of A), as a trivial consequence of
Theorem 2.2, we have that If D(A) is bounded then A−1(0)/=φ.

In the following, we prove aweak convergence theorem. Since the necessity is obvious,
we omit the proof of necessity in the next theorems.

Theorem 2.4. Let un be a solution to (1.5) and λn ≥ λ0 > 0. If {αn} satisfies (1.6), then un ⇀ p ∈
A−1(0) as n → +∞ if and only if {un} is bounded.

Proof. Since assumption on {λn} implies that
∑+∞

n=1 λn = +∞, from (1.5) and (2.7), we get

λ2n+1|Aun+1|2 =
∣
∣un+1 − p + λn+1Aun+1

∣
∣2 − ∣

∣un+1 − p
∣
∣2 − 2λn+1

(
Aun+1, un+1 − p

)

≤ ∣
∣(1 − αn)

(
un − p

)
+ αn

(
un−1 − p

)∣
∣2 − ∣

∣un+1 − p
∣
∣2

≤ (1 − αn)
∣
∣un − p

∣
∣2 + αn

∣
∣un−1 − p

∣
∣2 − ∣

∣un+1 − p
∣
∣2

≤ αn−1
∣
∣un−1 − p

∣
∣2 − αn

∣
∣un − p

∣
∣2 +

∣
∣un − p

∣
∣2 − ∣

∣un+1 − p
∣
∣2.

(2.10)

(The last inequality follows from Assumption (1.6)). Summing both sides of this inequality
from n = 1 tom and lettingm → +∞, since {αn} satisfies (1.6), we have

+∞∑

n=1

λ2n+1|Aun+1|2 < +∞. (2.11)
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By assumption on {λn}, we have |Aun| → 0 as n → +∞. Assume unj ⇀ q as j → +∞,
by the monotonicity of A, we have (Aum − Aunj , um − unj ) ≥ 0. Letting j → +∞, we get
(Aum, um − q) ≥ 0. Similar to the proof of Theorem 2.2, limm→+∞|um − q| exists. This implies
that un ⇀ q = p ∈ A−1(0) as n → +∞.

In two following, theorems we show strong convergence of {un} under suitable
assumptions on operator A and the sequence {λn}.

Theorem 2.5. Assume that (I + A)−1 is compact and
∑+∞

n=1 λ
2
n = +∞. If αn satisfies (1.6), then

un → p ∈ A−1(0) as n → +∞ if and only if {un} is bounded.

Proof. By (2.11) and assumption on {λn}, we get lim infn→+∞|Aun| = 0 and un ⇀ p as n →
+∞. Therefore, there exists a subsequence {Aunj} of {Aun} such that |Aunj | → 0 as j → +∞
and {unj + Aunj} is bounded. The compacity of (I + A)−1 implies that {unj} has a strongly
convergent subsequence (we denote again by {unj}) to p. By the monotonicity of A, we have
(Aun − Aunj , un − unj ) ≥ 0. Letting j → +∞, we obtain (Aun, un − p) ≥ 0. Now, the proof of
Theorem 2.2 shows that limn→+∞|un − p|2 exists. This implies that un → p as n → +∞.

Theorem 2.6. Assume that A is strongly monotone operator and
∑+∞

n=1 λn = +∞. If {αn} satisfies
(1.6), then un → p ∈ A−1(0) as n → +∞ if and only if {un} is bounded.

Proof. By the proof of Theorem 2.2,wn ⇀ p ∈ A−1(0) as n → +∞, and limn→+∞|un−p|2 exists.
Since A is strongly monotone, we have

(
Aun+1, un+1 − p

) ≥ α
∣
∣un+1 − p

∣
∣2. (2.12)

Multiplying both sides of (2.12) by λn+1 and summing from n = 1 tom, we have

α
m∑

n=1

λn+1
∣
∣un+1 − p

∣
∣2 ≤

m∑

n=1

(
(1 − αn)un + αnun−1 − un+1, un+1 − p

)

=
m∑

n=1

[
(1 − αn)

(
un − p, un+1 − p

)
+ αn

(
un−1 − p, un+1 − p

) − ∣
∣un+1 − p

∣
∣2
]

≤ 1
2

m∑

n=1

[
(1 − αn)

∣
∣un − p

∣
∣2 + αn

∣
∣un−1 − p

∣
∣2 − ∣

∣un+1 − p
∣
∣2
]

≤ 1
2

m∑

n=1

[∣
∣un − p

∣
∣2 − ∣

∣un+1 − p
∣
∣2 + αn−1

∣
∣un−1 − p

∣
∣2 − αn

∣
∣un − p

∣
∣2
]
.

(2.13)

(The last inequality follows from Assumption (1.6)). Letting m → +∞, we get:

+∞∑

n=1

λn+1
∣
∣un+1 − p

∣
∣2 < +∞. (2.14)

So, lim infn→+∞|un − p|2 = 0. This implies that un → p as n → +∞.
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In the following theorem, we assume that A = ∂ϕ, where ϕ is a proper, lower
semicontinuous and convex function and Argminϕ /= φ.

Theorem 2.7. Let A = ∂ϕ, where ϕ is a proper, lower semicontinuous, and convex function. Assume
thatA−1(0) is nonempty (i.e., ϕ has at least one minimum point) and

∑+∞
n=1 λn = +∞. If {αn} satisfies

(1.6), then un ⇀ p ∈ A−1(0) as n → +∞.

Proof. Since A is subdifferential of ϕ and p ∈ A−1(0), by Assumption (1.6), we have

ϕ(un+1) − ϕ
(
p
) ≤ 1

λn+1

(
(1 − αn)un + αnun−1 − un+1, un+1 − p

)

≤ 1
λn+1

(
(1 − αn)

2

(∣
∣un − p

∣
∣2 − ∣

∣un+1 − p
∣
∣2
)
+
αn

2

(∣
∣un−1 − p

∣
∣2 − ∣

∣un+1 − p
∣
∣2
))

≤ 1
λn+1

(
1
2

(∣
∣un − p

∣
∣2 − ∣

∣un+1 − p
∣
∣2
)
+
1
2

(
αn−1

∣
∣un−1 − p

∣
∣2 − αn

∣
∣un − p

∣
∣2
))

.

(2.15)

Multiplying both sides of the above inequality by λn+1 and summing from n = 1 to m and
letting m → +∞, we get

+∞∑

n=1

λn+1
(
ϕ(un+1) − ϕ

(
p
))

< +∞. (2.16)

By assumption on {λn}, we deduce

lim inf
n→+∞

ϕ(un) = ϕ
(
p
)
. (2.17)

By convexity of ϕ, we have

ϕ(un+1) − (1 − αn)ϕ(un) − αnϕ(un−1)

≤ ϕ(un+1) − ϕ((1 − αn)un + αn(un−1))

≤ 1
λn+1

((1 − αn)un + αnun−1 − un+1, un+1 − (1 − αn)un − αnun−1)

≤ 0.

(2.18)

Therefore,

ϕ(un+1) ≤ (1 − αn)ϕ(un) + αnϕ(un−1). (2.19)

From (2.19), by Assumption (1.6), we get

ϕ(un+1) + αnϕ(un) ≤ ϕ(un) + αn−1ϕ(un−1). (2.20)
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Again by (2.19), we get

ϕ(un) ≤ max
{
ϕ(u0), ϕ(u1)

}
(2.21)

for all n > 1. By (2.20) and (2.21), we have that

lim
n→+∞

(
ϕ(un+1) + αnϕ(un)

)
(2.22)

exists. From Assumptions (1.6), (2.17), and (2.21), we get

lim
n→+∞

ϕ(un) = ϕ
(
p
)
. (2.23)

If unj ⇀ q, then ϕ(p) = lim infj→+∞ϕ(unj ) ≥ ϕ(q). This implies that q ∈ A−1(0). On the other
hand, for each p ∈ A−1(0) by (1.5), we get (2.7). The proof of Theorem 2.2 implies that there
exists limn→+∞|un − p|. Then the theorem is concluded by Opial’s Lemma (see [13]).
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