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Abstract In this paper, we present a method of evaluat-

ing binary image dissimilarity based on tree representation

and heuristic optimization. Starting from the image, a

graph structure of a binary tree is constructed that splits the

set of image foreground pixels into consecutive subsets

attached to tree nodes. Next, instead of comparing two

images themselves, one compares the trees and expresses

image dissimilarity as tree dissimilarity, which can be

characterized by a nonlinear function. The goal is to find its

minimum, as it corresponds with the best match of com-

pared trees. Searching for the minimum would be inef-

fective with analytical optimization methods. Hence, we

have approached the issue with three meta-heuristic algo-

rithms, namely genetic algorithm, particle swarm opti-

mization (PSO) and simulated annealing. The presented

results show that PSO achieved the best results. The pro-

posed method is compared with other binary image com-

parison approaches. The performed tests that are described

in the paper show that it outperforms its competitors and

can be successfully applied to compare binary images.

Keywords Binary image dissimilarity measure � Binary

image tree representation � Meta-heuristic optimization �
Genetic algorithm � Particle swarm optimization �
Simulated annealing

1 Introduction

The idea presented in this paper follows the approach of

extracting and comparing image features to calculate image

dissimilarity, which is understood as the extent of how two

images are unlike, with scale, rotation and translation

invariance. The image (dis)similarity is understood in

visual terms. No semantic issues are raised. The proposed

method is as follows. For a binary image, a tree (a con-

nected, acyclic graph) is created. The tree represents the

image. The dissimilarity between two images is expressed

by the degree of dissimilarity of the trees, constructed for

the images. To determine the dissimilarity value, the trees

have to be matched, which is a nonlinear optimization

problem. We address it with the use of meta-heuristic

algorithms.

Determining the dissimilarity is based on tree repre-

sentation of binary images and unlikeness between two

images is expressed as unlikeness of the trees constructed

upon the images [40–43]. In this paper, the proposed image

comparison method has been juxtaposed with reference

algorithms. Moreover genetic algorithm, particle swarm

optimization and simulated annealing were analyzed as

optimization methods for the need of tree matching in the

presented approach.

Heuristic optimization methods (often biologically

inspired) have constituted an important share in optimiza-

tion studies recently. The interest in this area has been

intensified by successful research, which has yielded many

efficient algorithms. They are often used to cope with

problems, which are too challenging for standard approa-

ches. Namely, meta-heuristic methods effectively deal with

nonlinear, multiple optima functions, with no derivative

information, for both continuous and discrete domains. In

this paper, we evaluate three meta-heuristic optimization
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algorithms on a function, which calculates dissimilarity of

binary images.

The paper is organized as follows. In the next section, a

short survey of previous works in binary image similarity is

given. In the next one, the proposed tree-based binary

image dissimilarity measure, which underlies the experi-

ments, is described. In Sect. 4, we briefly present the

examined optimization algorithms. The experimental

results are shown and discussed in Sect. 5. Conclusions are

drawn in Sect. 6.

2 Previous works

The problem of determining binary image similarity is an

important one in the domain of image processing. The aim

is to design a solution robust to basic image transforma-

tions, e.g., geometrical ones: scaling, rotation and transla-

tion. Moreover, the approach should be robust to basic

image transformations. Many different measures have been

proposed so far. Some of them are based on the assumption

that considered images are of the same size and orientation,

and comparison of corresponding pixels is performed. Such

methods are usually simple and computationally inexpen-

sive; however, they are not invariant to image modifica-

tions. For this reason, more sophisticated methods have

been developed. Most of them take advantage of extracting

and comparing image features like edges, shapes, etc.

The issue of shape similarity is addressed in, e.g., [3]

and [37]. In [13], the inner distance is introduced to mea-

sure the shape similarity. The inner distance is defined as

the length of the shortest path within the shape boundary to

classify shape images. The approach presented in [22] is

aimed at handling partially visible shapes. Some methods

make use of curve alignment techniques [31]. In [21],

curve correspondence is applied to distinguish between

shapes. In [1] and [27], the problem is approached with the

so-called curvature scale space. The paper [19] introduces a

representation based on a recursive division of a shape.

Some methods operate on edge images [30] or contours of

objects [23]. Others take advantage of curvature trees [2],

contour point histogram [34], deformable potential of

contour [38] or curve adjustment procedure based on their

minimal deformation cost [39]. There is a number of

algorithms which are based on Hausdorff distance [10, 16]

to compare binary images. These algorithms generally

calculate inter-pixel distances between images. The origi-

nal solution is sensitive to noise and some research [4, 29]

was aimed at reducing this shortcoming. An adaptive

measure of local Hausdorff distances between images is

proposed in [5]. In [15], the image dissimilarity is deter-

mined with the use of moment invariants. Both Hausdorff

and moment invariant approaches are universal and pos-

sible to be applied for various kinds of binary images.

3 Tree-based image dissimilarity

A binary image is usually perceived as a rectangular matrix

of two-valued scalars. The main idea of the proposed

method is to represent a binary image as a tree. A tree T is

understood to be a connected graph with no cycles. Trees

considered in the paper are rooted ones, which means that

there exists one node in the tree designated as a root. A

parent of a node is the node connected to it on the path to

the root. |T| signifies the order (number of nodes) of T.

We present an image dissimilarity measure which in

general can be applied to both binary [41] and gray-tone

images [42]. To determine the dissimilarity of two images,

trees created upon the images are compared. This is done in

the process of adjusting one tree to the other. The problem

itself is challenging and cannot be solved with the use of

standard analytical optimization methods. Therefore,

searching for the best match of the trees is performed by

means of meta-heuristic optimization. This issue will be

discussed in Sect. 4; the current one is focused on tree

representation and comparison.

3.1 Constructing the tree

The tree construction algorithm works iteratively. Starting

from the initial set of all image foreground pixels of a

given binary image, its consecutive subsets are extracted.

Their characteristic elements are than assigned to tree

nodes. Let us define the set of image pixels

S ¼ fp : IðpÞ ¼ ug, where p stands for pixel coordinates of

an image I, and u is a value of foreground pixels. In

successive steps, subsets of the input set of foreground

pixels are created. Until the desired tree level is reached,

subsets are recursively determined. For every set, a char-

acteristic element is calculated. The tree is constructed by

connecting the characteristic elements. As they are bound

with sets of pixels, the elements remain in parent–child

relationship as well and a tree arises by linking the ele-

ments which fulfill the relation. To apply the algorithm,

one has to provide the input set of pixels S, a function

f which determines the characteristic element, a criterion

c which allows to construct subsets upon a set and the

height of the output tree. Algorithm 1 presents the idea.
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To determine the characteristic element of a set, func-

tion f computes the arithmetic mean of all p 2 S. In other

words, f calculates coordinates of the centroid (center of

gravity) of all pixels in S. Each tree node is thus charac-

terized by an appropriate centroid. A criterion c allowing to

create two subsets of S is defined as follows. Let qðo1; o2Þ
be the Euclidean distance between pixels’ coordinates o1

and o2. Let m ¼ medianðfqðp; f ðSÞÞ : p 2 SgÞ. Presented in

another way, m stands for a median distance between pixels

in S and its centroid. Then, cðSÞ ¼ ðS1; S2Þ, where S1 ¼
fp 2 S : qðp; f ðSÞÞ�mg and S2 ¼ fp 2 S : qðp; f ðSÞÞ�
mg. In this way, S1 contains pixels closer (or equally dis-

tant) to the centroid than m and S2 contains pixels farther

(or equally distant) from the centroid than m. Alternatively,

instead of computing medians for consecutive sets of pix-

els, in the very beginning the quantiles may be calculated.

Then, successive sets of pixels are determined with regard

to the values of appropriate quantiles [40].

As there are two subsets created in a single step of our

procedure, the output tree T is a perfect binary one. The

algorithm successively applies function f to determine the

characteristic elements for consecutive sets extracted with

use of criterion c. The process stops when the tree is

constructed to the desired level. Figure 1 illustrates the

process of building a tree.

Apart from a centroid, with every set we associate

information about pixel distribution of the set. The infor-

mation comprises average pixel distance from the centroid

and standard deviation of pixel distance from the centroid.

This ensures comprehensive characterization of the set.

The trees created with the use of the above algorithm

describe the content of images in such a way that for dif-

ferent images, depicting different content, corresponding

centroids as well as pixel distribution values differ. On the

other hand, centroids and pixel distribution values of cor-

responding nodes of trees created upon similar images

remain similar, due to similar subsets returned by criterion

c. Therefore, image similarity (or dissimilarity) can be

expressed by tree similarity (or dissimilarity). We can

estimate the extent of dissimilarity between two trees and

therefore conclude upon the degree of difference between

the images. Examples of trees created upon four various

binary shapes are shown in Fig. 2.

3.2 Comparing the trees

Following the main idea of the proposed approach, to find

the dissimilarity of two binary images one computes the

dissimilarity of trees obtained for images being compared.

Since the way of creating the tree results in a strict struc-

ture of the tree, while investigating differences between

two trees, nodes can be compared pairwise. This is due to

the fact that every node has its corresponding one in

another tree. Difference between the trees is computed as a

sum of differences between pairs of nodes. This way, the

tree dissimilarity is expressed as a single scalar value.

Let T1 and T2 be trees of height h1 and h2, respectively.

The difference between the trees can be computed as:

D ¼
Xl

i¼1

di; ð1Þ

where di stands for the difference for a pair of nodes i,

l ¼ 2hþ1 � 1 with h 2 Nþ and h�minðh1; h2Þ, and l is the

number of nodes. The difference di can be viewed as a

‘‘work’’ needed to translate a centroid of a node i to the

position of a centroid of a corresponding node of another

tree and vice versa. The term ‘‘work’’ is an analog to the

physical quantity, which is directly proportional to force

and the Euclidean distance between the centroids of a pair

of corresponding nodes. The force is proportional to the

number of pixels zei upon which the centroid for a node

i in tree Te is calculated. This reasoning leads to the

formula:

di ¼
z1i

Z1

þ z2i

Z2

� �
di þ bai þ bsið Þ; ð2Þ

where Ze ¼
Pl

i¼1 zei, d stands for the distance, bai ¼ jba1i �
ba2ij and bsi ¼ jbs1i � bs2ij, with baei meaning average pixel

distance from the centroid i in tree Te and bsei symbolizing

standard deviation of pixel distance from the centroid i in

tree Te.

The above approach may be used directly only if the

trees represent images of the same size and orientation. In

case of images modified with the use of rotation or scaling,

the trees must be matched prior to the computation of

dissimilarity. To do this, first of all, trees are aligned, so

that their roots are positioned in the origin of the coordinate

system. It is achieved by translating all the nodes of a tree

by the same vector applied to translate the root of the tree

to the origin of the coordinate system. This ensures trans-

lation invariance of the trees. Then, tree T1 is rotated and
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scaled. This is achieved by transforming coordinates of all

nodes of the tree to the polar coordinate system, in which

each point is determined by an angle from a fixed direction

and a distance from the pole. For every node of the tree, the

angle is increased by a and the distance is multiplied by s.

This way, a new tree T1 arises. Next, the difference D

between T1 and T2 is calculated.

Let us assume that the image upon which the tree T2 has

been constructed has been scaled, so that the distances in

the image increased by factor j and the number of pixels

by factor j2. The tree constructed for that image would be a

version scaled by j of an original tree. Then the formula

goes as follows:

di ¼
z1i

Z1

þ j2

j2

z2i

Z2

� �
j di þ bai þ bsið Þ

¼ z1i

Z1

þ z2i

Z2

� �
j di þ bai þ bsið Þ;

ð3Þ

which is dependent on j. Obviously, a method with no

dependence on scale is desired. Then the formula would

have to be as follows:

Fig. 1 The way of creating a tree. In a, consecutive sets returned by

criterion c are presented. The images are ordered as a tree, in

accordance with the way the procedure works. The topmost image is

the input image. Left child images (red arrows) are composed of

pixels which are closer or equally distant to the centroid of the parent

image. Right child images (blue arrows) are composed of pixels

which are farther or equally distant to the centroid. For every set, a

characteristic element is calculated. The elements are bound with

corresponding nodes of a tree. Every element is linked with a

characteristic element of a parent node. This way, the final tree (b)

arises. The presented tree of height h ¼ 2 is enlarged in relation to the

images in a. The color and the style of tree edges correspond to the

color and the style of arrows in a (color figure online)

Fig. 2 Different binary images imply different trees. Test images of

MPEG7 database [28]: a bat, b bird, c frog and d lizard exemplify the

statement. The trees are of height h ¼ 4. Left edges (connecting the

sets with subsets of closer pixels) are drawn in red, while right edges

(connecting the sets with subsets of farther pixels) are drawn in blue

(color figure online)
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di ¼
z1i

Z1

þ j2

j2

z2i

Z2

1

j

� �
j di þ bai þ bsið Þ: ð4Þ

Let us examine the z2i

Z2
component. It cannot be divided by

j, whose value is unknown. What is possible is to raise Z2

to the power of 1.5 and then the scaled component would

be

j2 z2i

ðj2 Z2Þ1:5
¼ j2 z2i

j2 Z2

1

j
: ð5Þ

The first component z1i

Z1
cannot be divided by j either.

However, the value s0 by which the tree T1 has been scaled

in relation to the tree T2 is known. The scale equals

s0 ¼ s j, where s is the scale difference between the com-

pared images and is obviously dependent on j. Therefore,

we achieve:

z1i

Z1

1

s j
; ð6Þ

which eliminates, in the first component, the relation

between di and j. However, for an image scaled by factor

x, upon which the tree T1 has been created, the first com-

ponent would equal

x2 z1i

x2 Z1

x

s j
; ð7Þ

which in turn introduces the dependence on x. Removing

the dependence is possible by raising Z1 to the power of

1.5. Then for an image scaled by x, for which the tree T1

has been built, the component would equal

x2 z1i

ðx2 Z1Þ1:5

x

s j
¼ x2 z1i

x3 Z1
1:5

x

s j
¼ z1i

Z1
1:5

1

s j
ð8Þ

and the final formula takes the following form:

di ¼
z1i

Z1:5
1

1

s
þ z2i

Z1:5
2

� �
di þ bai þ bsið Þ; ð9Þ

which ensures invariance to scaling.

The goal is to find an angle a and a scale s such that the

the difference D is minimal. Then, D specifies the dis-

similarity of trees, and thus the dissimilarity of images.

When comparing trees created upon the same images even

if rotated or scaled, D equals 0 (or almost 0 due to rotation

and scaling approximation). The difference between the

trees increases along with the growth of the difference

between the images and is—theoretically—unlimited.

Therefore, D 2 h0;1Þ.
A significant feature of the method is that the geomet-

rical transformation of an image refers to the transforma-

tion of the tree constructed upon the image. In effect, the

trees created with the use of the presented approach can be

adjusted by any geometrical transformation, e.g., a mirror

flip. In such case, there will obviously be a need to opti-

mize some additional parameters, specific for a particular

transformation.

4 Optimization algorithms

In the transformation model introduced in the previous

section, two parameters are considered, namely angle a and

scale s. Matching the trees with regard to these parameters

is an optimization problem. The goal is to optimize the

function expressed by the summation (1). The search space

is a two parameters plane. In general, however, adjustment

of several parameters may be required. Moreover, the

function is nonlinear, it can have multiple minima and

calculating its derivative is a very expensive task in com-

putational terms. For such challenging functions, heuristic

optimization algorithms, rather than the classical ones, are

usually the best choice. Accordingly, in this research, the

heuristic optimization approaches were applied. There is a

constant necessity for deeper comprehension and further

improvement of this type of method. Both external, com-

putational needs and bottom-up algorithm examination

appoint directions of advancement in the field of opti-

mization. Heuristic optimization is applied in the current

study to find the best match of two trees created upon

binary images. This matching is necessary to compute the

dissimilarity between the trees in view of evaluating the

dissimilarity of two underlying images. In this research, we

used three meta-heuristic optimization algorithms, namely,

genetic algorithm, particle swarm optimization and simu-

lated annealing. In the remainder of this section, the gen-

eral view of applied optimization methods has been

presented. Detailed descriptions, algorithm variants as well

as parameter selection hints are available in a vast literature

on the subject (e.g. [6, 7, 11, 12, 14, 18, 20, 26, 33]).

4.1 Genetic algorithm

Genetic algorithm (GA) [12, 14, 26] is a classic meta-

heuristic optimization approach. It follows the concept of

population advancement based on natural evolution. A

population composed of individuals (also called chromo-

somes) evolves to find the best argument value of an

objective function. Individuals undergo mechanisms

derived from evolution, to lead the population to better

results. The algorithm works as follows. At first, the pop-

ulation is randomly initiated in the search space. Then, in

each iteration, chromosomes, each of which encodes a

solution, are subjected to selection, gene recombination

and mutation. These imitate evolution of a real, biological

species. In effect, the next generation replaces the previous

one. Selection determines pairs of parent chromosomes,
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upon which children arise by means of gene crossover.

Generally, the better is the value of the fitness function for

a particular individual, the greater are the chances for it to

become a parent. Crossover operator defines how genes of

parent individuals are recombined. Mutation decreases the

risk of the population getting stuck in a local minimum.

The main parameters are population size P, maximal

number of generations G and fraction of the population

which undergoes crossover and mutation.

In the issue of tree dissimilarity minimization, each

chromosome encoded a scale s and an angle a. The pop-

ulation evolved in search for the optimal values of these

parameters.

4.2 Particle swarm optimization

Particle swarm optimization (PSO) [18, 33] is a well-

known optimization algorithm. It is an evolutionary com-

putation method, which imitates social behavior of a swarm

of creatures. The idea benefits from advancement of a

population of particles, which rove in the search space. The

position of each particle represents a solution. Particles

adjust their movement parameters according to their own

experience as well as the experience of other particles of

the swarm. A basic variant of PSO works as follows. First

of all, the population of particles is initiated. Particles,

denoted below as x, are randomly positioned over a search

space and are assigned random velocities. At iteration k þ 1;

the position of a particle i is updated according to the

formula:

xikþ1 ¼ xik þ vikþ1 ð10Þ

with the velocity vikþ1 calculated as follows:

vikþ1 ¼ wk v
i
k þ c1k r1 pik � xik

� �
þ c2k r2 p

g
k � xik

� �
; ð11Þ

where wk stands for inertia weight and c1k and c2k stand for

cognitive attraction and social attraction parameters,

respectively. pik is the best solution particle i ever found, p
g
k

is the best solution ever found by any particle of the swarm,

and r1 and r2 are random numbers uniformly distributed on

the interval (0, 1). Inertia weight wk as well as attraction

parameters c1k and c2k can be constant or may be changed

in the course of the run. The algorithm works and improves

the solution until the stopping criterion is met, e.g., satis-

factory solution is achieved, inconsiderable solution

improvement is negligible or a maximum number of iter-

ations is reached. PSO has gained an exceptional interest.

There are many works introducing modifications to

increase the performance of PSO and providing analysis of

the algorithm, e.g., [7, 8, 11, 25]. Most of them relate to

updating particle velocity.

In search of the best tree adjustment, we assumed that

each particle’s position represents a scale s and an angle a.

Velocity expresses the dynamics of parameter adjustment.

Swarm proceeded to find the optimal configuration of the

two parameters.

4.3 Simulated annealing

Simulated annealing (SA) [6, 20] is another meta-heuristic,

global optimization approach. It is inspired by the process

of annealing in metallurgy, where heating and cooling

down the alloy is performed, to achieve the best structure

of the material, therefore minimizing its energy. Heating

shoves the molecules out from their initial positions. This

prevents the algorithm getting stuck in a local minimum.

On the other hand, cooling lets them go into the state of

lower energy then before, which means they head toward

an optimal solution. In each step of the algorithm, a new

point is randomly generated. Its distance to the current

point is based on a probability distribution, whose scale is

proportional to the temperature. The current solution is

replaced by a new one, when the latter lowers the objective

(cooling down the material). However, with a certain

probability, a new point may be accepted, even if it raises

the objective (heating). The temperature is decreased in the

run of the algorithm. This way, the extent of search is

reduced in the final stages. The main parameters are the

initial temperature and the cooling function, which deter-

mine the way of decreasing the temperature.

Similarly as in the other approaches, we optimized our

objective function with respect to scale s and angle a.

5 Experiments

As it has been mentioned, the tree-based method allows to

determine the dissimilarity between any pair of binary

images. The following section presents a comparison of the

proposed approach with two reference algorithms, namely

the Hu moment invariant method [15] and a modified

Hausdorff distance method [10]. All three compared

methods are general purpose ones, able to deal with dif-

ferent types of binary images, and their outcome can be

presented as a dissimilarity value.

The Hu moment invariants approach allows to calculate

image characteristic (as a set of 7 numbers) invariant to

scaling, translation and rotation. The methods based on

Hausdorff distance are sensitive to such transformations. It

is possible to deal with the issue by translating, resizing, as

well as determining orientation [9] and rotating of the

compared images. However, it significantly increases the

computational cost.
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Moreover, another set of experiments was performed.

For the tree-based approach, three meta-heuristic opti-

mization algorithms were evaluated and juxtaposed.

5.1 Methodology and results

We created a dataset of binary images1, based on the

MPEG7 shape database [28]. Our dataset is composed of

50 classes of images. Every class contains an original

object as well as its variants, obtained by binary morpho-

logical operators of opening and closing [32]. Therefore,

there are 150 images in the dataset. Every morphologically

modified image was scaled by a random factor in the range

h0:5; 2i and rotated by a random factor in the range h0; 2pi.
Class example is presented in the Fig. 3. Upon the images,

trees of height h ¼ 3 were created. Evaluation procedure

were as follows. For a given optimization algorithm, for its

certain configuration, every possible pair of trees was

compared. As a result, we obtained square matrix of dis-

similarity values. If an effective optimization method was

used, then the values calculated for objects of the same

class were small, whereas those calculated for objects from

among different classes were greater. To reason about the

efficiency of the considered algorithm, we subjected the

matrix of dissimilarity values to cluster analysis.

Clustering was performed with the use of k-medoids

algorithm [17]. The method—on the basis of the dissimi-

larity matrix—partitions the set of observations into a pre-

defined number of clusters k. It is similar to k-means

algorithm [24, 36]. However, in contrast to k-means, k-me-

doids selects cluster centers from among the observations

rather than calculates centroids. The chosen centers (called

medoids) define clusters in such a way that each observation

is assigned to the least dissimilar medoid. The objective of

the algorithm is to find such a configuration of medoids for

which the sum of dissimilarities between the observations

and their centers is minimal. The parameter k was constant

and equaled to 50—the number of classes of images.

We express the reliability as the percentage of correctly

clustered images. It may be difficult, however, to determine

the percentage. Clustering algorithms deliver data grouped

into clusters, but without labels. To determine the relia-

bility, it is necessary to find the best cluster labeling.

However with different observations within a single clus-

ter, it is tricky to assign the labels. For every case, we

aimed at finding such a label arrangement which led to the

highest percentage.

The comparative study of the algorithms follows the

reasoning that the better an optimization method per-

formed, the higher was the outcome percentage result. The

successive tables present results obtained for the consid-

ered algorithms, for different parameter configuration. The

parameters were arranged in such a way that a maximal

number of function evaluation was fixed. In effect, the

results of comparable computational effort for every

method were achieved.

For comparative purposes, the proposed approach was

confronted with two well-known binary image comparison

algorithms, namely the Hu moment invariants [15] and the

modified Hausdorff approach [10]. The results achieved for

the Hu method reached 38.40 % and for the modified

Hausdorff approach 36.80 %.

5.2 Comparison of meta-heuristics for the

tree-based approach

GA has been applied with different values of population

size P, maximal number of generations G and number of

chromosomes which underwent crossover. Selection was

performed by stochastic universal sampling. Gene recom-

bination was accomplished by uniform crossover. Mutation

was executed in an adaptive way [35]. Table 1 presents the

results.

We have applied the PSO algorithm with different val-

ues of population size P, maximal number of generations

K, cognitive attraction c1k and social attraction c2k. Initial

inertia weight w1 ¼ 0:9 and wk ¼ w1 � 0:4 ðk � 1Þ=
ðK � 1Þ, which means that wk decreased linearly from 0.9

at the first iteration to 0.5 at iteration K. PSO was made to

Fig. 3 Binary image variants

1 Available at http://www.isep.pw.edu.pl/*iwanowsm/binary.zip.
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stop if there was no improvement in the objective function

for 5 consecutive generations. Tables 2, 3 and 4 present the

results.

The maximal number of function evaluations in a single

run was fixed. This way, the algorithm was able to calcu-

late the value of the function as many times as the tested

population-based methods. The initial temperature was set

to either t1 ¼ 50 or t1 ¼ 100 and its value at iteration k was

calculated as tk ¼ 0:95k � t1. Table 5 shows the results for

both t1 values and different numbers of objective function

evaluations.

Experiments have been performed for small population

sizes and numbers of generations, for both population-

based methods. This limited the number of possible

Table 1 Percentage results of

GA for different parameters—

population size, generations and

number of chromosomes A0

which undergo crossover

Generations Population

5 10 15

A0 A0 A0

2 3 4 4 6 8 6 9 12

10 58.00 43.33 44.67 76.67 71.33 46.00 86.67 82.67 62.67

15 61.33 42.00 41.33 83.33 75.33 47.33 88.00 84.00 65.33

20 63.33 46.67 46.00 86.00 78.67 46.67 86.00 87.33 68.00

The largest value is emphasized in bold

Table 2 Percentage results of

PSO for different parameters—

population size, generations,

cognitive attraction c1k and

social attraction c2k ¼ 0:75

Generations Population

5 10 15

c1k c1k c1k

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

10 90.67 86.67 94.67 94.00 91.33 94.00 96.67 96.67 97.33

15 86.00 87.33 92.00 96.00 98.00 94.00 94.67 100.00 98.67

20 92.00 94.67 90.00 99.33 94.67 96.67 96.67 97.33 100.00

The largest values are emphasized in bold

Table 3 Percentage results of

PSO for different parameters—

population size, generations,

cognitive attraction c1k and

social attraction c2k ¼ 1:25

Generations Population

5 10 15

c1k c1k c1k

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

10 88.00 90.00 88.67 95.33 96.67 96.67 94.67 96.00 96.67

15 91.33 94.67 95.33 99.33 94.67 97.33 100.00 96.67 100.00

20 95.33 94.67 93.33 96.00 99.33 100.00 97.33 99.33 100.00

The largest values are emphasized in bold

Table 4 Percentage results of

PSO for different parameters—

population size, generations,

cognitive attraction c1k and

social attraction c2k ¼ 1:75

Generations Population

5 10 15

c1k c1k c1k

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

10 87.33 86.00 90.67 92.00 98.00 95.33 97.33 98.67 96.67

15 89.33 92.00 90.00 94.67 97.33 98.67 94.67 100.00 96.67

20 92.67 94.00 90.00 100.00 100.00 99.33 100.00 96.67 100.00

The largest values are emphasized in bold

8 Pattern Anal Applic (2016) 19:1–10
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evaluations of the objective function. For the simulated

annealing approach, the number of the objective function

evaluations was also limited. In effect, every approach was

able to calculate the objective function at most the same

number of times. This way, results are comparable. The

experiments show that PSO achieved the best results,

which were satisfactory for small population sizes and

numbers of generations. Simulated annealing was slightly

worse. Both methods significantly outperformed the

genetic algorithm.

It is clearly visible that the genetic algorithm achieved

better results for greater population size and number of

generations. Crossover fraction also played a significant role

in the performance of the method. As for values f1 ¼ 0:7 and

f1 ¼ 0:8; the results have been similar, and increasing it to

f1 ¼ 0:9 led to the degradation of the results.

In the PSO evaluation, the size of the population has had

a positive impact on the outcome. On the other hand, for

the number of generations, social and cognitive attraction,

we have observed no obvious influence of the parameters

on the final outcome.

As one might expect, for the simulated annealing

approach, generally, greater number of possible objective

function evaluations yielded better optimization results.

6 Conclusions

In this paper, a generic binary image comparison approach

with the use of heuristic optimization has been presented.

The method is based on image tree representation. In the

process of matching the trees constructed upon two images,

a dissimilarity value is obtained. The value expresses how

the images are unlike. The proposed approach is invariant

to translation, scaling and rotation, as well as robust to

basic image transformations. In this research, we also

found out how heuristic optimization algorithms perform

with the tree adjustment issue for two transformation

parameters—scaling and rotation. We have evaluated the

genetic algorithm, the particle swarm optimization and the

simulated annealing approach.The tests have been applied

for a different parameter values of the considered methods.

The results show the advantage of the particle swarm

optimization and the simulated annealing algorithms over

the genetic algorithm. Nevertheless, the best results have

been obtained for the PSO approach. It is worth noticing

that geometrical image transformation corresponds to the

transformation of the tree. Therefore, the presented method

can be naturally developed to be robust to any geometrical

image transformation. Despite higher complexity which

will occur in such a case (more variables to optimize),

thanks to the proposed heuristic optimization approach,

tree adjustment process may be performed using exactly

the same scheme. The proposed methods for measuring

binary image dissimilarity has also been compared in this

paper with other dissimilarity measures, showing its

superiority over them. All the above experiments have

proven that the proposed method can be successfully

applied to binary image comparison.
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