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Abstract

Biological fitness is typically measured by the expected rate of reproduction, but
strategies with high fitness can also have high probabilities of extinction. Likewise,
gambling strategies with a high expected payoff can also have a high risk of ruin. We
take inspiration from the gambler’s ruin problem to examine how extinction is related
to population growth. Using moment theory we demonstrate how higher moments
can impact the probability of extinction and how the first few moments can be used to
find bounds on the extinction probability, focusing on s-convex ordering of random
variables. This approach generates “best case” and “worst case” scenarios to provide
upper and lower bounds on the probability of extinction.
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1 Introduction
Reproduction is necessary for the survival of populations. However, a population can
have a high expected reproductive rate but nevertheless go extinct with near certainty
(Lewontin and Cohen 1969). For example, populations with large variation in reproduc-
tive success can sometimes have a high probability of extinction, even if they have a high
expected growth (Tuljapurkar and Orzack 1980).
Similarly, investors and gamblers can avoid Gambler’s Ruin through growth of capi-

tal. However, a gambler should not simply apply the strategy with the highest expected
growth rate as it may also have a high risk of ruin. For example, investors can use the
Kelly ratio (Kelly 1956) to maximize expected geometric growth of their capital but strict
adherence to this ratio can be risky, and playing a more conservative strategy is often
recommended (MacLean et al. 2010).
To estimate the probability of Gambler’s Ruin, one can use approximations based on

moments (Ethier and Khoshnevisan 2002; Canjar 2007; Hürlimann 2005). Here we apply
these approaches to estimate the probability of extinction in a branching process. The
mathematics of Gambler’s Ruin are very similar to that of extinction in a branching
process (Courtois et al. 2006). Both statistical models involve a random variable (pay-
off/offspring number), resulting in a randomwalk (change in capital/change in population
size), and an absorbing state (ruin/extinction). Moreover, both processes are assumed to
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be Markovian, and finding the probability of ruin/extinction involves solving for the root
of a convex function.
Here we examine the random variable representing the number of offspring, and

investigate how the moments of this random variable are related to the probability
of extinction. We demonstrate an important relationship between these moments and
extinction: odd moments favor survival and even moments favor extinction. The first
moment of the offspring distribution, its mean, has the biggest influence on extinction.
However, the first moment alone is not usually informative about extinction probabilities.
In fact, strategies with arbitrarily large first moments can nevertheless go extinct with
near certainty. Some of the “fittest” strategies can be highly unlikely to survive.
Using the first few moments of the offspring distribution, one can obtain bounds on the

ultimate probability of extinction (Courtois et al. 2006; Daley and Narayan 1980). These
bounds provide “best case” and “worst case” distributions. We present these bounds,
termed s-convex extremal random variables, adapted from actuarial science and research
on the gambler’s ruin problem (Denuit and Lefevre 1997; Hürlimann 2005; Courtois et al.
2006). The extremal distributions for discrete processes have been developed previously,
using up to four moments (Hürlimann 2005). Here we find the conditions under which
these extremal distributions provide non-trivial bounds. Using some simple examples,
we demonstrate how these methods can be used to rank distributions using only their
moments. We then discuss how these bounds can be used to better understand the
evolutionary process.

2 Methods
2.1 Extinction in the Galton-Watson branching process

To investigate biological extinction, we use a Galton-Watson branching process in which,
at each discrete time interval, every individual generates i discrete offspring with prob-
ability pi, and zero offspring with p0. Without loss of generality we assume that an
individual produces its offspring and then dies, so that each individual in a population is
restricted to a single generation. The offspring number is a random variable, which we
denote by X. Let n be the maximum value of X so that X takes values in the state space
Dn = {0, 1, 2, . . . , n}
At any given time t, the size of a population (Zt) is the number of individuals in the

branching process. We set Z0 ≡ 1 unless otherwise specified. The probability of extinc-
tion of a branching process is q ≡ limt→∞ P(Zt = 0|Z0 = 1). If the starting size
of the population is greater than one, then the overall probability of extinction can be
defined as

lim
t→∞P(Zt = 0|Z0 = N) = qN .

So we can solve for extinction in the case of Z0 = 1 and extend the results to larger
starting populations if necessary.
The recursive formula for finding q can be found through a first step analysis (Kimmel

and Axelrod 2002). The probability that the lineage of a single individual eventually goes
extinct is the probability that it dies without offspring (p0) plus the probability that it pro-
duces a single offspring whose lineage dies out (p1q) plus the probability that it produces
two offspring whose joint lineages die out (p2q2), and so on.
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This leads to the formal definition of the probability generating function:

f (q) = E[qX]= p0 + p1q + p2q2 + p3q3 . . . pnqn =
n∑

k=0
pk qk . (1)

The probability of extinction of a branching process starting with a single individual is
the smallest root of the equation f (q) = q for q ∈[0, 1]. The solution q = 1 is always a root
of (1) and is not necessarily the smallest positive root. In some cases, the probability of
extinction is trivially obvious. For instance, if p0 = 0 individuals always produces at least
one offspring, therefore q = 0. Furthermore, cases where E[X]≤ 1 always yield q = 1
(Kimmel and Axelrod 2002).
Inferring the probability of extinction analytically for branching processes with p0 > 0

and E[X]> 1 can be difficult because (1) has n complex-valued roots according to the
fundamental law of algebra. In the following we illustrate how (1) can be seen in terms
of moments of the offspring distribution, and discuss how this approach can be used to
estimate q.

2.2 Moments of the branching process

Let mk ≡ E[Xk] denote the kth moment of the branching process generator X. The first
moment,m1, is equivalent to the average offspring number. Higher moments can be used
to obtain other summary statistics of the distribution, such as the variance σ 2 = m2−m2

1.
The Laplace transform of (1) can be used to (recursively) express extinction in terms of

the moments of the branching process

f (q) = E
[
qX

] = E

[
eX log q

]
= 1 + m1 log q + m2

(log q)2

2
+ m3

(log q)3

6
+ . . .

=
∞∑
k=0

mk
(log q)k

k!

where m0 = 1. Note that mk > 0 for all k ≥ 0. Furthermore, with q ∈ (0, 1) we have
log q < 0. Therefore, even moments increase the probability of extinction while odd
moments decrease it. Additionally, if q ∈ (e−1, 1) then log q ∈ (−1, 0) and the series
converges with log q. Thus, approximations, f ∗(q), which take the form

f ∗(q) =
s−1∑
k=0

mk
(log q)k

k!
+ o

(
(log q)s

)
for s ≥ 3 are only accurate when q is large and the moments are small. As q ↓ 0, the
series requires more andmore terms to provide accurate approximation. Therefore, when
q is small the first few moments are not necessarily informative about the probability of
extinction.

2.3 s-Convex orderings of random variables

Here we demonstrate how the first few moments of the offspring distribution can be used
to find bounds on the probability of extinction. The random variable X is bound by zero
and its maximum, n, conveniently allowing for s-convex ordering (Denuit and Lefevre
1997; Hürlimann 2005; Courtois et al. 2006). Following (Hürlimann 2005) denote by �
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the forward difference operator for g : Dn → R by�g(i) = g(i+1)−g(i) for all i ∈ Dn−1.
Analogously for k ∈ Dn the k-th order forward difference operator is defined recursively
by �0g = g and for k ≥ 1 by �kg(i) = �k−1g(i − 1) − �k−1g(i) for all i ∈ Dn−k . Then,
for two random variables X and Y valued in Dn we say X precedes Y in the s-convex
order, written X ≤Dn

s−cx Y if E[g(X)]≤ E[g(y)] for all s-convex real functions g on Dn. A
convenient consequence is that if X ≤Dn

s−cx Y then

E

(
Xk

)
= E

(
Yk

)
for k = 1, 2, . . . , s − 1

E

(
Xk

)
≤ E

(
Yk

)
for k ≥ s.

Define themoment space for all random variables with state setDn and fixed first s − 1
momentsm1, . . . ,ms−1 by

B 
m
s,n ≡ B (Dn,m1,m2, . . . ,ms−1) .

Since the random variable X is strictly positive, its moment space only contains positive
elements. Further, we are only interested in cases where the mean is greater than 1 so that
extinction is not certain. This provides a moment space with well behaved properties. The
study of the moment problem (see e.g., (Karlin andMcGregor 1957; Prékopa 1990)) yields
an important relationship between consecutive moments onB 
m

s,n conditional onm1 ≥ 1

(mi)
i+1
i ≤ mi+1 ≤ nmi. (2)

Minimum and maximum extrema distributions on B 
m
s,n can be found for any distribu-

tion on Dn, with fixed first s moments m1,m2, . . . ,ms (Denuit and Lefevre 1997). The
random variables for these distributions are denoted X(s)

min and X(s)
max such that

X(s)
min ≤Dn

s−cx X ≤Dn
s−cx X(s)

max for all X ∈ Dn.

Extrema have been derived for s = 2, 3, 4, 5 (Denuit and Lefevre 1997; Denuit et al. 1999;
Hürlimann 2005). Here, we reiterate these results providing the inferred distributions and
their utility when obtaining bounds on the probability of extinction. We begin on B 
m

2,n
with the maximal random variable, X(2)

max, defined as:

X(2)
max =

⎧⎨⎩ 0 with p0 = 1 − m1
n

n with pn = m1
n

.

For X(2)
max we observe mi+1 = nmi, so by (2) this can clearly be seen as the maximum

extrema. Intuitively, this is the “long shot” distribution on Dn, a worst case scenario.
Because the values and respective probabilities of X(2)

max are known, q can be solved
explicitly by finding the least positive root of the generating function:

f (q) = p0 + pnqn.

This provides an upper limit on extinction because this generating function will be
greater than or equal to the generating function for all other random variables with the
samem1 and n, on q ∈ [0, 1].
B 
m

2,n is a very general moment space and the first moment does not often provide much
information about an unknown distribution. Therefore, X(2)

max is not likely to be a tight
upper bound when n is large or unknown. However, ifm1 is near n, then the distribution
can be fairly well approximated by X(2)

max.
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UnlikeX(2)
max,X(2)

min does not provide a useful bound on the probability of extinction.X
(2)
min

is defined as:

X(2)
min =

{
α with pα = α + 1 − m1
α + 1 with pα+1 = m1 − α

(3)

where α is the integer onDn such that

α < m1 ≤ α + 1.

This extremal random variable represents a best case scenario. However, sincem1 > 1,
α must be larger than zero and this branching process has no chance of death (i.e. p0 = 0)
and consequently no chance of extinction (q = 0). Therefore X(2)

min does not provide a
useful bound on the probability of extinction as the bound q ≥ 0 is obvious.
This bound and all other bounds examined here can be found using discrete Chebyshev

systems (Denuit and Lefevre 1997). However, extremal bounds are perhaps more intu-
itive for continuous random variables, to which the discrete cases can be seen as similar
(Shaked and Shanthikumar 2007; Hürlimann 2005; Denuit et al. 1999). For example, X(2)

min
in the continuous case has only one possible value,m1 with pm1 = 1. By (2) this is clearly
an extrema because (mi)(i+1)/i = mi+1 = (m1)i+1. In comparison, the discrete case (3)
has similar properties.
The following notation helps extending these calculations to higher order systems

(Denuit et al. 1999). Let w, x, y, z ∈ Dn, and setm0 = 1. Then:

mj,z := z · mj−1 − mj, j = 1, 2, . . . ;

mj,z,y := y · mj−1,z − mj,z, j = 2, 3, . . . ;

mj,z,y,x := x · mj−1,z,y − mj,z,y, j = 3, 4, . . . ;

mj,z,y,x,w := w · mj−1,z,y,x − mj,z,y,x, j = 4, 5, . . . .

The reader should recognize this notation as it is simply the iterative forward difference
operator �k for moments.
If the first two moments are known, then a tighter upper bound can be found. OnB 
m

3,n
the minimal distribution in the 3-convex sense is given by:

X(3)
min =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 with p0 = 1 − pα − pα+1

α with pα = m2,α+1
α

α + 1 with pα+1 = −m2,α
α + 1

where

α <
m2
m1

≤ α + 1.

This bound is already known in the branching process literature (Daley and Narayan
1980). Similar to X(2)

max, the extremal random variable X(3)
min represents a worst case

scenario, this time using two moments. The root of the equation

f (q) = q = p0 + pαqα + pα+1qα+1 (4)

provides an upper bound to the probability of extinction, so that (4) has greater values at
any q ∈[0, 1) than the probability generating functions of any other random variable in
B 
m

3,n.
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In contrast to X(2)
max, the minimum extrema onB 
m

3,n yields the upper limit for the prob-
ability of extinction. The alternation between minimum and maximum for the worst case
scenarios is due to the convexity of (1). Again, this extrema is perhaps more intuitive in
the continuous sense, in which

X(3)
min, cont. =

⎧⎨⎩ 0 with p0 = 1 − pm2/m1
m2
m1

with pm2/m1 = (m1)2

m2
.

In this case, successive moments simply grow by m2/m1, so that mi+1 = mi(m2/m1),
providing aminimumonB 
m

3,n. And, as was the case for theminimumonB 
m
2,n, the discrete

minimum extrema onB 
m
3,n has similar properties to the continuous minimum extrema.

For both B 
m
2,n and B 
m

3,n the discrete cases are simply discretization of the continu-
ous case. However, this is not necessarily the case for higher moment spaces (Courtois
et al. 2006). While the continuous cases provide more intuitive extrema, derivation
of the discrete case for higher moments is not as simple as deriving the continuous case
and discretizing.
Next, we examine the maximum extrema onB 
m

3,n:

X(3)
max =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α with pα = m2,n,α+1

n − α

α + 1 with pα+1 = −m2,n,α
n − α − 1

n with pn = 1 − pα − pα+1

where

α <
nm1 − m2
n − m1

≤ α + 1.

Since X(3)
max can only provide non-trivial information about q if p0 > 0, this extremal

distribution is only informative about extinctionwhen α = 0 and pα > 0, which is the case
whenever nm1 − m2 < n − m1. Although this requirement may appear restrictive, some
classes of distributions have simple rules under which X(3)

max is informative. For example,
for binomial distributions, Bn,p, X(3)

max will provide a non-zero lower bound if 1/n < p ≤
1/(n − 1).
We move on to B 
m

4,n. The use of three moments can improve bounds on the proba-
bility of extinction, but as with all of the maximal random variables, X(4)

max requires the
knowledge of the maximum, n. X(4)

max is defined as:

X(4)
max =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 with p0 = 1 − pα − pα+1 − pn

α with pα = m3,n,α+1
α(n − α)

α + 1 with pα+1 = −m3,n,α
(α + 1)(n − α − 1)

n with pn = m3,α,α+1
n(n − α)(n − α − 1)

where

α <
m2n − m3
m1n − m2

≤ α + 1.
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While this is a potential improvement to the lower bound given by X(3)
min, the improve-

ment is sometimes negligible. As n → ∞, the difference between X(4)
max and X(3)

min vanishes
because

lim
n→∞

m2n − m3
m1n − m2

= m2
m1

and furthermore, if n → ∞ then pn → 0. Therefore, the resulting generating function
for X(4)

max is identical to (4) if the maximal value is unknown. So, like the first moment,
the third moment is uninformative about extinction when n is unknown, unless assump-
tions are made about the distribution (see e.g., (Daley and Narayan 1980; Ethier and
Khoshnevisan 2002)).
The minimal extrema forB 
m

4,n, X
(4)
min is given by

X(4)
min =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, with pα = m3,β ,β+1,α+1
(β − α)(β + 1 − α)

α + 1, with pα+1 = −m3,β ,β+1,α
(β − α)(β − 1 − α)

β , with pβ = m3,α,α+1,β+1
(β − α)(β − 1 − α)

β + 1, with pβ+1 = −m3,α,α+1,β
(β − α)(β + 1 − α)

where α and β are given by

α <
m3,β ,β+1
m2,β ,β+1

≤ α + 1, β <
m3,α,α+1
m2,α,α+1

≤ β + 1.

Again, this bound is only useful if p0 > 0. Unfortunately there is no short form equation
to identify which spacesB 
m

4,n fit this requirement. However, one can easily determine if a
givenB 
m

4,n has a useful X
(4)
min. Assuming α = 0, β̂ is simply bound by

β̂ <
m3 − m2
m2 − m1

≤ β̂ + 1.

And if m3,β̂ ,β̂+1 < m2,β̂ ,β̂+1, then the bound is useful because the resulting X(4)
min has

p0 > 0. Alternatively, if m3,β̂ ,β̂+1 ≥ m2,β̂ ,β̂+1 the supports for X(4)
min have p0 = 0 and

consequently q = 0.
If the first four moments are known, the extremal variable X(5)

min can be obtained. Its
distribution takes a simple form, but the equations used to find its values and relative
probabilities are relatively large. From (Hürlimann 2005), X(5)

min is defined as:

X(5)
min =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 with p0 = 1 − pα − pα+1 − pβ − pβ+1

α with pα = m4,β ,β+1,α+1
α(β − α)(β + 1 − α)

α + 1 with pα+1 = −m4,β ,β+1,α
(α + 1)(β − α)(β − 1 − α)

β with pβ = m4,α,α+1,β+1
β(β − α)(β − 1 − α)

β + 1 with pβ+1 = −m4,α,α+1,β
(β + 1)(β − α)(β + 1 − α)

where

α <
m4,β ,β+1
m3,β ,β+1

≤ α + 1, β <
m4,α,α+1
m3,α,α+1

≤ β + 1. (5)
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Courtois et al. (Courtois et al. 2006) explained that there is no analytic form to directly
obtain α and β for X(5)

min. They showed this by disproving the intuitive idea that the dis-
crete support encloses the continuous support. To find α and β , we iteratively search all
possible supports on Dn until both inequalities are satisfied. This exhaustive method for
finding the supports for this extrema is not ideal, especially if Dn is dense. Linear pro-
graming can be used to easily find the extremal supports and their probabilities (Prékopa
1990), but such approaches are not necessary when Dn is sparse (e.g., when n is relatively
small).
Hürlimann (Hürlimann 2005) also presents a form for the upper extremal variable in

B 
m
5,n. The process X

(5)
max is defined as:

X(5)
max =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, with pα = m4,n,β ,β+1,α+1
(β − α)(β + 1 − α)(n − α)

α + 1, with pα+1 = −m4,n,β ,β+1,α
(β − α)(β − α − 1)(n − α − 1)

β , with pβ = m4,n,α,α+1,β+1
(β − α)(β − α − 1)(n − β)

β + 1, with pβ+1 = −m4,n,α,α+1,β
(β − α)(β + 1 − α)(n − β − 1)

n, with pn = 1 − pα − pα+1 − pβ − pβ+1

where

α <
m4,n,β ,β+1
m3,n,β ,β+1

≤ α + 1, β <
m4,n,α,α+1
m3,n,α,α+1

≤ β + 1.

As was the case for X(4)
min, one can determine if X(5)

max has p0 > 0 by assuming α = 0 and
solving for β̂ with

β̂ <
m4,n,0,1
m3,n,0,1

≤ β̂ + 1.

If the resulting β̂ in the inequality m4,n,β̂ ,β̂+1 < m4,n,β̂ ,β̂+1 holds, the bound for X(5)
max is

informative.
All X(j)

max extrema rely on the maximum offspring number, n. Similar to X(4)
max, when n is

unknown or infinity X(5)
max goes to the minimum on the lower moment space, here X(4)

min.
Thus if n is unknown, X(j)

max goes to X(j−1)
min , at least for the cases examined here.

The Chebychev approach can be used to extend this approach to higher moments
(Hürlimann 2005). However, moments above the fourth are rarely used, and higher
moments can be difficult to estimate from small samples. Further, the equations for the
supports and probabilities for moments above the fourth become increasingly complex.

3 Results and discussion
Here we discuss some example distributions, graph their generating functions, and also
graph generating functions for the extremal distributions. The plot of the probability gen-
erating function, f (q), on q ∈ (0, 1) is a useful way to visualize how the moments are
related to extinction. The probability generating function takes the value p0 at q = 0.
At small q, f (q) has a slope of approximately p1. In this part of the function, when q
is small, there can be a weak relationship between f (q) and moments. In comparison,
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when q is close to 1, the moments are closely related to f (q). For example f ′(1) = m1.
Higher moments begin to influence the function as qmoves away from 1.
The probability of extinction of a process is found when f (q) = q, i.e at the intersect

between its probability generating function f (q) and the diagonal q. Thus, processes with
a high probability of extinction will cross the diagonal near q = 1, in the domain of q in
which the probability generating function is often closely related to its first few moments.
Plotting the probability generating functions for the extremal distributions helps

demonstrate why they act as bounds on extinction. In these examples (Figure 1), we com-
pare two distributions with identical first moment and maximum (m1 = 2, n = 20),
i.e. both distributions are in B2

2,20. In particular, we look at a binomial distribution and
a truncated geometric distribution. For each of these plots we also plot the generating
functions for some of the extremal distributions. The extremal distributions provide clear
bounds: best case extrema are found below the plot of the generating function, worst case
extrema are found above. For example, the extremal distribution based on one moment,
X(2)
max, provides an upper bound on the probability of extinction, and can be seen as the

upper line in both plots. Because they share an identical first moment and maximum,
X(2)
max is the same for both distributions. Clearly, one moment does not provide a good

bound in these examples. As more moments are used, the bounds become tighter. The
extrema using four moments provide relatively accurate upper and lower bounds for both
examples. The lower bounds provide the best case extrema, which are useful in both cases
only when three or four moments are known. The lower bound using two moments is

Figure 1 Probability generating functions, f (q), and their corresponding extremal distributions for
(a) the Binomial Bin20,0.1 and (b) the Geometric distributionG0.3328591 truncated at maximal value
20. Both distributions have a mean of 2. A histogram of the offspring distribution can be found above the
plot of the generating functions. The probability generating functions for the extremal distributions are
plotted in color, and can be found above and below the plot of the generating functions.
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not useful here in either case, as its probability generating function crosses the diagonal
at zero so its probability of extinction is zero. The lower bound using only one moment
was not included because its generating function is trivial and always uninformative about
extinction.
Importantly, these examples demonstrate why higher moments are often necessary to

compare strategies. These two distributions have identical first moments (m1 = 2) so
classically their fitness value would be equal. However, the binomial example ismore likely
to survive. If entire distributions are known, then extinction probabilities can be calcu-
lated explicitly using (1). This requires solving a polynomial of degree 20 for the examples
shown here, which were solved in R (R Development Core Team 2011) with the package
“rootSolve” (Soetaert and Herman 2009).
If instead the moments are known, the extremal distributions can be found and the

roots of their generating functions can be solved to find the bounds on extinction. These
roots can again be solved in R (R Development Core Team 2011) with the package
“rootSolve” (Soetaert and Herman 2009). However, some of these extremal generating
functions are relatively simple and can be solved by hand. For example, our binomial dis-
tribution (Bin20,0.1) hasm1 = 2 andm2 = 5.8. The resulting X(3)

min has supports at 0, 2 and
3 with respective probabilities of 0.3, 0.1 and 0.6, leading to its generating function

q = 0.3 + 0.1q2 + 0.6q3.

Using the knowledge that the generating function has a root at q = 1, this equation can
be factorized as:

0 = (q − 1)(3q − 1)(2q + 3).

The probability of extinction is the smallest positive root of the above equation, 1/3
(Table 1), providing an upper bound on extinction.
If four moments are known, one can conclude that the truncated geometric distribu-

tion has a higher probability of extinction. Compare the extremal distributions when four
moments are known, paying attention to where they cross the diagonal. The value at the
intersect is the probability of extinction for the extrema, which we display in Table 1
and Table 2, respectively for the binomial example and the truncated geometric example.
Using four moments, the best case for the truncated geometric example (0.404, Table 2)
is worse than the worst case for binomial example (0.207, Table 1). In fact, the worst case
for the binomial example using two moments (0.333) is already better than the best case
for the truncated geometric using four moments (0.404). These examples highlight how
moment spaces can be used to rank branching processes by their extinction probabilities
when only moments of their distributions are known.

Table 1 Extinction probabilities and supports for the extremal distributions of the
Binomial example B20,0.1

1moment 2 moments 3 moments 4 moments

Supports {2} {1,2,20} {0,1,3,4} {0,1,3,4,20}

Lower bound (best) 0.000 0.000 0.034 0.083

Supports {0,20} {0,2,3} {0,2,3,20} {0,1,2,4,5}

Upper bound (worst) 0.918 0.333 0.306 0.207

The actual probability of extinction for this process is 0.181.
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Table 2 Extinction probabilities and supports for the extremal distributions of the
truncated Geometric example

1moment 2 moments 3 moments 4 moments

Supports {2} {1,2,20} {0,1,7,8} {0,1,6,7,20}

Lower bound (best) 0.000 0.000 0.110 0.404

Supports {0,20} {0,4,5} {0,4,5,20} {0,3,4,11,12}

Upper bound (worst) 0.918 0.641 0.592 0.534

The actual probability of extinction for this process is 0.499.

And finally, these examples can be used to better understand how ranking distribu-
tions using their s-convex extrema can be useful in investing and gambling (Canjar 2007;
Courtois et al. 2006; Denuit and Lefevre 1997; Ethier and Khoshnevisan 2002; Hürlimann
2005). If these distributions were returns on an investment or gamble, then by comparing
their moments an investor could determine that the binomial distribution is a superior
investment model. Both distributions would provide the same expected growth on capi-
tal, but the geometric distribution would have a higher probability of gambler’s ruin. Being
wary of gambler’s ruin is especially important for an investor with limited initial funds for
their investment.

4 Conclusion
The work here is intended to highlight the relationship between the moments of the off-
spring distribution and the probability of extinction. Extinction can be defined in terms
of moments, but the first few moments are only informative about extinction under cer-
tain conditions. Nevertheless, for all offspring distributions there exists an interesting
relationship with even and odd moments: high even moments favor extinction, high odd
moments favor survival. This relationship between even and odd moments is also seen
in the stochastic Price equation, where relative growth rates increase with increasing odd
moments, and decrease with increasing even moments (Rice 2008).
The relationship between moments and extinction can provide insight into the evolu-

tionary process. A high first moment can favor survival, but worst case extrema (“long
shots”) represent the strategies that are least likely to survive. Strategies with a relatively
low second moment (low variance) will always have a lower probability of extinction
than their corresponding “long shot” extrema. When two moments are known, the worst
case distributions have the lowest third moment (strongest right skew). Therefore, strate-
gies with identical first and second moments and relatively high third moments (strong
left skew) will always have a better chance at survival than the extrema with the low-
est third moment. Worst case extrema using three moments have the highest possible
fourth moment (excessive kurtosis). The relative importance of higher moments depends
on the distribution, and in some cases higher moments can have a big influence on
extinction.
Strategies with a high probability of extinction are unlikely to be found in natural pop-

ulations, even if their expected reproductive rate is high (Tuljapurkar and Orzack 1980).
New alleles will often arrive in a population as a singlet, and extinction is permanent
unless the same mutation occurs more than once. In such cases, survival is more impor-
tant than the average rate of reproduction. Using moments of the offspring distribution
one can find bounds on extinction using their s-convex extrema. If the best case extrema
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for a set of moments has a high probability of extinction, then strategies with these
moments will be evolutionarily unlikely, regardless of how fit these strategy would be if
they avoided extinction.
Gamblers can avoid strategies with a high risk of ruin by calculating their odds. In natu-

ral populations, such calculations are not required to prevent the occurrence of high risk
strategies. Instead, risky strategies will be naturally unlikely, especially considering that
many arrive as a single allele with one chance at survival. Similarly, gamblers and investors
who begin with limited funds and chose risky strategies are likely to “go extinct” through
gambler’s ruin. Risk is not solely determined by mean growth, and strategies with a high
mean can sometimes have high risk. Unfortunately, these high risk and high reward strate-
gies are unlikely to return anything without sufficient investment, so natural avoidance of
risk can result in missed opportunity for growth.
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