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Abstract It is considered a heat conduction in a layer
made of two conductors distributed in the form of lam-
inas with varied thicknesses. Macroscopic (averaged)
properties of the layer are continuously “transversally”
graded across its thickness (TGL layer), cf. Fig. 1.
The aim of the paper is to present and apply an av-
eraged model of the heat conduction, obtained within
the tolerance averaging technique, discussed in the
book edited by Woźniak et al. (Thermomechanics of
microheterogeneous solids and structures. Tolerance
averaging approach, Łódź, Wydawnictwo Politech-
niki Łódzkiej, 2008). It is shown that the proposed
model describes the microstructural effect on the heat
conduction of the TGL layer. Moreover, results ob-
tained within this model are compared to results by the
higher order theory (cf. Aboudi et al., Composites B,
30:777–832, 1999).
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1 Introduction

In this paper a laminated layer is the main object of
considerations. This layer is made of two conductors,
non-periodically distributed as micro-laminas along
the layer thickness. The laminated composite is as-
sumed to have macroscopic properties, which con-
tinuously vary across its thickness. Similar materials
are called functionally graded materials (FGM), cf.
Suresh and Mortensen [27]. A fragment of the layer is
shown in Fig. 1. In Fig. 1a there is a layer in a macro-
scale, and in Fig. 1b—in a micro-scale. Laminates of
this kind will be called transversally graded laminates
(TGL).

Because the exact description of the geometry of
the microstructure of FGM-type composites is usually
impossible, thermomechanical phenomena in these
composites can be investigated only in the framework
of micromechanical models with idealised geometries.
Assumptions of idealisation can be similar to those ap-
plied to describe composites, which are macroscopi-
cally homogeneous. Although functionally graded ma-
terials are not homogeneous in a macro-scale, their
overall behaviour can be analysed by adopted and
modified methods, which are used for macroscopi-
cally homogeneous materials, e.g. periodic composites
(laminates). Certain averaged methods, applied to de-
termine properties of FGM-type composites, are dis-
cussed in the paper Reiter, Dvorak and Tvergaard [21]
and in the monograph by Suresh and Mortensen [27].
It is necessary to mention these methods which are
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Fig. 1 A fragment of a transversally graded laminated layer in: (a) a macro-scale, (b) a micro-scale

based on the asymptotic homogenisation, cf. Jikov,
Kozlov and Oleinik [12], which are applied to heat
conduction problems in periodic structures. Various
thermoelastic problems of laminates are also investi-
gated using models with microlocal parameters, e.g.
a heat conduction in periodic composites is presented
in Matysiak [17]. Unfortunately, the governing equa-
tions of the aforementioned models do not take into
account the effect of microstructure size on the over-
all behaviour of periodic laminates. In the frame-
work of the homogenisation approach problems of
heat conduction and thermal stresses for functionally
graded composites are analysed, e.g. by Itoh, Taka-
hashi and Takano [7]. Some theoretical and numeri-
cal results of thermomechanical problems of function-
ally graded structures are shown in a lot number of pa-
pers. Here, it can be mentioned some of them. In the
paper by Kantor, Smetankina and Shupikov [13] or-
thonormal Legendre polynomials are applied to non-
stationary heat conduction in laminated elements. Sto-
chastic thermal stresses in an FGM annular disc are
analysed by Chiba [3]. A Green’s function approach is
proposed to analyse heat conduction and thermoelas-
ticity problems by Kim and Noda [15, 16]. A col-
location method with higher-order plate theories are
applied to analyse vibrations of functionally graded
plates by Roque, Ferreira and Jorge [22] and Ferreira,
Batra, Roque, Qian and Jorge [4]. Some analytical
solutions to thermoelastic problems for a thick strip
and hollow cylinder are obtained by using the method
of Laplace transformation in papers Ootao and Tani-

gawa [19, 20]. Thermo-elastic-plastic properties of a
FGM-type composite are predicted using a numeri-
cal homogenisation technique by Schmauder and We-
ber [25]. The boundary element method is used in a
thermal analysis by Goldberg and Hopkins [5]. A cer-
tain meshless computational method is proposed by
Sladek J., Sladek V. and Zhang [26]. A thermoelas-
tic problem for cylindrical shells is analysed by a fi-
nite element model by Santos, Mota Soares C.M.,
Mota Soares C.A. and Reddy [24]. In the paper by
Sadowski, Ataya and Nakonieczny [23] the Fourier-
Kirchhoff equation for the cylindrical plates is solved
by using the finite difference method and the finite
element method. Nonlinear vibrations of functionally
graded beams are analysed using an analytical ap-
proach by Ke, Yang and Kitipornchai [14]. A dynamic
behaviour of functionally graded shells is investigated
by Tornabene and Viola [28]. An alternative modelling
method for functionally graded materials, called the
higher-order theory, is presented in Aboudi, Pindera
and Arnold [1], and its reformulation by Bansal and
Pindera [2].

The above drawback is omitted in averaged mod-
els based on the tolerance averaging technique, pro-
posed for periodic composites by Woźniak Cz. and
Wierzbicki [30]. In the framework of this method vari-
ous problems of periodic structures were investigated,
i.e. some problems of heat conduction for periodic
composites were also analysed within this method,
e.g. by Ignaczak and Baczyński [6], Woźniak M.,
Wierzbicki and Woźniak Cz. [31]; buckling of thin
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periodic plates by Jędrysiak [8]; wave propagation in
multiperiodic composites by Jędrysiak and Woźniak
Cz. [11]. Using this method equations with functional,
periodic, highly-oscillating and also non-continuous
coefficients can be replaced by the system of differ-
ential equations with constant coefficients, which de-
scribe the effect of the microstructure size on the over-
all behaviour of the periodic composite.

The tolerance averaging technique was also adopted
to analyse various thermomechanical problems of
FGM-type structures, e.g. a heat conduction in com-
posites with transversal gradation by Jędrysiak and
Radzikowska [10], or with longitudinally gradation
by Michalak, Woźniak Cz. and Woźniak M. [18], sta-
bility problems for thin functionally graded plates by
Jędrysiak and Michalak [9].

The overview of results concerning the tolerance
averaging models for periodic and/or functionally
graded composites and structures can be found in the
monographs by Woźniak Cz. and Wierzbicki [30],
Woźniak Cz., Michalak and Jędrysiak [29].

There are two aims of the paper. The first aim is to
present certain averaged tolerance model of heat con-
duction in laminated layer with functionally graded
macroscopic properties along its thickness. The sec-
ond one is to apply this model to show some mi-
crostructural effects on the stationary heat conduction
across laminas. Moreover, obtained results are com-
pared with results calculated within the higher-order
theory by Aboudi, Pindera and Arnold [1].

2 Modelling foundations

Let subscripts i, j, . . . , run over 1, 2, 3 and be related
to the coordinate system Ox1x2x3; and also subscripts
α,β, . . . , run over 2, 3, and be related to Ox2x3. Intro-
duce denotations: x ≡ (x2, x3), x ≡ x1; t for the time
coordinate. Denote derivatives of xi by ∂i . Let us also
introduce denotations: ∇ ≡ (∂1, ∂2, ∂3), ∂ ≡ (∂1,0,0),
∇ ≡ (0, ∂2, ∂3). Moreover, let H be the layer thick-
ness along the x-axis, and Lα be length dimensions
along the xα-axes (α = 2,3). Denoting by � ≡ (0,H),
� ≡ (0,L2) × (0,L3), the layer under consideration
occupies the region � × � in the physical space. This
layer is made of two materials distributed in m lam-
inas with the same thickness λ (H = mλ). It is as-
sumed that condition λ � H is satisfied. Hence, thick-
ness λ can be called the microstructure parameter.

The “basic cell” in the interval � can be denoted by
� ≡ (−λ/2, λ/2). Every nth lamina consists of two
homogeneous sub-laminas with thicknesses λ′

n, λ
′′
n,

dependent on the argument x, cf. Fig. 1b. The sub-
laminas have properties described by: specific heats
c′, c′′ and heat conduction tensors K′, K′′, with
components k′

ij , k′′
ij , i, j = 1,2,3. Denote material

volume fractions in the nth lamina by ν′
n ≡ λ′

n/λ,
ν′′
n ≡ λ′′

n/λ. Because it is assumed that sequence
{ν′

n}, n = 1, . . . ,m, is monotone and satisfies condi-
tion |ν′

n+1 − ν′
n| � 1, for n = 1, . . . ,m − 1, the layer

can be treated as made of a functionally graded ma-
terial across laminas. Hence, this layer is called the
transversally graded laminated layer (the TGL layer).
Because ν′

n + ν′′
n = 1 sequence {ν′′

n} satisfies similar
conditions. Thus, sequences {ν′

n}, {ν′′
n}, n = 1, . . . ,m,

can be approximated by continuous functions ν′(·),
ν′′(·). These functions describe the gradation of ma-
terial properties along the x-axis and can be called
the fraction ratios of materials. Let us introduce func-

tion ν(·) defined by formula ν(·) ≡ [ν′(·)ν′′(·)] 1
2 ,

called the non-homogeneity ratio. We assume that the
above functions of fraction ratios are slowly-varying
(cf. the book edited by Woźniak Cz., Michalak and
Jędrysiak [29]).

Let us denote the unknown temperature field by T

and the thermal load (the intensity of heat sources)
by f . Moreover, we assume that the heat conduction
problem in the TGL layer can be analysed using the
Fourier’s model, i.e. this problem can be described by
the equation:

∇ · (K · ∇T ) − cṪ = f, (1)

for every instant t .
It can be observed that for the TGL layer all co-

efficients of (1), i.e. K = K(x), c = c(x), are highly-
oscillating, tolerance-periodic, non-continuous func-
tions in x. Hence, this equation is not a good tool
to investigate engineering problems. In order to ob-
tain differential equations with continuous, smooth,
slowly-varying functional coefficients instead of (1),
the tolerance averaging technique will be applied,
cf. the book by Woźniak Cz. and Wierzbicki [30],
and the book edited by Woźniak Cz., Michalak and
Jędrysiak [29].
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3 Tolerance averaging approach

3.1 Introductory concepts

Let f be an integrable function defined in �, which
can also depend on x and t as parameters. The averag-
ing operator of f is defined by

〈f 〉(x) = λ−1
∫ x+λ/2

x−λ/2
f (ξ)dξ,

x ∈ [λ/2,H − λ/2],
(2)

where λ is the constant thickness of every lamina.
It can be shown (cf. the book edited by Woźniak
Cz., Michalak and Jędrysiak [29]) that for tolerance-
periodic function f of x, its averaged value calculated
from (2) is a slowly-varying function in x.

A continuous function F , defined on �, is called
slowly-varying (with tolerance parameter d0 > 0) if
∀x ∈ � [F ]x ≤ d0, and we will write
F ∈ SV 0(�) ⊂ C0(�). Denote ∇(r)F ≡ ∂rF/∂xr ,
∇(0)F ≡ F . Function F ∈ C1(�) is called slowly-
varying of the first kind with tolerance given by
d = (d0, d1) (shortly slowly-varying) and denoted as
F ∈ SV 1(�) ⊂ C1(�) if

(i) ∇(r)F ∈ SV 0(�), r = 0,1;
(ii) (∀x ∈ �) [λ|∂(∇(0)F (x))| ≤ d1].

Let f be an integrable, bounded function in �.
The function f is called the tolerance-periodic func-
tion, TP(�), if for every x ∈ � there exists �-periodic
function fx such that f |�(x) ∩ Domf and
fx |�(x) ∩ Domfx are indiscernible in tolerance de-
termined by (d,λ). In this case every fx is called the
periodic approximation of f in �(x).

Denote a tolerance-periodic continuous function
defined on � by ϕ(·). Its gradient ∇(1)ϕ is a piecewise
continuous and bounded. Function ϕ(·) is called the
fluctuation shape function (FSF) of the first kind, if it
depends on λ as a parameter and satisfies conditions:

(i) ∂rϕ ∈ O(λR−r ) for r = 0,1, . . . ,R,R = 1,
∂0ϕ ≡ ϕ;

(ii) 〈ϕ〉(x) ≈ 0 for every x ∈ �;
(iii) ∇1ϕ ≈ ∂1ϕ, for ∀x ∈ �.

Denote set of all fluctuation shape functions of the
first kind by FS1(�). Condition (ii) can be replaced
by 〈cϕ〉(x) ≈ 0 for every x ∈ �, where c is a certain
positive tolerance-periodic function.

The above concepts were introduced in the book
by Woźniak Cz. and Wierzbicki [30], however the de-
tailed discussion of them can be found in the monog-
raphy edited by Woźniak Cz., Michalak and Jędrysiak
[29].

3.2 Modelling assumptions

The modelling procedure of the tolerance averag-
ing technique is based on the additional assumptions,
which were formulated in the general form in the book
edited by Woźniak Cz., Michalak and Jędrysiak [29].

The first modelling assumption is the micro-macro
decomposition, which states that the temperature field
T = T (x,x, t), x ∈ �, x ∈ �̄, is restricted by the fol-
lowing formula

T (x,x, t) = ϑ(x,x, t) + ϕ(x)ψ(x,x, t), (3)

where ϑ(·,x, t) ∈ SV 1(�) is called the macrotemper-
ature, ψ(·,x, t) ∈ SV 1(�) is called the amplitude fluc-
tuation of the temperature. Functions ϑ(·), ψ(·) are
the basic unknowns, which describe a distribution of
the temperature in the TGL layer.

Following Jędrysiak and Radzikowska [10] and the
book edited by Woźniak Cz., Michalak and Jędrysiak
[29] we assume the fluctuation shape function ϕ(x),

x ∈ �, to be continuous, linear across every sub-
lamina thickness and of an order O(λ), and to satisfy
the pertinent conditions (i)–(iii). Hence, this function
can be written in the following form:

ϕ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−λ
√

3 ν(x̄)
ν′′(x̄)

[2 x
λ

+ ν′(x̄)]
for x ∈ (−λ/2,−λ/2 + λν′′(x̄)),

λ
√

3 ν(x̄)
ν′(x̄)

[2 x
λ

− ν′′(x̄)]
for x ∈ (λ/2 − λν′(x̄), λ/2),

(4)

where x̄ is a centre of interval � = (−λ/2, λ/2); cf.
Fig. 2. Moreover, function ϕ has values λ

√
3ν(x̄) at

the interfaces between laminas and values −λ
√

3ν(x̄)

at the interfaces between adjacent sub-laminas within
the lamina. Because the non-homogeneity ratio ν(·)
is a slowly-varying function it can be shown that the
mean value of ϕ in every lamina is equal zero.

The second assumption, called the tolerance aver-
aging approximation (TAA), states that in the mod-
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Fig. 2 Scheme of the fluctuation shape function

elling terms O(d) are negligibly small, e.g. in formu-
las:

〈f 〉(x) = 〈f̄ 〉(x) + O(d),

〈f F 〉(x) = 〈f 〉(x)F (x) + O(d),

〈f ∂(ϕF)〉(x) = 〈f ∂ϕ〉(x)F (x) + O(d),

x ∈ �; 0 < d � 1; f ∈ TP(�),

F ∈ SV 1(�), ϕ ∈ FS1(�).

3.3 Modelling procedure

The modelling procedure for TGL-type composites is
similar to the procedure of the tolerance averaging
technique shown in Woźniak Cz. and Wierzbicki [30].
This procedure is generalised in the book edited by
Woźniak Cz., Michalak and Jędrysiak [29]. Following
this book the modelling procedure will be outlined.

Firstly, the starting point of the modelling is the
Fourier’s heat conduction equation (1). Following the
aforementioned book we can introduce the polynomial

L = 1

2
(τcṪ Ṫ + ∇T · K · ∇T ) + f T , (5)

with τ as a time-dimensional constant. It can be shown
that (5) generates the equation

∇ · ∂L
∂(∇T )

− 1

τ

∂L
∂Ṫ

− ∂L
∂T

= 0. (6)

Equation (6) coincides with the heat conduction
equation (1).

Secondly, the tolerance averaging is applied to (1).
Substituting the right-hand side of (3) into (5) and av-
eraging polynomial L, using (2) and TAA, we arrive at

the averaged polynomial in the form

〈L〉 = 1

2

(∇ϑ · 〈K〉 · ∇ϑ + ψ〈∂ϕ · K · ∂ϕ〉ψ

+ ∇ψ · 〈Kϕ2〉 · ∇ψ + ∇ϑ · 〈K · ∂ϕ〉ψ
+ ψ〈∂ϕ · K〉 · ∇ϑ + τ 〈c〉ϑ̇ ϑ̇

+ τ 〈cϕ2〉ψ̇ψ̇
) + 〈f 〉ϑ + 〈f ϕ〉ψ. (7)

The tolerance averaging of (6) yields the following
system of equations:

∇ · ∂〈L〉
∂∇ϑ

− 1

τ

∂〈L〉
∂ϑ̇

− ∂〈L〉
∂ϑ

= 0,

∇ · ∂〈L〉
∂∇ψ

− 1

τ

∂〈L〉
∂ψ̇

− ∂〈L〉
∂ψ

= 0, (8)

which have slowly-varying coefficients.

4 Governing equations of averaged model

Denote e = (1,0,0) and introduce the smooth func-
tional coefficients:

〈c〉 = ν′c′ + ν′′c′′, 〈K〉 = ν′K′ + ν′′K′′,
[K] = 2

√
3νe · (K′ − K′′),

[K]T = 2
√

3ν(K′ − K′′) · e,

{K} = 12e · (ν′K′′ + ν′′K′) · e,

(9)

where ν′ = ν′(x), ν′′ = 1−ν′′(x), and c′, c′′ as well as
K′, K′′ are constant. Combining (8) with (7), bearing
in mind that 〈Kϕ〉 = 0, 〈cϕ〉 = 0 and using the above
denotations we arrive to the following form of aver-
aged heat conduction equations:

∇ · (〈K〉 · ∇ϑ + [K]ψ) − 〈c〉ϑ̇ = 〈f 〉,
λ2ν2

[∇ · (〈K〉 · ∇ψ
) − 〈c〉ψ̇]

− {K}ψ − [K]T · ∇ϑ = 〈f ϕ〉.
(10)

It can be observed that (10) have coefficients be-
ing smooth, slowly-varying functions in x in contrast
to (1) with discontinuous, highly oscillating coeffi-
cients. Some terms of the above equations depend on
the microstructure parameter λ. Hence, the proposed
model describes the effect of the microstructure size
of the TGL-type composite (e.g. a TGL layer) on the
heat conduction. Moreover, we have to formulate two
boundary conditions for the macrotemperature ϑ with
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respect to xi (i = 1,2,3) and also two boundary con-
ditions for the amplitude fluctuation ψ with respect
to x.

Summing up, (10) together with micro-macro de-
composition (3) and certain applicability conditions
for the basic unknowns, i.e. ϑ(·,x, t),
ψ(·,x, t) ∈ SV 1(�), constitute the tolerance model of
the heat conduction in transversally graded laminate.

The conditions for the basic unknowns can be
used for a posteriori evaluation of tolerance parameter
d, d � 1, and hence for the verification of the physical
reliability of obtained solutions. Moreover, the tem-
perature field of the TGL-type composite can be ap-
proximated by means of formula (3) with the fluctua-
tion shape function ϕ in the form (4).

5 Applications to a stationary heat conduction
across a TGL layer

Let us consider a TGL layer subjected to a thermal
gradient in the direction parallel to the x-axis. More-
over, we assume that the problem of the heat conduc-
tion is stationary. Hence, the temperature field T is a
function of argument x, i.e. T = T (x). Let us denote
by k ≡ k11, k′ ≡ k′

11, k′′ ≡ k′′
11 heat conduction coeffi-

cients in sub-laminas.

5.1 Heat conduction within the tolerance model

Since we analyse the stationary heat conduction along
the x-axis, the basic unknowns in the tolerance model
are functions of argument x, i.e. ϑ = ϑ(x),ψ = ψ(x).
Introducing notations:

K ≡ ν′k′ + ν′′k′′, K̃ ≡ 2
√

3ν(k′ − k′′),
K̆ ≡ 12(ν′k′′ + ν′′k′),

(11)

and assuming that heat sources are omitted, i.e. f = 0,
equations (10) for the problem under consideration
take the form:

∂
[
K(x)∂ϑ + K̃(x)ψ

] = 0,

K̃(x)∂ϑ + K̆(x)ψ = 0.
(12)

It can be observed that the amplitude fluctuation ψ can
be calculated from (12)2:

ψ = −K̃(x)[K̆(x)]−1∂ϑ. (13)

Substituting the right-hand side of formula (13) into
(12)1 and denoting

Keff (x) ≡ K(x) − [K̃(x)]2[K̆(x)]−1 (14)

we can write the following equations:

∂[Keff (x)∂ϑ] = 0,

ψ = −K̃(x)[K̆(x)]−1∂ϑ.
(15)

Equations (15) together with micro-macro decompo-
sition (3), which takes the form

T (x) = ϑ(x) + ϕ(x)ψ(x), (16)

describe the stationary heat conduction across laminas
in the TGL layer.

The above equations have slowly-varying func-
tional coefficients. However, these coefficients are de-
fined by known functions, e.g. by the fraction ratios
of materials ν′, ν′′, the non-homogeneity ratio ν, the
fluctuation shape function ϕ, cf. (4). Hence, (15)1 can
be solved analytically by integrating this equation. So-
lution to (15)1 can be written as:

ϑ(x) = C1

∫
[Keff (x)]−1dx + C2, (17)

where C1, C2 are constants determined by boundary
conditions. For the layer under consideration with con-
stant heat conduction coefficients k′, k′′ and the fluc-
tuation shape function given by (4) the averaged heat
conduction coefficient Keff , (14), is equal

Keff (x) = k′k′′[k′ + (k′′ − k′)ν′(x)]−1. (18)

Denoting

N(x) =
∫

ν′(x)dx (19)

the macrotemperature (17) takes the form

ϑ(x) = C1
[
x(k′′)−1 + (k′′ − k′)(k′k′′)−1N(x)

] + C2.

(20)

For the macrotemperature ϑ we formulate the bound-
ary conditions in the form

x = 0: ϑ(0) = T0; x = H : ϑ(H) = 0. (21)
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Fig. 3 A fragment of the TGL layer with local coordinates
x′, x′′

Combining the boundary conditions (21) with formula
(20) constants C1,C2 can be calculated from the sys-
tem of algebraic linear equations:

C1 = T0
k′k′′

(k′′ − k′)[N(0) − N(H)] − k′H
,

C2 = −T0
k′H + (k′′ − k′)N(H)

(k′′ − k′)[N(0) − N(H)] − k′H
.

(22)

Substituting the right-hand side of formula (20) into
(15)2 we obtain the formula for the amplitude fluctua-
tion ψ :

ψ =
√

3

6

k′′ − k′

k′k′′ ν(x)C1. (23)

Combining (23) and solution (20) with formula
(16) the temperature takes the form:

T (x) =
{

x

k′′ + k′′ − k′

k′k′′

[
N(x)

+
√

3

6
ϕ(x)ν(x)

]}
C1 + C2, (24)

with constants C1, C2 determined by (22). Formula
(24) describes the “exact” distribution of the tempera-
ture in the TGL layer by the tolerance model.

5.2 Heat conduction by the higher-order theory
(Aboudi, Pindera and Arnold [2])

In this subsection the stationary heat conduction is
analysed in the framework of the higher-order theory.
This modelling technique was used in a series of pa-
pers and discussed in the paper by Aboudi, Pindera
and Arnold [1]. Following this paper the outline of the
modelling procedure of this theory is shown below.

Let x′, x′′ be local coordinates in sub-laminas in
the nth lamina (n = 1, . . . ,m), cf. Fig. 3. The main

assumption of this modelling approach is that the tem-
perature distributions in both the materials in the nth

lamina are postulated in the following form:

T ′(x′) = T ′
0 + x′T ′

1 + 1

2

[
3(x′)2 −

(
1

2
λ′

n

)2]
T ′

2,

T ′′(x′′) = T ′′
0 + x′′T ′′

1 + 1

2

[
3(x′′)2 −

(
1

2
λ′′

n

)2]
T ′′

2 ,

(25)

where parameters T ′
0, T

′
1, T

′
2, T

′′
0 , T ′′

1 , T ′′
2 are unknown

constants. It can be observed that in the case of the
layer made of m laminas we have 6m basic unknowns
of the model. Hence, in order to calculate these un-
knowns we have to formulate 6m additional condi-
tions.

Using the aforementioned denotations for heat con-
duction coefficients in sub-laminas: k′, k′′; and for the
derivative of x = x′, x′′: ∂ ≡ ∂/∂x, we can write these
additional relations below:

– the heat conduction equations for the nth lamina

−∂[k′∂T ′(x′)] = 0,

−∂[k′′∂T ′′(x′′)] = 0,
(26)

– the continuity conditions of heat fluxes for the nth

lamina

k′∂T ′|n
x′= 1

2 λ′
n

= k′′∂T ′′|n
x′′=− 1

2 λ′′
n

,

k′∂T ′|n+1
x′=− 1

2 λ′
n+1

= k′′∂T ′′|n
x′′= 1

2 λ′′
n

,
(27)

– the continuity conditions of the temperature for the
nth lamina

T ′|n
x′= 1

2 λ′
n

= T ′′|n
x′′=− 1

2 λ′′
n

,

T ′|n+1
x′=− 1

2 λ′
n+1

= T ′′|n
x′′= 1

2 λ′′
n

,
(28)

– the boundary conditions (assumed here in the form
of (21))

T ′|1 = T1 = T0,

x′ = −1

2
λ′

1 (i.e. x = 0),

T ′′|m = Tm = 0,

x′′ = 1

2
λ′′

m (i.e. x = H),

(29)

where T1 and Tm are temperatures on boundaries
x = 0 and x = H , respectively.



102 Meccanica (2012) 47:95–107

Fig. 4 The fraction ratios of materials ν′ versus coordinate x (φ = 1—for formulas (30), φ = 2—for formulas (31), φ = 3—for
formulas (32), φ = 4—for formulas (33), φ = 5—for formulas (34))

Combining relations (26)–(29) with distributions
(25) we arrive at a system of 6m algebraic linear equa-
tions for 6m basic unknowns T ′

0, T
′
1, T

′
2, T

′′
0 , T ′′

1 , T ′′
2 .

Some calculational results illustrating both models
are shown in the subsequent section.

6 Results

Let us consider five different cases of the material
distribution across the layer thickness assumed in the
form of:

1) the linear functions (denoted by number φ = 1)

ν′(x) = x/H, ν′′(x) = 1 − ν′(x); (30)

2) the square functions (denoted by φ = 2)

ν′(x) = (x/H)2, ν′′(x) = 1 − ν′(x); (31)

3) the cubic functions (denoted by φ = 3)

ν′(x) = (x/H)3, ν′′(x) = 1 − ν′(x); (32)

4) the exponential functions (denoted by φ = 4)

ν′(x) = [1 − exp(2x/H)][1 − exp(2)]−1,

ν′′(x) = 1 − ν′(x); (33)

5) the logarithmic functions (denoted by φ = 5)

ν′(x) = 1

2
ln[(exp(2) − 1)(x/H) + 1],

ν′′(x) = 1 − ν′(x).

(34)

Functions ν′(·) are presented in Fig. 4.
Some calculational results are shown in Figs. 5–10.

In Figs. 5a–b there are presented plots of distribu-
tions of the temperature given by formula (24), i.e.
the temperature by the tolerance model versus coor-
dinate x ∈ [0,H ]. These curves are made for ratio
λ/H = 0.02 and the fraction ratios of materials
(30)–(34) (denoted by φ = 1, . . . ,5). Figure 5a shows
diagrams for ratios k′′/k′ = 1/2 (a) and k′′/k′ = 2 (b),
but Fig. 5b—for ratios k′′/k′ = 1/16 (a) and
k′′/k′ = 16 (b). Figures 6–10 present comparisons be-
tween distributions of the temperature obtained in
the framework of the tolerance model (TM) and the
higher-order theory (HT). In Figs. 6, 7, 8, 9, 10 there
are plots made for the fraction ratios of materials: lin-
ear (30), square (31), cubic (32), exponential (33),
logarithmic (34), respectively. These diagrams are
calculated for ratios: λ/H = 0.02, k′′/k′ = 1/16 (a),
k′′/k′ = 16 (b), k′′/k′ = 1/2 (c) and k′′/k′ = 2 (d).
Results are shown in two intervals of argument x:
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Fig. 5 Diagrams of temperature T across the TGL layer by the tolerance model: (a) for ratios k′′/k′ = 1/2 (a) and k′′/k′ = 2 (b);
(b) for ratios k′′/k′ = 1/16 (a) and k′′/k′ = 16 (b) (for ratio λ/H = 0.02; for the fraction ratios of materials (30)–(34) (φ = 1, . . . ,5))

Fig. 6 Diagrams of temperature T by the tolerance model (TM) and the higher-order theory (HT) for the fraction ratios of materials
(30) (φ = 1): (a) for interval [0,H ]; (b) for interval [0.6H,0.7H ] (for ratio λ/H = 0.02)

[0,H ]—Figs. 6a, 7a, 8a, 9a, 10a; [0.6H,0.7H ]—
Figs. 6b, 7b, 8b, 9b, 10b.

Analysing obtained results some remarks can be
formulated.

• Functions of the temperature in the TGL layer,
which are obtained in the framework of the toler-
ance model, take into account the effect of the mi-
crostructure, cf. Figs. 5–10.

• Distributions of the temperature depend on distrib-
utions of material properties of the TGL layer, cf.
Fig. 5, in such a way that values of the tempera-
ture decrease for the following sequence of the frac-
tion ratios of materials: logarithmic, linear, expo-
nential, square and cubic for arguments x close to
0 if k′′ > k′ and x close to H if k′′ < k′. However,
values of the temperature decrease for the following
sequence of the fraction ratios of materials: cubic,
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Fig. 7 Diagrams of temperature T by the tolerance model (TM) and the higher-order theory (HT) for the fraction ratios of materials
(31) (φ = 2): (a) for interval [0,H ]; (b) for interval [0.6H,0.7H ] (for ratio λ/H = 0.02)

Fig. 8 Diagrams of temperature T by the tolerance model (TM) and the higher-order theory (HT) for the fraction ratios of materials
(32) (φ = 3): (a) for interval [0,H ]; (b) for interval [0.6H,0.7H ] (for ratio λ/H = 0.02)

square, exponential, linear and logarithmic for ar-
guments x close to 0 if k′′ < k′ and x close to H if
k′′ > k′.

• Distributions of the temperature strikingly depend
on differences between values of heat conduction
coefficients k′, k′′ of material properties of the TGL
layer. Values of the temperature for the same frac-
tion ratios of materials are smaller for k′′ < k′
(e.g. k′′/k′ = 1/2;1/16) than for k′′ > k′ (e.g.

k′′/k′ = 2;16), cf. Fig. 5. In addition, the tem-
perature decreases more strongly for cases k′′ < k′
than for cases k′′ > k′ and this decrease in temper-
ature is stronger for k′′/k′ → 0, cf. Fig. 5b. How-
ever, for small differences between heat conduc-
tion coefficients, e.g. k′′/k′ = 1/2;2, cf. Fig. 5a,
differences between distributions of the temper-
ature for various fraction ratios of materials are
smaller than for big differences between heat con-
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Fig. 9 Diagrams of temperature T by the tolerance model (TM) and the higher-order theory (HT) for the fraction ratios of materials
(33) (φ = 4): (a) for interval [0,H ]; (b) for interval [0.6H,0.7H ] (for ratio λ/H = 0.02)

Fig. 10 Diagrams of temperature T by the tolerance model (TM) and the higher-order theory (HT) for the fraction ratios of materials
(34) (φ = 5): (a) for interval [0,H ]; (b) for interval [0.6H,0.7H ] (for ratio λ/H = 0.02)

duction coefficients, e.g. k′′/k′ = 1/16;16, cf.
Fig. 5b.

• Differences between distributions of the tempera-
ture calculated by using the tolerance model (TM)
and the higher-order theory (HT) are very small; it
is shown in Figs. 6–10.

• Values of the temperature obtained in the frame-
work of the tolerance model are higher than val-
ues of the temperature from the higher-order the-

ory for k′′ < k′ (e.g. k′′/k′ = 1/2; 1/16) whereas
they are smaller than values of the temperature
from the higher-order theory for k′′ > k′ (e.g.
k′′/k′ = 2;16).

• It can be observed that for the analysed frac-
tion ratios of materials differences between val-
ues of the temperature obtained within the toler-
ance model and the higher-order theory can be
put in the following decreasing order for k′′ < k′
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(e.g. k′′/k′ = 1/2; 1/16): for the logarithmic func-
tions of the materials distribution (34), cf. Fig. 10;
for the linear functions (30), cf. Fig. 6; for the
square functions (31), cf. Fig. 7; for the expo-
nential functions (33), cf. Fig. 9; for the cubic
functions (32), cf. Fig. 8. But for k′′ > k′ (e.g.
k′′/k′ = 2;16) the functions are established in re-
verse order, i.e.: for the cubic functions of the ma-
terials distribution (32), cf. Fig. 8; for the exponen-
tial functions (33), cf. Fig. 9; for the square func-
tions (31), cf. Fig. 7; for the linear functions (30),
cf. Fig. 6; for the logarithmic functions (34), cf.
Fig. 10.

7 Remarks

The modified tolerance averaging technique, pre-
sented and discussed in the book edited by Woźniak
Cz., Michalak and Jędrysiak [29], has been applied to
the heat conduction equation for transversally graded
laminates (TGL). In this way, the governing equations
of the tolerance model of those laminates have been
obtained.

Summing up, we can formulate some general re-
marks.

• Using the tolerance averaging technique we have re-
placed the heat conduction differential equation (for
transversally graded laminates (TGL)) with highly-
oscillating, non-continuous coefficients by the sys-
tem of differential equations with smooth, slowly-
varying coefficients.

• Derived equations of the proposed tolerance model
take into account the effect of the microstructure
size (the lamina thickness).

• For the stationary heat conduction we obtain ex-
act analytical solutions to the aforementioned equa-
tions.

Analysing results of the example of the stationary
heat conduction the following remarks can be formu-
lated.

• Solutions to the governing equations of the toler-
ance model of the heat conduction take into account
the microstructure of the TGL layer, cf. Fig. 5.

• Distributions of the temperature depend on:
– the functions describing the distribution of mate-

rial properties in the TGL layer (i.e. the fraction
ratios of materials),

– differences between heat conduction coefficients
k′, k′′.

• The temperature decreases more strongly as the ra-
tio of heat conduction coefficients k′′/k′ decreases.

• It can be observed that results obtained from the
tolerance model are very close to results from the
higher-order theory.

It seems that using the tolerance model other prob-
lems related to a heat conduction in TGL layers, e.g.
non-stationary problems, inverted problems, can be
considered.
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