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Abstract
Partial least square regression (PLSR) and principal component regression (PCR) are methods
designed for situations where the number of predictors is larger than the number of records. The
aim was to compare the accuracy of genome-wide breeding values (EBV) produced using PLSR and
PCR with a Bayesian method, 'BayesB'. Marker densities of 1, 2, 4 and 8 Ne markers/Morgan were
evaluated when the effective population size (Ne) was 100. The correlation between true breeding
value and estimated breeding value increased with density from 0.611 to 0.681 and 0.604 to 0.658
using PLSR and PCR respectively, with an overall advantage to PLSR of 0.016 (s.e = 0.008). Both
methods gave a lower accuracy compared to the 'BayesB', for which accuracy increased from 0.690
to 0.860. PLSR and PCR appeared less responsive to increased marker density with the advantage
of 'BayesB' increasing by 17% from a marker density of 1 to 8Ne/M. PCR and PLSR showed greater
bias than 'BayesB' in predicting breeding values at all densities. Although, the PLSR and PCR were
computationally faster and simpler, these advantages do not outweigh the reduction in accuracy,
and there is a benefit in obtaining relevant prior information from the distribution of gene effects.

Introduction
Approaches to the use of data from molecular markers in
genetic evaluation for predicting breeding values have
undergone considerable development as dense genome-
wide marker technologies, such as high-density, high-
throughput SNP chips, have become available. Currently,
considerable attention is being paid to genomic selection
with the approach of predicting genome-wide breeding
values. Studies have demonstrated that the potential accu-
racies from dense molecular information are impressive,
e.g. [[1-6], and [7]]. For example, [7] showed that it was
possible to predict breeding values of unrecorded off-

spring using genomic selection with accuracies of 0.86
with only a small bias, for a trait with heritability 0.5,
1000 phenotypes and an effective population size of Ne =
100. Whilst in general, the accuracies of evaluation will
depend on a number of factors, one issue related to imple-
mentation is the computational demand. In [7], a Baye-
sian approach, 'BayesB' was used, which was
computationally time-consuming and required some
prior assumptions to be made concerning the potential
number of QTL segregating and the prior distributions for
QTL and marker effects.
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This increase in the scale of molecular information results
in data where, typically, the number of predictors (mark-
ers) is larger than the number of records (phenotypes).
This statistical problem has been considered before, and
several methods based on the multivariate regression the-
ory, such as partial least square regression, (PLSR) and
principal component regression (PCR) have been used for
such situations. Both these techniques reduce the dimen-
sionality of the set of regression variables by finding a
small number of linear combinations of the original pre-
dictors, but the strategy for finding the linear combina-
tions differ between the two methods. The regression
methods have found fields of application primarily in
chemometrics, econometrics and social sciences e.g. [8,9],
but there have been only very few studies using PLSR and
PCR concerned with their suitability for prediction of
breeding values using large-scale molecular data, e.g.
[10,11].

Therefore, one option for reducing the computational
burden of 'BayesB' and for avoiding the use of prior distri-
bution for marker effects is to make use of the simpler and
faster PLSR and PCR algorithms. However, these algo-
rithms have not been tested sufficiently in the context of
genome-wide breeding value estimation, e.g. against
'BayesB' results, to decide upon their desirability of use.
The study tested the hypothesis that an effective evalua-
tion using genome-wide molecular data could be
obtained using regression models of reduced dimension-
ality. Both PLSR and PCR were compared to the 'BayesB'
for their accuracy and bias in predicting genome-wide
breeding values.

Methods
Population structure and genome
Population structure
The simulation model was described in detail in an earlier
paper [7]. Briefly, a population with an effective popula-
tion size of Ne = 100 was simulated over 1000 generations
of random selection and mating with its genome subject
to mutation. In generation t = 1001, the number of ani-
mals was increased to 1000 animals by factorial mating of
50 sires (i = 1–50) and 50 dams (i = 51–100) from gener-
ation 1000. The factorial mating was achieved by mating
sire 1 to dams 51–70, sire 2 to dams 52–71, sire 3 to dams
53–72 and so on, and each dam had one offspring per
sire. Animals in generation t = 1001 had 1000 offspring in
generation t = 1002, produced by random mating among
the parents in generation t = 1001. Animals in both gen-
eration t = 1001 and t = 1002 were genotyped for SNP
markers.

Simulated genome
The size and structure of the genome were the same as
described in [7] so that a direct comparison of the results

was possible. The genome was simulated with 10 chromo-
somes each with a length of 100 cM each. Four density
schemes of 1, 2, 4 and 8 markers/cM was evaluated, result-
ing in a total number of 1010, 2020, 4040 and 8080
markers across the 10 Morgan (M) genome. This would
correspond to approximately 4000 to 32000 SNP markers
in the Atlantic salmon (Salmo salar) genome, assuming a
40 M genome, or 3000 to 24000 SNP in the cattle
genome, assuming a 30 M genome, respectively http://
bioinfo.genopole-toulouse.prd.fr/eadgene/Wiki/IMG/
pdf/EADGENE2006_02_17.pdf. However in this paper,
densities will be scaled by the Ne used to generate the
markers, which was Ne = 100 here, unless stated other-
wise. This is because the linkage disequilibrium between
markers is a function of 4Nec, where c is the distance
between the markers and Ne represents the marker den-
sity. Thus, the densities correspond to 1, 2, 4, and 8Ne/M
and will be expressed in this way throughout the paper.

The mutation rate of the markers was assumed to be 2.5 ×
10-5 per locus per meiosis and with this mutation rate,
99% of the potential markers were segregating at t = 1001.
Markers with more than two alleles segregating at t = 1001
were converted to SNP as described in [7] so that the allele
frequencies were as close as possible to 0.5. The typical
distribution of the minor allele frequencies of the SNP
markers at t = 1001 resembled a uniform distribution with
an over-representation of markers with intermediate fre-
quencies, which reflected the selection of the most
informative markers that is undertaken in practice.

The potential number of QTL was kept at 100 per chromo-
some, distributed evenly over each chromosome (see Fig.
1). The actual number of segregating QTL at t = 1001
depended on the mutation rate which was assumed to be
2.5 × 10-3 per locus per meiosis and resulted in the
number of segregating QTL being typically 5 to 6% of the

Position of marker and QTL on each chromosomeFigure 1
Position of marker and QTL on each chromosome. 
M1, M2, ...Mx indicate the marker position, Q1, Q2, ...Q100 
indicate the QTL position. The number of markers varied 
from 1Ne/M (101 markers per chromosome) to 8Ne/M (808 
markers per chromosome). The number of QTL was kept 
constant at 100 per chromosome.

1Ne/M M1-Q1-M2-…//…-M100-Q100-M101 

2Ne/M M1-M2-Q1-M3-M4-…//…-M199-M200-Q100-M201-M202

4Ne/M M1-M2-M3-M4-Q1-M5-M6-M7-M8-…//…-M397-M398-M399-M400-Q100-M401-

M402-M403-M404

8Ne/M M1-M2-M3-M4-M5-M6-M7-M8-Q1-M9-M10-M11-M12-M13-M14-M15-M16-…//… 

-M793-M794-M795-M796-M797-M798-M799-M800-Q100-M801-M802-M803-M804-M805-

M806-M807-M808
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potential number with 93% biallelic. The distribution of
the QTL allele frequencies of the positive QTL resembled
a U-shaped distribution. The effects of a mutational allele
of the QTL were sampled from the gamma distribution
with the shape parameter of 1.66 and scale parameter of
0.4 [12] with an equal probability of a positive or negative
effect.

The linkage disequilibrium (LD) that is generated by this
population structure is described in [7]. The r-squared
value increased when the marker density increased, and
followed the expected value of r-squared well when allow-
ing for mutations. Since the r-squared estimates were close
to their expected values, the population was assumed to
be close to a state of recombination-drift balance.

Phenotypic values
Phenotypic values for animals were first generated in gen-
eration t = 1001, and simulated as:

Pi = TBVi + εi, where TBVi was the true breeding value for
the i'th animal and ε ~ N(0, σ2

e). The variance of the addi-
tive genetic effects (σ2

a) varied somewhat from replicate
to replicate, but was on average 1 (s.e = 0.118). The envi-
ronmental variance (σ2

e) was kept constant and equalled
1. Hence, the heritability varied between replicates, but
was on average 0.5 (s.e = 0.026) for all 20 replicates calcu-
lated from the 1Ne/M scheme.

Methods for estimating breeding values
Three methods for estimating breeding values were com-
pared on each replicated dataset: PLSR, PCR and 'BayesB'.
The basic idea of PLSR and PCR is to reduce the number
of predictors with a smaller number of linear combina-
tions of the predictors, with the additional property of
pair-wise independence within the set of the constructed
variables. From here on, the term latent variables will be
used for these combinations of predictors applied to
PLSR, while the term principal components will be used
for PCR. The main difference between PLSR and PCR is in
the method for constructing the latent variables or princi-
pal components. PLSR maximises the amount of covari-
ance between the standardized predictors and response
for a given number of latent variables, so that the covari-
ance between the set of latent variables and phenotypes is
as high as possible. In contrast, PCR maximises the pro-
portion of total variance among the original predictors
explained by the set of principal components. The third
method, 'BayesB' makes prior assumptions on the
amount of genetic variance and the distribution of gene
effects, and breeding values are estimated from the data
points by Bayesian methods.

Principal component regression (PCR)
For PCR, the principal components associated with the
largest eigenvalues of the X'X matrix were extracted and
used to predict the y values. The following steps were per-
formed with PCR, when fitting c principal components:

1. Marker genotype data was organised, as p × m matrix
(X), where p is the number of phenotypic records
(1000 animals in this case), m is the number of marker
genotypes. Genotypes were scored as 1 for genotype
AA, 0 for heterozygote (Aa or aA) and -1 for aa. Hence
the size of the X matrix varied from 1000 × 1010 (for
1010 markers) to 1000 × 8080 (for 8080 markers),
with each column containing the set of genotypes for
a single marker.

2. The marker genotype matrix X and y were standard-
ised such that each column had a mean of zero and
standard deviation of 1.

3. Singular value decomposition was then performed
on the X matrix to find the principal components, and
the c first components enter as columns in the matrix
U [13].

4. The regression coefficients were obtained as bPCR =
US-1U', where S-1 is a diagonal matrix of the c highest
singular values obtained from step 3.

5. Calculation of estimated breeding values (EBVs)
was performed as explained in section 2.3.

The correlation between TBV and EBV was calculated
when c = 10, 50, 100, 150, etc. components were fitted.
The number of principal components that gave the high-
est correlation between TBVs and EBVs was used for each
density.

Partial least square regression (PLSR)
In PLSR, the latent variables are constructed whilst
accounting for their relationship to the data y, i.e. the
latent variables are the combinations of the X variables
that maximise the covariance with y. PLSR reduces the
dimension of the regression y = Xb + e, where X is a p × m
design matrix, and y is a p × 1 data vector by performing
the regression y = Tq + e, where T is a p × c vector of
'scores', q is a c × 1 vector of 'loadings', and generally c
<<m. T is calculated as XW, where W is a matrix of weights.
Column h of T, th, is chosen to maximise the covariance
with the data, and this is obtained by setting the corre-
sponding weights column, wh, proportional to the
'deflated' X'y. The deflated X'y refers to that part of X'y,
which is orthogonal to the earlier scores t1, .., th-1. The X'X
matrix was deflated similarly. The deflation of X'X
requires the regression of X onto the scores T, i.e. X = Tp +
Page 3 of 8
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f, where p are the loadings from this regression, and f are
the residuals. We used the SIMPLS algorithm [14], which
for a single trait y vector becomes http://
www.statsoft.com/textbook/stpls.html:

1. Phenotypic values and marker genotype data were
pre-treated and standardized in the same way as
described in section 2.2.1 for PCR.

2. set a1 = X'y; M1 = X'X; and C1 = I, then perform steps
3–8 for h = 1, ..., c:

3. wh = ah/sqrt(ah'Mhah), which are the weights for the
X columns to obtain th = Xwh. The wh are stored as col-
umns in W.

4. ph = Mhwh, which is the regression of X on th. The ph
are stored as columns in P.

5. qh = ah'wh, which is the regression of y on th. Since
y is a single trait, qh is a scalar and is stored in the col-
umn vector q.

6. vh = Chph, standardised to have Euclidean length 1.
The vh is that part of ph, which is orthogonal to the ear-
lier p1, .., ph-1 vectors.

7. Ch+1 = Ch-vhvh', which spans the space orthogonal to
the p1, .., ph vectors.

8. ah+1 = Ch+1ah, which deflates the ah vector; and Mh+1
= Mh-phph', which deflates the Mh matrix. Return to
step 3.

The regression coefficients of PLS regression then become
bPLSR = Wq. The correlation between TBV and EBV was cal-
culated for c = 1, 2, 3, 4, 5, 7, 9, 12, 15 and 20 fitted latent
variables. The number of latent variables, c, that maxim-
ised this correlation was used for each density.

'BayesB'
The 'BayesB' algorithm is described in detail and was used
in earlier papers [4,7]. The 'BayesB' model was used to
estimate marker effects and is briefly described as y = μ1p
+ ΣiZigi + e, where y is the vector of phenotypes, 1p is a vec-
tor of p ones, Σi is the summation over all markers, Zi is a
design matrix for the i'th marker, gi is the vector of marker
effects and e is the error. The variance of the marker effects
(σ2

gi) was estimated for every marker using a relevant
prior distribution, which was a mixture of an inverted chi-
squared distribution and a discrete probability mass at
σ2

gi = 0. A Metropolis-Hastings algorithm was used to
sample σ2

gi from its distribution conditional on y*, p(σ2
gi

| y*), where y* denotes the data y corrected for the mean
and all other genetic effects except the marker effect (gi)

[15]. Given σ2
gi, marker effects, gi was sampled from a

Normal distribution as prior and using Gibbs sampling
[16]. Estimated marker effects using 'BayesB' together with
marker genotype of the animal was used to predict the
breeding values, as explained in section 2.3.

Prediction of breeding values and statistics
Breeding values for the n animals in generation t = 1002
were estimated using the SNP marker information and the
phenotypes in generation t = 1001, and compared to the
true breeding values (TBV) in generation t = 1002. The
EBV of animal j for PLSR and PCR were obtained from:

EBVj = Xjba for j = 1...n

where Xj denotes the j'th row of the X matrix correspond-
ing to the set of genotypes for animal j, ba is the regression
coefficient vector of method a, where a denotes PCR or
PLSR, and is estimated from the data in generation t =
1001. For 'BayesB' the EBVs were calculated from:

where Zi(j) denotes the row of the Zi matrix corresponding

to the genotype of animal j at locus i, and  is the esti-

mate of the marker effects for locus i, estimated in gener-
ation t = 1001.

TBV were linearly regressed on EBV, where the regression
coefficient reflects the bias of the breeding value estimates
(a regression coefficient of one denotes unbiased esti-
mates), and the correlation coefficient reflects the accu-
racy of predicting the breeding values.

Results
Number of principal components with PCR
Figures 2 and 3 show the correlation of TBV with EBV and
the regression of TBV on EBV as a function of the number
of principal components for PCR. For the three lowest
marker densities, 1Ne/M, 2Ne/M and 4Ne/M, the correla-
tion reached a maximum when 250 principal compo-
nents were fitted. For the 8Ne/M marker density, the
correlation reached a maximum when 350 principal com-
ponents were fitted. After reaching the highest correlation
between TBV and EBV, the correlation coefficient between
TBV and EBV was approximately maintained until drop-
ping more steeply when the number of principal compo-
nents exceeded 400 (Fig. 2). The regression coefficient
decreased almost linearly, and hence the bias increased, as
more principal components were fitted (Fig. 3). In the fol-
lowing tables and comparisons, the results from fitting
250 principal components were chosen for 1Ne/M, 2Ne/M
and 4Ne/M marker density schemes, while 350 principal

EBV Z g forj i j i

i

m

= =
=
∑ ( ) ...

1

1j n

ĝ i
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components were chosen for the 8Ne/M marker density
scheme, since this achieved the highest correlation
between TBV and EBV with PCR.

Number of latent variables with PLSR
The correlation coefficient between TBV and EBV and the
regression coefficient of TBV on EBV resulting from vary-
ing the number of latent variables from 1 to 20 are shown
in Figures 4 and 5, respectively. Starting with one latent
variable, the correlation coefficient between TBV and EBV
increased until it reached a maximum between 2–4 latent
variables (Fig. 4). The regression of TBV on EBV was close
to 1 when only one latent variable was fitted, and dropped
rapidly as more latent variables were added to the model

(Fig. 5). In the following tables and comparisons the
results from fitting two latent variables for the marker
densities 1Ne/M, 2Ne/M and 4Ne/M were chosen, while
four latent variables were chosen for the 8Ne/M marker
density scheme, since this achieved the highest correlation
between TBV and EBV with PLSR.

Correlation
The correlation coefficients between TBV and EBV for the
different marker densities and estimation methods
together with their standard error are given in Table 1. The
accuracy of estimating the breeding values increased as the
density of the markers increased, as expected, since more
information was available when more markers were fitted
to the model. For PLSR, the correlation coefficient
between TBV and EBV for the four densities (1, 2, 4 and
8Ne/M) was 0.611, 0.655, 0.670 and 0.681, respectively.

Correlation coefficient between TBV and EBV using principal component regression (PCR) for different marker density schemes (1, 2, 4 and 8Ne/M) when the number of principal components was variedFigure 2
Correlation coefficient between TBV and EBV using 
principal component regression (PCR) for different 
marker density schemes (1, 2, 4 and 8Ne/M) when the 
number of principal components was varied.
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Regression coefficient of TBV on EBV using principal compo-nent regression (PCR) for different marker density schemes (1, 2, 4 and 8Ne/M) when the number of principal compo-nents was variedFigure 3
Regression coefficient of TBV on EBV using principal 
component regression (PCR) for different marker 
density schemes (1, 2, 4 and 8Ne/M) when the 
number of principal components was varied.
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Correlation coefficient between TBV and EBV using partial least square regression (PLSR) for different marker density schemes (1, 2, 4 and 8Ne/M) when the number of latent vari-ables was variedFigure 4
Correlation coefficient between TBV and EBV using 
partial least square regression (PLSR) for different 
marker density schemes (1, 2, 4 and 8Ne/M) when the 
number of latent variables was varied.
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Regression coefficient of TBV on EBV using partial least square regression (PLSR) for different marker density schemes (1, 2, 4 and 8Ne/M) when the number of latent vari-ables was variedFigure 5
Regression coefficient of TBV on EBV using partial 
least square regression (PLSR) for different marker 
density schemes (1, 2, 4 and 8Ne/M) when the 
number of latent variables was varied.
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This was marginally greater than using PCR, which varied
in a similar fashion from 0.604 to 0.665. Compared
within densities the differences between PCR and PLSR
were not significant, but across all densities PLSR gave a
higher correlation than PCR by 0.016 (s.e = 0.008). The
correlation coefficient between TBV and EBV for 'BayesB'
was 8% greater than PLSR for the lowest marker density,
and 18% greater for the highest marker density. Hence,
the gap in accuracy between PLSR/PCR and 'BayesB'
increased as the marker density increased.

Regression
The regression coefficients of TBV on EBV are summarized
in Table 2. The most evident result is that this regression
was higher for 'BayesB' compared to the regression meth-
ods, PLSR and PCR: the mean coefficient for 'BayesB' was
> 0.87 for all marker densities, but was always < 0.76 for
the regression methods, and this difference was large com-
pared to the standard errors obtained. For 'BayesB' there
was statistical evidence for a trend towards regression
coefficients increasing towards 1 as marker densities
increased. For the two regression methods, the pattern
was more complex. More principal components and
latent variables were fitted to optimise the correlations
shown in Table 1 for 8Ne/M than in scenarios with lower
marker density, i.e. 350 principal components and four
latent variables were used for 8Ne/M, while 250 principal
components and two latent variables were used for PCR
and PLSR respectively for the lower marker density

schemes. Figures 3 and 5 show clearly that the regression
coefficient decreases as the number of principal compo-
nents or latent variables increase for both methods. With
this caveat, at low densities (1, 2 and 4 Ne/M) it appeared
that the PLSR method resulted in greater regression coeffi-
cients than PCR (a difference of 0.07 with s.e = 0.01 over
these densities), but this was reversed in favour of PCR
(0.036 with s.e = 0.018) at 8Ne/M. The regression coeffi-
cients for PCR appeared more stable compared to PLSR
and exhibited a trend to greater regression coefficients as
marker density increased.

Computer time
Compared to the 'BayesB' method, the presented multi-
variate regression methods used much less computational
time. The computer time for estimating the marker effects
using the PCR, PLSR and 'BayesB' is presented in Table 3.
The machine was an HP AlphaServer GS1280 with eight
processors (EV7), of which only one processor was used at
a time. PLSR used about 3 min per replicate to compute
the marker effects for all marker densities, while PCR used
somewhat longer time to calculate the marker effects,
especially for higher marker densities, and the gap in com-
putation time between PLSR and PCR increased as the
marker density increased. However, the computation time
for PLSR/PCR was very much reduced compared to the
'BayesB': e.g. 'BayesB' used approximately 200 minutes to
compute the marker effects for the lowest marker density,
which was approximately 65 times longer than PLSR/
PCR, and the computer time increased rapidly as the
marker density increased (Table 3).

Discussion
Two multivariate regression methods that reduce the
dimensionality of the marker data were compared to a
Bayesian method for the prediction of genome-wide
breeding values based on SNP marker information and
phenotypic records. In general, our results showed that it
was possible to predict breeding values in our simulated
genome using both multivariate regression methods, but
the correlation between TBV and EBV were both reduced
compared to those of 'BayesB'. The correlation between
TBV and EBV increased as the marker density increased,

Table 1: The mean correlation (rTBV; EBV) between TBV and EBV 
using principal component regression (PCR), partial least square 
regression (PLSR) and the 'BayesB' method for different marker 
densities, averaged over 20 replicates

PCR PLSR 'BayesB'

Marker density rTBV; EBV ± s.e rTBV; EBV ± s.e rTBV; EBV ± s.e

1Ne/M 0.604 ± 0.012 0.611 ± 0.012 0.690 ± 0.036
2Ne/M 0.639 ± 0.012 0.655 ± 0.012 0.790 ± 0.036
4Ne/M 0.645 ± 0.012 0.670 ± 0.012 0.841 ± 0.036
8Ne/M 0.665 ± 0.012 0.681 ± 0.012 0.860 ± 0.036

Table 2: The mean regression coefficient (bTBV; EBV) between TBV on EBV using principal component regression (PCR), partial least 
square regression (PLSR) and the 'BayesB' method for different marker densities, averaged over 20 replicates.

PCR PLSR 'BayesB'

Marker density bTBV; EBV ± s.e bTBV; EBV ± s.e bTBV; EBV ± s.e

1Ne/M 0.650 ± 0.012 0.758 ± 0.013 0.877 ± 0.013
2Ne/M 0.683 ± 0.012 0.725 ± 0.013 0.879 ± 0.013
4Ne/M 0.695 ± 0.012 0.754 ± 0.013 0.943 ± 0.013
8Ne/M 0.691 ± 0.012 0.655 ± 0.013 0.923 ± 0.013

The standard errors (s.e) shown are derived from the pooled variance between replicates within each evaluation method.
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because more information was available for predicting
QTL genotypes, but most notably for 'BayesB'. The corre-
lation is the accuracy of predicting EBV, whilst the regres-
sion indicates bias, and these correspondences will be
used throughout the rest of the discussion. Hence, the
results indicate that the regression methods deliver a
lower accuracy and greater bias in predicting breeding val-
ues than 'BayesB', and are less responsive to the addition
of further marker information.

The greater responsiveness to marker density of 'BayesB'
was marked. For PLSR and PCR, the accuracy increased by
7% and 6% respectively from the lowest marker density
(1Ne/M) to the highest marker density (8Ne/M), whilst in
contrast 'BayesB' was 17% more accurate for the highest
marker density compared to the lowest density. Hence,
the gap in accuracy between PLSR/PCR and 'BayesB'
increased as the marker density increased. From this
result, it seems that the use of relevant prior information,
as in the 'BayesB' method, was more valuable as the
marker density increased.

Whilst the accuracy of prediction may be the primary
parameter of interest, the regression of the TBV on EBV is
relevant since it determines the bias in predicting genetic
progress. One possible consequence is that this will con-
tribute to decreasing the accuracy in predicting breeding
values if the population used for providing estimates of
breeding values spans more than a single generation of
selection. In this attribute, as in accuracy, the advantage
appears to lie in 'BayesB', with regression coefficients both
closer to one than PLSR and PCR and increasing as marker
density increased. Although, these biases may be corrected
for by scaling the EBV such that Var(EBV) = Cov(EBV,
TBV), and thus are not a major hindrance for the use of
PLSR or PCR. The regression methods had increased bias
as density increased because more principal components
or latent variables were required to optimise the accuracy.
Any use of PLSR or PCR would require optimisation on
the number of principal components or latent variables,
perhaps through cross-validation for each practical data
set, although both accuracy and bias will depend on the
number of phenotypes.

The main advantages using PLSR and PCR compared to
the 'BayesB' method were the computing time and avoid-
ance of the assumptions about prior distribution of
marker effects made in the 'BayesB' model. PLSR and PCR
were computationally much faster and simpler compared
to the 'BayesB' method, e.g. the computation time for esti-
mating the marker effects using PLSR was approximately
65 times faster than 'BayesB' for the lowest marker den-
sity. The gap in computation time, hence the computa-
tional costs, were increased for higher marker density. For
example, the expected linkage disequilibrium (LD) for the
same recombination rate will be reduced by doubling the
effective population size Ne. Hence, assuming the accu-
racy is primarily determined by the amount of LD, then a
doubling of the number of markers is needed to achieve
the same LD, a finding supported by [7]. Doubling the
number of markers will double or triple the computation
time needed, which is especially time consuming for
'BayesB'. Compared to PLSR and PCR, 'BayesB' has a
greater potential for exploiting parallel computing, which
was not used in this study, therefore the relative computa-
tional benefits of PLSR and PCR will diminish as parallel
processing becomes cheaper and more common. This par-
allel computing implementation of BayesB will be highly
needed because the number of markers is expected to
increase for most species to 50 – 500 thousand.

Meuwissen et al. [4] used microsatellites at 1 Ne/M density
to compare least square regression after screening for sig-
nificant QTL, BLUP and 'BayesB' for predicting genome-
wide breeding values, and found accuracies of 0.318,
0.732 and 0.848, respectively. Solberg et al. [7] deter-
mined that SNP densities of 2- to 3-fold greater densities
were required to achieve comparable accuracies. There-
fore, an appropriate comparison may be made with the
results of [4] with SNP at a density of 4Ne/M in our study.
For this density, PLSR and PCR had accuracies of 0.670
and 0.645. Hence, these results indicate that the Bayesian
method 'BayesB' gave the highest accuracy, followed by
BLUP, PLSR and PCR, and least square analysis combined
with screening had the lowest accuracy.

A somewhat high heritability was used in this simulation
study, therefore a comparison of the three methods
BayesB, PLSR and PCR were additionally evaluated for a
lower heritability of 0.25 (Table 4). For the highest marker
density, the selection accuracy was reduced by 7% for the
BayesB method, and 16% for the two regression methods.
For the lowest marker density, the selection accuracy was
reduced by 14% for the regression methods and 12% for
the BayesB method. No significant differences were
observed between the PLSR and PCR. Even if the selection
accuracy was reduced in all cases, the same "ranking" of
the methods remain, namely, BayesB performed better
than PLSR and PCR.

Table 3: Computation time for estimating the marker effects 
using principal component regression (PCR), partial least square 
regression (PLSR) and the 'BayesB' method

Marker density PCR PLSR 'BayesB'

1Ne/M ~3 min ~3 min ~200 min
2Ne/M ~15 min ~3 min ~700 min
4Ne/M ~30 min ~3 min ~1600 min
8Ne/M ~60 min ~3 min > 2800 min
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A conclusion from this study is that if some relevant infor-
mation is known a priori then methods that utilize rele-
vant prior information will be more accurate. The 'BayesB'
method assumed a mixture of distributions of an inverted
chi-square with a discrete probability mass at zero as the
relevant prior distribution of marker effects, to model an
increase in the number of markers with an effect of zero.
The simulated QTL effects followed a gamma distribution
with a shape parameter of 1.66 and a scale parameter of
0.4 [12] with equal probability of positive or negative
effects. In practice, we do not know the exact distribution
of the QTL effects. Although the distribution used for sim-
ulating the QTL effects and that used for analysing the
data did not agree exactly, 'BayesB' approximates the prior
distribution of the QTL effects better than the regression
methods. From a Bayesian perspective, PLSR and PCR
might be viewed as representing a limiting form where the
prior distribution for regression coefficients is normally
distributed with an increasingly large variance. This closer
correspondence between the prior used for evaluation and
the simulated distribution of QTL perhaps explains in part
the higher accuracies obtained with 'BayesB'.

PLSR and PCR give an alternative solution to 'BayesB' to
estimate marker effects. They provide a rapid analysis of
large amounts of data to obtain EBVs from high-density
markers. The only assumptions are the additivity of
marker effects, and that few linear combinations of mark-
ers can explain most variability in the data. However,
whilst this simulation study showed that reducing the
dimensionality of the data gave a reasonably high accu-
racy of selection, the accuracy was less than that obtained
from 'BayesB', and this difference increased with increas-
ing marker density. To obtain full benefits of genome-
wide selection, use of relevant a priori information about
the distribution of the QTL effects is preferable, since gen-
otyping costs are very high relative to computational
costs. These relevant prior distributions need to be
obtained by acquiring greater knowledge of the genomic
architecture.
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heritability was 0.25
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Marker density rTBV; EBV ± s.e rTBV; EBV ± s.e rTBV; EBV ± s.e

1Ne/M 0.452 ± 0.009 0.465 ± 0.011 0.566 ± 0.018

8Ne/M 0.510 ± 0.012 0.504 ± 0.014 0.793 ± 0.018
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