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Abstract

Background: Predicting B-cell epitopes is very important for designing vaccines and drugs to fight against the
infectious agents. However, due to the high complexity of this problem, previous prediction methods that focus
on linear and conformational epitope prediction are both unsatisfactory. In addition, antigen interacting with
antibody is context dependent and the coarse binary classification of antigen residues into epitope and non-
epitope without the corresponding antibody may not reveal the biological reality. Therefore, we take a novel way
to identify epitopes by using associations between antibodies and antigens.

Results: Given a pair of antibody-antigen sequences, the epitope residues can be identified by two types of
associations: paratope-epitope interacting biclique and cooccurrent pattern of interacting residue pairs. As the
association itself does not include the neighborhood information on the primary sequence, residues’ cooperativity
and relative composition are then used to enhance our method. Evaluation carried out on a benchmark data set
shows that the proposed method produces very good performance in terms of accuracy. After compared with
other two structure-based B-cell epitope prediction methods, results show that the proposed method is
competitive to, sometimes even better than, the structure-based methods which have much smaller applicability
scope.

Conclusions: The proposed method leads to a new way of identifying B-cell epitopes. Besides, this antibody-
specified epitope prediction can provide more precise and helpful information for wet-lab experiments.

Background
Secreted antibody plays a critical role in humoral
immune responses. These antibodies protect the normal
cellules or tissues from invaders and infected self cells
by neutralizing them through interacting with the
pathogenic agents. Subsequently, the neutralized cells
are eliminated by scavenger cells, such as macrophage.
During this process, antibody interacting with antigen is
a fundamental and essential step in immune response.
Hence, identifying the set of residues within antigen
which are recognized by a specific antibody is pivotal
for understanding the mechanism behind antibody-anti-
gen interaction. Consequently, this knowledge in

antibody-antigen interaction will shed new light on vac-
cine design, disease therapy and so on [1].
The small set of residues within antigen sequence that

can be recognized by antibody is named as epitope [2].
Epitopes can be categorized into two types: continuous
and discontinuous [3]. A continuous/linear epitope is a
stretch of consecutive residues in the primary sequence
that can bind to a specific antibody, while a discontinu-
ous/conformational epitope is comprised of stretch of
residues that are far away from each other in the pri-
mary sequence but are brought to spatial proximity as a
result of polypeptide folding. Accordingly, a paratope is
the part of residues within antibody that interact with
the corresponding antigen. Due to the importance of
identifying epitopes within antigen, many researchers
have devoted themselves to this area.* Correspondence: jyli@ntu.edu.sg
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Intensive efforts have been made to predict epitopes
based on physico-chemical properties of antigen inter-
acting with antibody, particularly focus on linear epitope
prediction due to its relatively lower complexity. For
example, the hydrophilicity scale information of the
individual amino acids [4] was adopted by Parker et al.,
and the flexibility of epitope sequences was used by Kar-
plus et al. , to predict linear epitopes [5,6]. The relative
accessible surface area of each residue and the three
dimensional structure information on antigen sequences
were combined together by Kulkarni-Kale et al. to pre-
dict the conformational epitopes [7]; and the exposure
area, amino acids statistical significance and spatial
information were utilized by Andersen et al. to predict
the conformational epitopes as well [8]. Besides, other
features, such as polarity [9] and antigenic propensity
[10] were also considered to cope with this prediction
problem. However, the prediction results are far from
satisfied. For example, the performance of the propen-
sity scale based methods are only slightly better than the
random projection method [11,12], and it does not
improve much even after structural information is
added [13].
Several reasons can be used to explain this intractable

problem. First of all, epitopes highly depend on specific
type of antibody that can recognize them, and most of
the antigen surface residues may be antigenic when it is
exposed to different circumstances. Therefore, epitope
prediction based on binary classification may not reveal
the biological reality [14]. Unfortunately, all the afore-
mentioned methods only focused on antigens and over-
looked the antibody-antigen relationships. Second,
antigen itself is very complicated, and it can range from
a few residues to a very large protein. However, epitope
residues only take a small portion of the entire antigen
residues, thus it is an anomaly detection problem. Third,
although the residues that constitute the epitopes are
rare, they should cooperate with each other rather than
appear independently [15]. However, all the properties
that have been used are residue-independent, and only a
few methods consider the effect from the neighborhood
residues [16].
To overcome these obstacles for a better understand-

ing of antibody-antigen interaction, we propose a novel
method to predict epitopes based on associations
between antibody-antigen interactions. The intuitive rea-
sons of identifying epitope by associations are: (i) asso-
ciations not only address the contextual dependence
between antibody and antigen, but also reveal the spatial
relation within the contact residues; (ii) epitope predic-
tion is very difficult while paratope identification is
much easier, therefore linking antibody and antigen
together will bridge over the gap; (iii) many research
findings have corroborated that paratope-epitope

interaction has a tight complementary relationship
[17,18], thus it is plausible to link antibody and antigen
together. This lock-and-key relationship is utilized in a
novel way in this work to capture structural associations
between epitopes and paratopes that are then used to
predict epitopes in antibody-antigen interacting com-
plexes. Another observation is that paratopes are mainly
located in the six complementarity determining regions
(CDRs) in an antibody [19], namely L1, L2, L3, H1, H2
and H3. L1, L2 and L3 are from the antibody light
chain, while H1, H2 and H3 come from the antibody
heavy chain. Therefore, it is relatively very easy to iden-
tify paratope residues.
The proposed method is dubbed as Bepar which is a

short form for B-cell epitope prediction through asso-
ciation rules. Our method is trained on antibody-antigen
interacting PDB data, and it can be applied to any anti-
body-antigen sequence pair. The key idea of our method
is the detection of association patterns between antibody
and antigen residues that can unveil the contextual
dependence of the binding site, meanwhile can delineate
the residues’ spatial relation within the paratope and
epitope. As the association idea alone does not involve
the neighborhood information in the primary sequence,
we integrate the residue’s one-side cooperativity to
strengthen our method. Furthermore, amino acid’s rela-
tive composition within the paratopes and epitopes is
also calculated to provide a more detailed and precise
portrait for epitope prediction as well.

Methods
Data preparation
A benchmark data set consists of 82 antibody-antigen
complexes that had been constructed by Ponomarenko
et al.[13] is adopted in this work. The structural com-
plexes of this data set had been manually examined
against IEDB [20], and the duplicate complexes had
been eliminated as well. In order to improve the accu-
racy of modeling, the resolution of all complexes have
been required to be less than or equal to 3Å. Besides,
the protein complexes whose paratope residues mainly
situated outside of six CDRs are excluded from the data
set. Following these pre-processes, remaining 59 anti-
body-antigen complexes are used for conducting our
experiment. Our method’s performance is evaluated
based on these 59 complexes by using leave-one-out
cross validation.

Epitopes and paratopes in our training data
Given an antigen-antibody PDB [21] complex, a distance
threshold of 4Å is used to determine the epitope resi-
dues and paratope residues from the contact residues.
This threshold is recommended by [8] as it has been
reported that it can capture the epitopes with a high
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precision. The distance is calculated in Euclidian space
between two atoms, except hydrogen, where one atom
is from an antigen residue and the other one is from an
antibody residue. If the distance is not larger than this
threshold, then they will be considered. The involved
residue that comes from antigen is named an epitope
residue, while the residue comes from antibody is
denoted as a paratope residue.

Amino acid’s relative composition and cooperativity
calculation
The six CDRs of an antibody can be easily identified by
using the Chothia CDR definition [22] which is pre-
sented in Table 1, thus paratope residues’ relative com-
position within six CDRs can be calculated by equation
(1):

R P
P

Qij ij
ij

ij

  2 2log (1)

where Rij represents the relative composition of para-
tope residue j in CDR i, and Pij is the statistical compo-
sition of residue j over the paratope residues in CDR i,
and Qij is the composition of residue j against all the
residues in CDR i.
Similarly, epitope residues’ relative composition is

computed by equation (2):
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P

Qj j
j
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  2 2log (2)

where Rj represents the relative composition of epi-
tope residue j, and Pj is the composition of residue j
over the whole epitope residues, and Qj is the composi-
tion of residue j against all the residues in antigen
sequence.
The difference of calculating paratope and epitope

residues’ relative composition is originated from the fact
that paratope residues are mainly located in six CDRs
while the arbitrary residues within antigen surface could
be antigenic. The definition we adopted to compute
residues’ relative composition not only considers the
contribution of each residue in antibody-antigen interac-
tion by its composition, but also includes the

significance of each involved residue through the log
odd ratio.
With regard to residues’ cooperativity, it is defined as

a ratio between an individual residue’s composition in
paratope/epitope over its native composition within
antibody/antigen sequence. Paratope residues’ coopera-
tivity is given by equation (3):

C
P
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,

,
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where Ci,jk represents the cooperativity of paratope
residues jk within CDR i, Pi,jk is the composition of con-
tiguous residues jk over the paratope residues in CDR i,
and Qi,jk is the composition of residues jk in all the resi-
dues in CDR i.
In the same way, epitope residues’ cooperativity is

defined by equation (4):

C
P

Qjk
jk

jk

 (4)

where Cjk represents the cooperativity of epitope resi-
dues jk, Pjk is the composition of contiguous residues jk
over the epitope residues in antigen sequence, and Qjk is
the composition of residues jk over all the residues in
antigen sequence.
Residues’ relative composition is used to identify seed

paratope/epitope residues, while residues’ cooperativity
aims at screening out the neighborhood paratope/epi-
tope residues. This two stages detection can enhance
the capability of epitope identification.

Mining paratope-epitope interacting bicliques and
cooccurrent patterns of interacting residue pairs
The associations between an epitope and a paratope is
described by paratope-epitope residues interacting bicli-
que and a cooccurrent pattern of paratope-epitope inter-
acting residue pairs.
Interacting biclique is a subgraph G = 〈{V1,V2}, E 〉.

Here V1 is a set of paratope residues, V2 is a set of epi-
tope residues, and E is the set of interactions that

E V V 1 2 , and ∀v1 ÎV1, ∀v2 ÎV2, 〈v1, v2〉 Î E.

Two nodes v1 and v2 can form an edge (or say that the
residues v1 and v2 are interacting) if and only if there
exists at least one pair of atoms’ distance, except hydro-
gen, between v1 and v2 that is not larger than 4Å.
Interacting bicliques are detected by the following

steps: (i) convert an antibody-antigen interacting com-
plex into a bipartite graph, where the vertices are the
paratope and epitope residues and the edges are the
contact residue pairs; (ii) translate the bipartite graph
into a set of transactions with the idea introduced by Li

Table 1 Chothia CDR definition

CDR type CDR range

L1 L24 – L34

L2 L50 – L56

L3 L89 – L97

H1 H26 – H32

H2 H52 – H56

H3 H95 – H102
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and Liu [23] which builds a connection between bipar-
tite graph and transactions. That is, each bipartite graph
is a set of transactions, each transaction ID is an unique
epitope residue, and the items within this transaction
are the paratope residues that interact with this distinc-
tive epitope residue; (iii) mine all the frequent bicliques
from this set of transactions by LCM [24] which is an
efficient algorithm to mine frequent item set from a
transactional data base and (iv) calculate the statistical
frequency of each biclique that appears in different com-
plexes, and filter the frequent bicliques with a 8% occur-
rence level or 5% occurrence level but with a no less
than three times redundancy. The redundancy here
means the average count of each individual bicliques
that appear in one complex.
Cooccurrent pattern of interacting residue pair is a

pattern of two sets of interacting residue pairs, in which
if one set occurs in the antibody-antigen interacting
complex then the other one will also appear in the
same complex with a particular probability (or, confi-
dence level). The mathematical form is given by:

p e p e p e p ef f
m
f

n
f i i

n
i

n
i

1 1 1 1: ,..., : : ,..., :   .〈 p : e 〉 is

an interacting residue pair with p representing a para-
tope residue and e an epitope residue. The left part of
the cooccurrent pattern is a set of frequent interacting
residue pairs and the right part is a set of cooccurrent
interacting residue pairs. Given a set of antibody-antigen
interacting PDB complexes, the cooccurrent patterns
of interacting residue pairs can be detected through
the following three steps. At first, determining all the
interacting residue pairs from antibody-antigen com-
plexes by using a distance threshold of 4Å. Second,
translating all the interacting residue pairs from each
complex into a transaction, thus the number of transac-
tions equals to the number of complexes. The item
in each transaction is a unique integer which is mapped

by f I I Ip e p e: :   20 Where Ip is a paratope residue

index and Ie is an epitope residue index. This index is
determined by Kyte and Doolittle’s hydropathy index
order [25]. In the last step, cooccurrent patterns of
interacting residue pairs are identified by an association
rule mining software implemented by [26]. The signifi-
cant cooccurrent pattern of interacting residue pairs are
remained if they have a ≥ 10% support level and ≥ 80%
confidence level.
Interacting bicliques capture the relation between

paratope residues and epitope residues which can
address the context dependent issue between antibody
and antigen, meanwhile cooccurrent patterns of inter-
acting residue pairs will span this relation between inter-
acting residue pairs. This reciprocal consolidation can
provide an accurate performance on epitope prediction.

Epitope prediction by associations
In order to predict epitopes, the prediction model should
be constructed on antibody-antigen structural complexes
first, and then it is applied to predict epitopes from anti-
body-antigen sequences without 3D structural informa-
tion. A flow chart of the processes is shown in Figure 1.
The model construction components have been
described in the immediate previous two subsections, i.e.
calculating paratope/epitope residue’s relative composi-
tion and cooperativity, and mining interacting bicliques
and cooccurrent patterns of interacting residue pairs.
From now on, we devote ourselves to the epitope predic-
tion modules. Given an antibody-antigen sequence pair,
the antibody heavy chain and light are numbered by
modified-Chothia numbering scheme [27] first, then six
CDRs are determined by Chothia CDR definition [22],
subsequently epitope residues are identified through the
steps described as follows:
Identifying seed paratope residues
Given the six CDRs of antibody, the seed paratope resi-
dues can be identified by using paratope residues’ rela-
tive composition that generated in the model

Figure 1 Flowchart Flowchart of model construction and epitope
prediction
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construction stage. More exactly, each residue within six
CDRs is examined one-by-one according to the CDR
dependent residue’s relative composition threshold TR.
One residue is marked as paratope residue if its relative
composition is ≥ TR. Usually, only the top three residues
will pass this test.
Screening cooperative paratope residues
Based on the seed paratope residues, the cooperative
paratope residues can be picked out by using paratope
residues’ cooperativity. It is achieved by scanning the
cooperativity between each seed paratope residue i and
its neighborhood residues against paratope residues’
cooperativity threshold. Once the cooperativity between
residue i and its neighbor j is larger or equals to the
preset threshold then residue j is assigned as paratope
residue. Paratope/epitope residues usually cooperate
with each other, therefore the search space of neighbor-
hood residues are restricted in [i – 2, i + 2] for a given
seed residue i. Both the left neighbors and the right
neighbors should be within the same CDR as i ‘s.
Empirically, the top ten per cent of cooperative residues
are considered as paratope residues.
Detecting candidate epitope residues by interacting
bicliques
A subset of paratope residues can be identified through
the first two steps. In this step a partial candidate epi-
tope residues can be specified by using interacting bicli-
que which is served as a bridge to link paratope and
epitope residues together. Exactly, all the paratope resi-
dues from each interacting biclique are checked against
the pre-identified paratope residues, and one interacting
biclique is believed to appear in this complex if all the
paratope residues have been found in the pre-identified
set of paratope residues, subsequently the epitope resi-
dues within this interacting biclique are considered as
candidate epitope residues.
Detecting candidate epitope residues by cooccurrent
patterns of interacting residue pairs
Part of candidate epitope residues can be identified by
paratope-epitope interacting bicliques, however interact-
ing biclique can only reveal the local relation between
paratope and epitope residues. Hence cooccurrent pat-
tern of interacting residue pairs is used to span the cor-
relation between interacting residue pairs.
For each cooccurrent pattern, the left part of the pat-

tern (or the frequent interacting residue pairs) is
checked against the already identified paratope-epitope
interacting residue pairs. If all the interacting residue
pairs from the frequent part of the cooccurrent pattern
have been picked out already, then the right part of this
pattern is considered as implied interacting residue pairs
in the same complex. The residues from this implied
interacting residue pairs are added to paratope and can-
didate epitope respectively to broaden the search space.

The immediate above three Steps will repeat until
satisfied paratope and epitope residues cannot be found
anymore. Following the above steps, the candidate epi-
tope residues can be confirmed and their positions are
localized by the following two steps.
Positioning seed epitope residues
A candidate epitope residue is confirmed as an epitope
residue if its relative composition meets the preset
threshold. This process is conducted along the whole
antigen sequence to localize the seed epitope residues.
Empirically, the top four epitope residues are selected in
terms of epitope residues relative composition.
Detecting cooperative epitope residues
Based on the seed of epitope residues, the cooperative
epitope residues can be determined by using epitope
residues’ cooperativity. One residue is assigned as a
cooperative epitope residue if the cooperativity between
this residue and the seed epitope residue is larger or
equals to the predefined cooperativity threshold. In this
work, only the residues’ cooperativity within the top ten
per cent is considered. This process will be terminated
when no satisfied neighborhood epitope residues can be
identified again. Through the above six steps, we can
identify epitope residues with a high accuracy. We note
that seed epitope residue identification takes the candi-
date epitope residues into consideration, while coopera-
tive epitope residues detection overlooks this constraint.
There are two reasons to explain this strategy: first,
associations (paratope-epitope interacting biclique and
cooccurrent pattern of interacting residue pairs) can
only capture the significant paratope and epitope resi-
dues instead of the complete paratope and epitope resi-
dues; and second, the looseness constraint of
cooperativity applied on seed epitope residues can gen-
eralize the prediction. These two aspects guarantee the
prediction model with a good performance.

Results and discussion
Residues relative composition and cooperativity in
epitope and paratope
Paratope and epitope residues’ relative composition are
shown in Figure 2 and Figure 3 respectively. It is clear
that each residue makes remarkably dissimilar contribu-
tion in antibody-antigen binding. On the other hand, the
same residue has diverse preferences in the six CDRs.
For example, paratope residues Y, W, N and R make a
great contribution in antigen binding, however this
observation does not hold for the epitope residues’ rela-
tive composition, especially for residues Y and W.
Besides, paratope residue T is over expressed in CDR H1
and H3 while residue S is up regulated in CDR H1 and
L3. For epitope residues, the values shown in Figure 3
precisely illustrate that epitope residues prefer hydrophi-
lic residues to hydrophobic residues. The observations
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derived from the profile of epitope residues relative com-
position shown in Figure 3 just partially agree with the
findings reported in [28]. That is, epitope residues are
enriched with charged and polar residues and signifi-
cantly depleted in hydrophobic residues. The difference
is narrowed down to residues Y and W. Rubinstein et al.
[28] argued that epitopes were significantly over
expressed by residues Y and W, but this observation is
not so significant in our result. The reason should be that
residues Y and W are indeed enriched in epitopes but
they also have relatively very high composition in antigen
sequences. Nevertheless, our observations are supported
by the findings on antibody-antigen interaction explored
by Jackson [29] and also applauded by the observations
reported in [30]. These observations corroborate our idea
of treating the six CDRs separately.

With regard to residues’ cooperativity, paratope resi-
dues’ cooperativity in CDR H3 which makes the most
contribution in antigen binding [31,32] is shown in Fig-
ure 4 and epitope residues’ cooperativity is shown in
Figure 5. Arguments also have been made somewhere
that epitope residues tend to act cooperatively [33].
According to the residues’ cooperativity shown in these
two figures, we can find that paratope residues usually
cooperate with Y, W, S, T and G while epitope residues
prefer pairs of hydrophilic residues. Interestingly, hydro-
phobic residues are scarce in paratope, but once they
appear in paratope then they tend to cooperate with the
particular residues.
The values shown in Figure 4 and Figure 5 are calcu-

lated in terms of 1-free connectivity, i.e. at most one
non-paratope/epitope residue is allowed to insert

Figure 2 Paratope relative composition Paratope residues’ relative composition in six CDRs
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between two paratope/epitope residues. Similarly, 0-free
connectivity means non-paratope/epitope residue inser-
tion within two paratope/epitope residues is unacceptable.
Although epitopes are categorized into linear and confor-
mational epitope, most part of the conformational epitope
is constituted by some consecutive residues [3]. Therefore
it is reasonable to search the neighborhood residues one
more position beyond its immediate neighbors.

Paratope residues connectivity is shown in Figure 6, and
epitope residues connectivity is shown in Figure 7. From
the results shown in these two figures we can see that if 1-
free connectivity is used then the composition of separated
paratope/epitope residue deceases significantly. More
exactly, the isolated paratope residue composition drops
from 32.7% to 15.2%, and the separated epitope residue
composition also decreases from 22.4% to 9.7%.

Figure 3 Epitope relative composition Epitope residues’ relative composition

Figure 4 H3 cooperativity Paratope residues’ cooperativity in CDR H3. Value is post-modified by logarithm and –∞ is replaced by -2
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Interacting biclique and cooccurrent pattern of
interacting residue pairs in antibody-antigen complex
The interacting biclique captures the close relationship
between one set of paratope residues and the other set
of epitope residues, thus it can address the context
dependent issue within antibody and antigen interac-
tion. The top ten frequent interacting bicliques are
listed in Table 2. It is not out of expectation that one-
versus-one bicliques are ranked as the most frequent
ones. Although this seems trivial, it could offer a great

help especially when not enough paratope residues can
be identified in the early stages. The results reveal that
the paratope residues are enriched with residue Y and
epitope residues are rich of residues R and K. These
observations are also in accordance with the findings
given by residues’ relative composition. The cooccur-
rent patterns of interacting residue pairs with support
level (or frequency) ≥ 10% and confidence level (or
probability) ≥ 80% are remained in this work to span
the correlation between paratope and epitope. These

Figure 5 Ag cooperativity Epitope residues’ cooperativity. Value is post-modified by logarithm and –∞ is replaced by -2.

Figure 6 Paratope connectivity Paratope residues’ connectivity with respect to 0-free and 1-free
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thresholds are chosen empirically by both considering
the model’s reliability and compatibility. The cooccur-
rent patterns with 100% confidence level are presented
in Table 3. In comparison with the involved residues
shown in Table 2, conclusion can be drawn that cooc-
current pattern includes much broader residues which
indeed can broaden the paratope and epitope search
space. Interacting biclique and cooccurrent pattern can
benefit reciprocally. In the one hand, interacting bicli-
que is a little stringent but provides relatively more
precise interacting residue pairs for identifying cooc-
current residue pairs; in the other hand, cooccurrent
pattern of interacting residue pairs is lesser strict and
can broaden the search space of paratope and epitope
residues which in turn will benefit interacting biclique
specification.

Prediction performance by Bepar and its evaluation
The performance of Bepar is quantified by means of
sensitivity (Sens.), specificity (Spec.), accuracy (Accu.)

and area under the carve (AUC). Their definitions are
given by the following formulae:

Sens
TP

TP FN

Spec
TN

TN FP

Accu
TP TN

TP TN FP FN
AUC Sens

.

.

.

( .







 
  

  Spec.) / 2

where TP is the number of correctly identified epitope
residues, TN is the number of correctly detected non-
epitope residues, FP is the number of incorrectly pre-
dicted epitope residues and FN is the number of incor-
rectly speculated non-epitope residues. In these
quantifiers, AUC is especially recommended by [14].
Therefore, we also adopt this evaluation matrix to make

Figure 7 Epitope connectivity Epitope residues’ connectivity with respect to 0-free and 1-free

Table 2 Top ten frequent association (bi-cliques) from
antibody-antigen interacting complexes

No. Ab. 1 Ag.2 Frequency Redundancy

1 D K 22.0% (13/59) 1.92 (25/13)

2 Y E 18.6% (11/59) 2.45 (27/11)

3 Y N 16.9% (10/59) 1.80 (18/10)

4 S E 16.9% (10/59) 1.70 (17/10)

5 Y K 15.3% ( 9/59) 1.78 (16/9)

6 N R 15.3% ( 9/59) 1.44 (13/9)

7 Y R 15.3% ( 9/59) 3.56 (32/9)

8 D,Y K 15.3% ( 9/59) 1.78 (16/9)

9 S,Y Q 13.6% ( 8/59) 1.75 (14/8)

10 G R 13.6% ( 8/59) 4.38 (35/8)
1Antibody residue(s).
2Antigen residue(s).

Table 3 Co-occurrent epitope-paratope interacting
residue pairs with support level larger than 10%

No. FIRP.1 CIRP.2 Confidence

1 <Y:K><, >S:Q> <Y:Q> 100%

2 <Y:G>, <W:K> <Y:K> 100%

3 <Y:N>, <W:K> <Y:K> 100%

4 <N:N>, <W:K> <Y:K> 100%

5 <S:Q>, <Y:F> <Y:Q> 100%

6 <Y:K>, <D:N> <Y:N> 100%

7 <Y:G>, <Y:Y> <Y:K> 100%

8 <W:K>, <Y:Y> <Y:K> 100%

9 <Y:G>, <T:K> <Y:K> 100%

10 <T:N>, <D:S> <D:N> 100%

11 <D:N>, <D:S> <T:N> 100%

12 <G:Q> <Y:Q> 100%
1 Frequent interaction residue pairs
2 Cooccurrent interaction residue pairs
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comparison between our model and other structure-
based B cell epitope prediction tools.
In order to avoid the over-fitting problem caused by

the self examination (which can overestimate the meth-
od’s performance), the leave-one-out cross validation is
used to evaluate our model. That is, if there are N sam-
ples then the evaluation will run N times. In each
round, one sample is left out to do and only do predic-
tion and the remaining samples are used to train the
prediction model. With regard to our model, each time
there are 58 antibody-antigen PDB complexes are used
to train the model and 1 antibody-antigen complex
without its structural information is considered to test
this model. To qualify the prediction capability of our

method, we compare the performance of our model
with two structure-based B-cell epitope prediction tools
CEP [7] and DiscoTope [8]. CEP takes antigen struc-
tures as input and predicts epitopes by using residues
accessibility and spatial distance cut-off. Similarly, Dis-
coTope predicts epitopes from antigen structures based
on amino acid statistics, spatial information and surface
accessibility. The performances on CEP and DiscoTope
are obtained from the results conducted by Ponomar-
enko et al.[13]. For convenience, the results generated
by CEP are chosen from the average value and the
results of DiscoTope are selected from the values with a
cut-off threshold of -7.7. Some epitopes cannot be iden-
tified by these three methods, therefore the common

Table 4 Prediction results generated by sequence-based model and two structure-based models

Bepar CEP DiscoTope

PDB ID H1 L2 Ag3 sens. spec. AUC sens. spec. AUC sens. spec. AUC

1A14 H L N 0.11 0.75 0.43 0.00 0.94 0.47 0.76 0.86 0.81

1AR1 C D B 0.27 0.89 0.58 0.13 0.85 0.49 0.00 0.89 0.45

1EO8 H L A 0.33 0.61 0.47 0.18 0.89 0.54 0.17 0.78 0.48

1EZV X Y E 0.53 0.74 0.64 0.31 0.63 0.47 1.00 0.76 0.88

1FNS H L A 0.58 0.83 0.71 0.00 0.87 0.44 0.67 0.9 0.79

1FSK C B A 0.59 0.71 0.65 0.12 0.88 0.50 0.76 0.67 0.72

1G9M H L G 0.33 0.75 0.54 0.18 0.88 0.53 0.08 0.79 0.44

1H0D B A C 0.44 0.70 0.57 0.44 0.65 0.55 0.35 0.63 0.49

1IQD B A C 0.31 0.71 0.51 0.07 0.84 0.46 0.56 0.85 0.71

1JPS H L T 0.53 0.74 0.64 0.25 0.83 0.54 0.33 0.85 0.59

1JRH* H L I 0.47 0.71 0.59 0.73 0.32 0.53 0.60 0.73 0.67

1LK3 H L A 0.39 0.71 0.55 0.17 0.87 0.52 0.61 0.84 0.73

1MHP* X Y B 0.37 0.73 0.55 0.11 0.92 0.52 0.53 0.84 0.69

1NFD H G D 0.33 0.79 0.56 0.25 0.85 0.55 0.77 0.77 0.77

1NL0* H L G 0.80 0.39 0.60 0.71 0.84 0.78 0.57 0.82 0.70

1NSN* H L S 0.24 0.77 0.51 0.06 0.77 0.42 0.39 0.68 0.54

1OAZ H L A 0.53 0.82 0.67 0.59 0.69 0.64 0.29 0.81 0.55

1ORS B A C 0.50 0.88 0.69 0.78 0.63 0.66 0.00 0.84 0.42

1OSP H L O 0.30 0.64 0.47 0.17 0.82 0.50 0.53 0.80 0.67

1PKQ* B A E 0.59 0.64 0.62 0.44 0.68 0.56 0.47 0.79 0.63

1R3J B A C 0.23 0.84 0.54 0.42 0.62 0.52 0.08 0.91 0.50

1RJL* B A C 0.42 0.54 0.48 0.58 0.48 0.53 0.54 0.71 0.63

1SY6* H L A 0.82 0.72 0.77 0.30 0.86 0.58 0.91 0.68 0.80

1TQB B C A 0.12 0.66 0.39 0.11 0.71 0.41 0.78 0.36 0.57

1TZI* B A V 0.50 0.77 0.64 1.00 0.21 0.61 0.50 0.58 0.54

1V7M* H L V 0.69 0.76 0.73 0.31 0.80 0.56 0.06 0.95 0.51

1WEJ* H L F 0.27 0.66 0.47 0.10 0.69 0.40 0.45 0.45 0.45

1YJD* H L C 0.43 0.88 0.66 0.36 0.68 0.52 0.21 0.87 0.54

1ZTX* H L E 0.25 0.72 0.49 0.75 0.34 0.55 0.19 0.88 0.54

2ADF H L A 0.13 0.62 0.38 0.32 0.88 0.60 0.15 0.97 0.56

2AEP* H L A 0.79 0.71 0.75 0.10 0.93 0.52 0.14 0.85 0.50

2JEL* H L P 0.27 0.74 0.51 0.43 0.45 0.44 0.07 0.94 0.51
1 Antibody heavy chain.
2Antibody light chain.
3Antigen chain.

* Fourteen non-overlapping samples.
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data with 32 samples are selected to evaluate these three
methods. The detailed performances of these three
methods are shown in Table 4. Results reveal that Bepar
shows competitive performance on epitope prediction
even without antigen 3D structure information.
Figure 8 visualizes the performances given by Bepar,

CEP and DiscotTope in terms of sensitivity and specifi-
city. The averaged over all performance clearly manifest
that Bepar makes a great improvement on sensitivity
when compared with CEP on the same specificity level,
but it presents a lower specificity when compared with
DiscoTope with respect to the same level of sensitivity.
After investigating the detailed data set, we found that
18 out of 32 samples in the data set applied on Disco-
Tope are both in the training data and testing data. To
compensate this unfairness, the overall statistic averaged
results of the evaluation metrics are calculated on the
whole data set, the overlapping data set applied on Dis-
coTope and also the non-overlapping data set respec-
tively. The overlapping data set means the samples both
appear in training data and testing data applied on Dis-
coTope, while the non-overlapping data set represents
the samples only appear in testing data. The detailed
results are shown in Table 5. It can be seen that Bepar

outperforms CEP in every cases according to the AUC
values, and it also shows a very competitive performance
to DiscoTope when the non-overlapping data set is
applied. Hence, we can draw a conclusion that Bepar is
a better or at least a competitive candidate B-cell epi-
tope prediction approach even 3D structure is unavail-
able in the prediction stage.

Figure 8 Performance comparison Result comparison over the whole common 32 samples that generated by Bepar, CEP and DiscoTope. C.
represents the statistic averaged center.

Table 5 Statistic averaged sensitivity and specificity of
CEP, DiscoTope and Bepar as well as their standard
deviation

Data Method Sens. Spec. AUC

I 1 CEP
DiscoTope
Bepar

0.33 (± 0.25)
0.42 (± 0.28)
0.42 (± 0.19)

0.73 (± 0.19)
0.78 (± 0.13)
0.72 (± 0.10)

0.53 (± 0.08)
0.60 (± 0.12)
0.57 (± 0.10)

II2 CEP
DiscoTope
Bepar

0.25 (± 0.20)
0.44 (± 0.31)
0.36 (± 0.15)

0.79 (± 0.12)
0.79 (± 0.13)
0.74 (± 0.08)

0.52 (± 0.06)
0.62 (± 0.14)
0.55 (± 0.10)

III3 CEP
DiscoTope
Bepar

0.43 (± 0.28)
0.41 (± 0.23)
0.49 (± 0.21)

0.64 (± 0.23)
0.77 (± 0.10)
0.69 (± 0.10)

0.53 (± 0.09)
0.586(± 0.09)
0.593(± 0.10)

1 Common thirty two samples.
2 Eighteen overlapping samples which appear both in training data and
testing data.
3 Fourteen non-overlapping samples which only appear in testing data.
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The proposed method Bepar is very novel and promis-
ing, but there are still much space for improvement.
First, finding the optimal parameters are time-consum-
ing even though empirical parameters can provide a
satisfactory result. Second,it is a simple approach to
identifying epitopes by their relative compositions and
cooperativity based on the candidate epitope residues.
Therefore, a sophisticated post-stage prediction method
would provide a much better performance.

Conclusions
B-Cell epitope prediction has attracted increasing atten-
tion in the field of immunoinformatics [7,8,33-35]. How-
ever, due to its high complexity and scarce structural
data sets, such prediction task is full of challenges
[11-13]. In this work, we proposed an innovative and
efficient method to tackle this problem based on the
structural associations between paratopes and epitopes.
In comparison to previous structure-based B-cell epi-
tope prediction methods [7,8], Bepar outperforms CEP
on every cases in the common data set, and it is also
very competitive to DiscoTope when the non overlap-
ping data set is considered. In addition, unlike these two
methods, Bepar needs only a relatively small data set
with 3D structural information to train the model and
can apply to paired sequence data from antibody-anti-
gen complexes.
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