
281

Chapter 9
Sensors

Sensors enable your BlackBerry 10 device to collect information about the outside world and
to react to physical events. With some imagination, you can use the sensors API to build highly
immersive apps that respond to the device’s position, accelerations, and rotations. Gaming is
an obvious area that benefits from using sensors, but the majority of apps have yet to tap into
the potential of using sensors. There are really no limits to what you can achieve, and as mobile
devices continue adding new types of sensors, the number of applications that use sensor data will
experience exponential growth in the years to come.

Cascades leverages the Qt Mobility module for the sensors API (this is a good example of how
BlackBerry 10 is built using a layered architecture where Cascades uses the underlying Qt modules
when necessary; see Chapter 1). As illustrated in Figure 9-1, the sensors architecture is designed
around a front end and a back end. The front end, a QSensor instance or subclass, is what you call
to access data provided by the back end (which can be considered as a low-level wrapper to the
actual hardware sensor; in other words, a glorified device driver). The advantage of splitting sensors
into a back end and front end is that you can use a common abstraction to access data, regardless
of the sensor type. I will show you how to use QSensor in a generic way. In most cases, I will directly
instantiate a subclass to do the actual data reading (the data is returned to the application as an
instance of QSensorReading or one of its subclasses).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81701183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

282 CHAPTER 9: Sensors

Finally, you can also directly access sensors from QML, which is important if you want to design
sensor-aware applications entirely in QML/JavaScript.

The purpose of this chapter is to give you an overview of the BlackBerry 10 sensor types, as well
as show you how to use them in your own applications. You will also learn how to handle sensor
readings in C++ and QML/JavaScript.

Sensor Types
At the time of writing, the following sensors types are supported by the BlackBerry 10 platform.
(Note that for a given device, not all sensor types are supported. The next section will show you how
to detect the availability of a given sensor type at runtime. You can also check the BlackBerry web
site for device specifications, which also lists supported sensors).

	Ambient light sensor: Returns a constant representing the current brightness of
the external environment. You can use it to adjust the backlight, thus optimizing
battery power consumption.

	Light sensor: Returns a value representing the light intensity measured in lux.

	Accelerometer: Returns the device acceleration in three dimensions. You can
also specify which acceleration component should be reported by the sensor
(gravity, user, or combined). For example, only the gravity component is relevant
if you want to detect if the device is falling.

	Compass: Returns the device’s azimuth, which is the angle between the device’s
current orientation when it is pointing toward the horizon and the magnetic north
(the sensor reading is a clockwise angle measured in degrees).

	Gyroscope: Returns the device’s angular velocity in three dimensions measured
in degrees per second.

	Holster sensor: Returns a Boolean value indicating whether the device is in the
holster or not.

	Proximity sensor: Returns a Boolean value, which indicates whether an object is
close to the device.

	Infrared proximity sensor: Returns the measured reflectance, which is a
percentage of the emitted infrared light returned by an object. Note that in
practice it is easier to use the proximity sensor than to try to detect an object’s
presence with the infrared proximity sensor.

Application QSensor QSensorBackend

Device PluginQSensorReading

Figure 9-1. Sensor architecture

283CHAPTER 9: Sensors

	Magnetometer: Returns the current magnetic field measured in Teslas.

	Orientation: Reports the device orientation. For example, you can use this
sensor to detect whether the device is pointing up or down.

	Rotation: Returns a reading containing three angles—measured in angles—that
define the orientation of the device in space (the device coordinate system will
be explained shortly).

All sensors essentially work in the same way, as follows:

1. Instantiate a QSensor or one of its subclasses.

2. Set the sensor’s properties according to your application’s requirements.
For example, you can specify that the sensor should not send you duplicate
values or that it should not be active when the application is running in the
background.

3. Optionally, add filters to the sensor in order to provide a more efficient way
of notifying data changes. (For example, the accelerometer readings are very
susceptible to noise. You can use a filter to smooth out the noisy signal and
notify your application when a reading has truly changed).

4. Connect the QSensor::readingChanged() signal to a slot in your application in
order to receive sensor readings.

5. Once the initial setup has been completed, you can start the sensor readings
with a call to QSensor::start().

6. Handle the sensor data using the slot you have configured for the
QSensor::readingChanged() signal.

7. When you are done using the sensor, call QSensor::stop() to end data
notifications.

Sensors in C++
Determining Sensors Types
Not all of the sensors described in the previous section are available on a given device. You will
therefore have to determine the availability of a sensor by using the QSensor::sensorTypes()
method, which returns a list of sensors. For example, Listing 9-1 shows you how to check for the
presence of an accelerometer.

Listing 9-1. Sensors Check

bool checkForAccelerometer(){
 QList<QByteArray> sensorTypes = QSensor::sensorTypes();
 return sensorTypes.contains(QAccelerometer::type);
}

284 CHAPTER 9: Sensors

You need to add the following two lines to your application’s .pro file in order to use sensors:

Config += mobility

MOBILITY += sensors

You can access the Sensors project presented in this chapter by cloning the BB10Apress repository
(https://github.com/aludin/BB10Apress).

Figure 9-2. Sensors view

Using Sensors in C++
The sensors API blends in with the rest of the QtCore APIs, and as usual in the world of Qt, it is all
about connecting signals to slots. To illustrate how sensors work in practice, let us put together a
very simple application displaying multiple sensor values. The application illustrated in Figure 9-2
combines acceleration readings with light readings.

When the Start button is touched, the application starts receiving data from the accelerometer and
light sensors, and updates the corresponding UI text fields. The Stop button interrupts the data flow
from the sensors. The corresponding QML document is show in Listing 9-2.

Listing 9-2. main.qml

import bb.cascades 1.2
Page {
 Container {
 leftPadding: 10
 rightPadding: 10
 Label {
 text: "Hello Sensors"
 textStyle.base: SystemDefaults.TextStyles.BigText

https://github.com/aludin/BB10Apress

285CHAPTER 9: Sensors

 horizontalAlignment: HorizontalAlignment.Center
 }
 Container {
 bottomMargin: 50
 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 Label {
 text: "Accel x:"
 verticalAlignment: VerticalAlignment.Center
 }
 TextField {
 text: _app.sensor.accelX
 }

 }
 Container {
 bottomMargin: 50
 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 Label {
 text: "Accel y:"
 verticalAlignment: VerticalAlignment.Center
 }
 TextField {
 text: _app.sensor.accelY
 }
 }
 Container {
 bottomMargin: 50
 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 Label {
 text: "Accel z:"
 verticalAlignment: VerticalAlignment.Center
 }
 TextField {
 text: _app.sensor.accelZ
 }
 }
 Container {
 bottomMargin: 50

 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 Label {
 text: "Light :"
 verticalAlignment: VerticalAlignment.Center
 }

286 CHAPTER 9: Sensors

 TextField {
 id: light
 text: _app.sensor.lux
 }
 }
 Container {
 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 horizontalAlignment: HorizontalAlignment.Center
 Button {
 text: "start"
 onClicked: {
 _app.sensor.start();
 }
 }
 Button {
 text: "stop"
 onClicked: {
 _app.sensor.stop();
 }
 }
 }
 }
}

The preceding QML code is fairly straightforward. Three text fields are used to display the device’s
current acceleration in three-dimensional space and a fourth text field displays the current
luminosity. Note how the text fields’ text properties have been bound to corresponding _app.sensor
properties. You will see shortly how the _app.sensor variable is defined.

HybridSensor
The HybridSensor class encapsulates the sensors reading logic (see Listing 9-3).

Listing 9-3. ApplicationUI.hpp

#ifndef HYBRIDSENSOR_H_
#define HYBRIDSENSOR_H_

#include <QObject>
#include <QtSensors/QAccelerometer>
#include <QtSensors/QLightSensor>

class HybridSensor : public QObject {
 Q_OBJECT
 Q_PROPERTY(qreal accelX READ accelX NOTIFY accelChanged)
 Q_PROPERTY(qreal accelY READ accelY NOTIFY accelChanged)
 Q_PROPERTY(qreal accelZ READ accelZ NOTIFY accelChanged)
 Q_PROPERTY(qreal lux READ lux NOTIFY luxChanged)

287CHAPTER 9: Sensors

public:
 HybridSensor(QObject* parent = 0);
 virtual ~HybridSensor();

signals:
 void accelChanged();
 void luxChanged();

public slots:
 void start();
 void stop();
 void onAccellerationChanged();
 void onLightChanged();

public:
 double accelX();
 double accelY();
 double accelZ();
 double lux();

private:
 QtMobility::QAccelerometer* m_accelerometer;
 QtMobility::QLightSensor* m_lightSensor;

 double m_accelX;
 double m_accelY;
 double m_accelZ;
 double m_lux;
};

#endif /* HYBRIDSENSOR_H_ */

As illustrated in Listing 9-3, the HybridSensor class declares four properties intended to be accessed
from QML (accelX, accelY, accelZ, and lux). These are the same properties that will be bound to
the corresponding QML text fields. The m_accelerometer and m_lightSensor member variables
provide the actual sensor readings (m_accelerometer is an instance of the QAccelerometer class
and m_lightSensor an instance of QLightSensor). Both variables are initialized in the HybridSensor
class constructor, which is shown in Listing 9-4. The start() and stop() slots are used respectively
for initiating and halting sensor readings. The onAccelerationChanged() slot is called by the
accelerometer sensor when a new reading is available, and the onLightChanged() slot is called by
the light sensor when a new light reading is available (as you will see shortly, the slots “propagate”
the sensor signals using the corresponding HybridSensor notify signals in order to update the QML
bindings).

Listing 9-4. HybridSensor Constructor

HybridSensor::HybridSensor(QObject* parent) :
 QObject(parent),
 m_accelerometer(new QAccelerometer(this)),
 m_lightSensor(new QLightSensor(this)),
 m_accelX(0), m_accelY(0), m_accelZ(0), m_lux(0) {

288 CHAPTER 9: Sensors

 m_accelerometer->setAccelerationMode(QAccelerometer::User);
 m_accelerometer->setSkipDuplicates(true);
 m_accelerometer->setAlwaysOn(false);
 m_accelerometer->setAxesOrientationMode(QAccelerometer::FixedOrientation);

 bool result = QObject::connect(m_accelerometer, SIGNAL(readingChanged()), this,
 SLOT(onAccellerationChanged()));
 Q_ASSERT(result);

 result = QObject::connect(m_lightSensor, SIGNAL(readingChanged()), this,
 SLOT(onLightChanged()));
 Q_ASSERT(result);
}

As usual, you need to handle memory management correctly by setting the “parent-child”
ownerships of all dynamically allocated member variables (in the code shown in Listing 9-4,
the parent object is the HybridSensor instance). There are a few interesting points to consider
in the way the accelerometer sensor is initialized. Setting QAccelerometer::setSkipDuplicat
es() to true results in the sensor notifying the application only when data has changed. This
eliminates duplicate updates when successive readings are identical or very similar. Setting
QAccelerometer::setAlwaysOn() to false ensures that the application will not receive sensor data
when it’s running in the background (this is the default behavior, but I prefer making it explicit in the
code). You should be aware that if you decide to override the default behavior, running sensors such
as the accelerometer in the background will drain the device’s power quickly.

Next, we proceed by specifying the way the sensor should report the data to the application: the call
to QAccelerometer::setAccelerationMode(QAccelerometer::User) tells the sensor to only report the
acceleration caused by the user moving the device (i.e., the effect of gravity is discarded). The call
to QAccelerometer::setAxesOrientation(QAccelerometer::FixedOrientation) fixes the coordinate
system so that axes are not reoriented when the device orientation changes (I will tell you more
about coordinate systems shortly).

Next, you connect the accelerometer’s readingChanged() signal to HybridSensor’s
onAccelerationChanged() slot. As mentioned previously, the accelerometer sensor will call the
slot when a new reading is available. In a similar way, the light sensor’s readingChanged() signal is
connected to the application’s onLightChanged() slot. Finally, the code for HybridSensor’s slots is
given in Listing 9-5.

Listing 9-5. HybridSensor Slots

void HybridSensor::start() {
 m_accelerometer->start();
 m_lightSensor->start();
}

void HybridSensor::stop() {
 m_accelerometer->stop();
 m_lightSensor->stop();
}

289CHAPTER 9: Sensors

void HybridSensor::onAccellerationChanged() {
 QAccelerometerReading* reading = m_accelerometer->reading();

 double x = reading->x();
 double y = reading->y();
 double z = reading->z();

 if(x*x+y*y+z*z > 0.1){
 m_accelX = x;
 m_accelY = y;
 m_accelZ = z;
 emit accelChanged();
 }
}

void HybridSensor::onLightChanged() {
 QLightReading* reading = m_lightSensor->reading();
 m_lux = reading->lux();
 emit luxChanged();
}

The code is relatively self-explanatory. The start() and stop() slots call the corresponding sensor
methods. The onAccelerationChanged() slot is triggered by the accelerometer when a new reading
is available: the method retrieves a pointer to a QAccelerometerReading instance and uses the x, y,
and z components to update the corresponding HybridSensor member variables. The QML
bindings are also updated with the new acceleration values when the accelChanged signal is emitted
(note that the accelChanged signal is emitted only if the reading’s magnitude is higher than a predefined
threshold, which is defined by x*x+y*y+z*z > 0.1). The onLightChanged() slot works in a similar way
by retrieving a pointer to a QLightReading instance.

The Application Delegate
You still need to access a HybridSensor instance from QML. The application delegate takes care of
this by providing a QML property for the HybridSensor instance (see Listing 9-6).

Listing 9-6. ApplicationUI.hpp

class ApplicationUI : public QObject
{
 Q_OBJECT
 Q_PROPERTY(HybridSensor* sensor READ sensor CONSTANT)
public:
 ApplicationUI(bb::cascades::Application *app);
 virtual ~ApplicationUI() { }
private:
 HybridSensor* sensor();
 HybridSensor* m_hybridSensor;
};

290 CHAPTER 9: Sensors

The application delegate’s constructor proceeds by registering the HybridSensor class with the
QML type system. (The constructor also sets the application delegate as a QML document context
property. The sensor property will therefore be accessible as _app.sensor from QML. See Listing 9-7.)

Listing 9-7. ApplicationUI.cpp

#include <bb/cascades/Application>
#include <bb/cascades/QmlDocument>
#include <bb/cascades/AbstractPane>
#include "applicationui.hpp"

using namespace bb::cascades;

ApplicationUI::ApplicationUI(bb::cascades::Application *app) :
 QObject(app), m_hybridSensor(new HybridSensor(this))
{
 qmlRegisterType<HybridSensor>();
 // Create scene document from main.qml asset, the parent is set
 // to ensure the document gets destroyed properly at shut down.
 QmlDocument *qml = QmlDocument::create("asset:///main.qml").parent(this);

 qml->documentContext()->setContextProperty("_app", this);

 // Create root object for the UI
 AbstractPane *root = qml->createRootObject<AbstractPane>();

 // Set created root object as the application scene
 app->setScene(root);
}

HybridSensor* ApplicationUI::sensor(){
 return m_hybridSensor;
}

Filters
Some sensors, such as the accelerometer, are particularly sensible to a noisy signal. You can
therefore recourse to a filter as a way of removing spikes out of the signal. A filter permits you to do
the following:

Modify the reading values.	

Suppress the reading altogether.	

Process readings in a pipeline. The filters will be called in turn by the sensor and 	
each filter can modify the current reading.

291CHAPTER 9: Sensors

Filters must subclass the QSensorFilter class and implement the following pure virtual method:

	bool QSensorFilter::filter(QSensorReading* reading)=0: This function is
called by the sensor when the reading changes. If the filter returns true, the
next filter in the chain will handle the reading; otherwise, the reading will be
dropped. When the last filter in the chain returns true, the readingChanged
signal is emitted.

Note that you can greatly optimize your application by using filters and avoiding triggering the
readingChanged signal unnecessarily. Also, instead of subclassing QSensorFilter directly, you can
use one of its subclasses corresponding to a particular sensor type. For example, you can subclass
the QAccelerometerFilter class for accelerometer readings, as follows:

bool QAccelerometerFilter::filter(QAccelerometerReading* reading) = 0.

Finally, you can add a filter to a sensor using the QSensor::addFilter(QSensorFilter* filter) method.

To illustrate the previous points, let’s modify HybridSensor by adding filtering capabilities to the class
(see Listing 9-8).

Listing 9-8. HybridSensor.hpp

class HybridSensor : public QObject, public QtMobility::QAccelerometerFilter{
Q_OBJECT
// properties omitted
public:
 virtual bool filter(QtMobility::QAccelerometerReading *reading);
// remaining class members
};

Next, you need to update the HybridSensor constructor (see Listing 9-9).

Listing 9-9. HybridSensor.cpp

HybridSensor::HybridSensor(QObject* parent) :
 QObject(parent), m_accelerometer(new QAccelerometer(this)),
 m_lightSensor(new QLightSensor(this)), m_accelX(0), m_accelY(0), m_accelZ(0),
 m_lux(0) {
 // code omitted. See Listing 9-4
 m_accelerometer->addFilter(this);
}

And finally, Listing 9-10 gives the filter method.

Listing 9-10. HybridSensor.hpp

bool HybridSensor::filter(QAccelerometerReading *reading) {
 double x = reading->x();
 double y = reading->y();
 double z = reading->z();
 if (x * x + y * y + z * z > 0.1) {
 return true;

292 CHAPTER 9: Sensors

 } else {
 return false;
 }
}

Sensors in QML
Using sensors in QML is deceptively simple. All you need to do is declare the sensor as an attachedObject
property of a control in the scene graph. You can then handle the sensor’s readingChanged signal in
the usual QML way by defining an onReadingChanged slot. To illustrate this, I have rewritten the QML
document from Listing 9-1 so that it uses sensors directly (see Listing 9-11).

Listing 9-11. main.qml

import bb.cascades 1.0
import QtMobility.sensors 1.3
Page {
 Container {
 leftPadding: 10
 rightPadding: 10

 Label {
 text: "Hello Sensors"
 textStyle.base: SystemDefaults.TextStyles.BigText
 horizontalAlignment: HorizontalAlignment.Center
 }
 Container {
 bottomMargin: 50
 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 Label {
 text: "Accel x:"
 verticalAlignment: VerticalAlignment.Center
 }
 TextField {
 id: x
 }

 }
 Container {
 bottomMargin: 50
 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 Label {
 text: "Accel y:"
 verticalAlignment: VerticalAlignment.Center
 }

293CHAPTER 9: Sensors

 TextField {
 id: y
 }
 }
 Container {
 bottomMargin: 50
 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 Label {
 text: "Accel z:"
 verticalAlignment: VerticalAlignment.Center
 }
 TextField {
 id: z
 }
 }
 Container {

 bottomMargin: 50

 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 Label {
 text: "Light :"
 verticalAlignment: VerticalAlignment.Center
 }
 TextField {
 id: light
 }
 }
 Container {
 layout: StackLayout {
 orientation: LayoutOrientation.LeftToRight
 }
 horizontalAlignment: HorizontalAlignment.Center
 Button {
 id: start
 text: "start"
 onClicked: {
 accel.start();
 lux.start();
 }
 }
 Button {
 id: stop
 text: "stop"

294 CHAPTER 9: Sensors

 onClicked: {
 accel.stop();
 lux.stop();
 }
 }
 }
 attachedObjects: [
 Accelerometer {
 id: accel
 active: false
 // Don't change sensor axis on screen rotation.
 axesOrientationMode: Accelerometer.FixedOrientation
 // Remove gravity, detect only user movement.
 accelerationMode: Accelerometer.User
 skipDuplicates: true
 // Called when a new accel reading is available.
 onReadingChanged: {
 if(reading.x*reading.x+reading.y*reading.y+reading.z*reading.z > 0.1)
 {
 x.text = reading.x;
 y.text = reading.y;
 z.text = reading.z;
 }
 }
 },
 LightSensor {
 id: lux
 active: false
 onReadingChanged: {
 light.text = reading.lux;
 }
 }
]
 }
}

Before referencing sensors in QML, you need to import the QtMobility.sensors namespace
(this is achieved with the second import statement). You also have to declare the sensor objects as
attachedObjects properties of the root container. Note that the signal handlers are similar to their
C++ counterparts and behave in exactly the same way.

Sensors Coordinate System
Sensors such as the accelerometer, gyroscope, and magnetometer use a right-handed coordinate
system to report their readings. The x-axis, or abscissa, increases as you move toward the right of
the screen, and the y-axis, or ordinate, increases as you move toward the top of the screen. Finally,
the z-axis is perpendicular to the screen (see Figure 9-3).

295CHAPTER 9: Sensors

Sensors inheriting from QOrientableSensorBase (such as the accelerometer) can react to screen
orientation changes. Therefore, these sensors can report their readings differently according to the
screen’s orientation. Their reporting behavior is controlled by the QOrientableSensorBase::axesOrien
tationMode property, which can take the following values:

	QOrientableSensorBase::FixedOrientation: This is the default behavior and the
readings remain unaffected by the screen’s orientation change. When the screen
orientation changes, the application will have to “compensate” the returned
values in order to take into account the new screen orientation (the application
will also need to detect screen orientation changes).

	QOrientableSensorBase::AutomaticOrientation: The sensor readings are
automatically remapped based on the current screen orientation. Therefore,
the application need not worry about screen orientation changes (this is the
recommended value to use in your application).

	QOrientatableSensorBase::UserOrientation: This is similar to the previous
setting except that the readings are rotated by fixed angles of 0, 90, 180, and
270 degrees (no intermediate values).

Notice that applying the device rotation to the sensor readings is equivalent to rotating the
coordinate system when the screen orientation changes.

Figure 9-3. Right-handed coordinate system (image source: BlackBerry web site)

296 CHAPTER 9: Sensors

Finally, angular displacements around the coordinate system’s axes are also reported as right-hand
rotations. You can visualize this by imagining that you are holding an imaginary screwdriver in your
hand along a coordinate system axis. Positive rotations along an axis are then defined by using the
screwdriver so that an imaginary screw would move toward increasing values along the axis
(see Figure 9-4).

Figure 9-4. Right-handed rotations around coordinate system (image source: BlackBerry web site)

Accelerometer and Gyroscope
Before finishing this chapter, I want to give you some tips on how to process the data readings
provided by the accelerometer and gyroscope sensors. As you noticed throughout the chapter,
receiving sensor readings is quite simple. The difficulty lies in the handling and interpretation of the
data. I don’t intend to give you a comprehensive treatment of the data processing, but hopefully this
section will put you on the right track should you need to implement more advanced techniques in
your own applications.

297CHAPTER 9: Sensors

Accelerometer
As implied by its name, an accelerometer measures acceleration; in our case, it measures your
device’s linear acceleration in three-dimensional space. So how do you define acceleration exactly?
You might recall from high-school physics that acceleration is a vector giving the rate of change of
velocity per unit of time (a vector is a quantity having direction and magnitude). Velocity in turn is the
rate at which an object changes position per unit of time. Expressing this mathematically, we can
write the following:

2

2
= = =

dv d dx d x
a

dt dt dt dt

An accelerometer can therefore be used in order to measure

Velocity and displacement by integrating the accelerometer readings.	

A vibration or impact indicator (for example, when you shake or jolt the device). 	

So how should you proceed to integrate accelerometer values to obtain the device’s velocity and
position in practice? You will first need to capture accelerometer readings at regular time intervals,
as previously illustrated using the QTimer technique. You will then need to integrate twice. The first
integration step is acceleration with respect to time in order to obtain the device’s velocity. You will
then integrate velocity with respect to time in order to obtain the device’s displacement. To illustrate
this, let us consider the acceleration readings given in Figure 9-5.

Figure 9-5. Acceleration readings with linear interpolation

You will notice that I am using linear interpolation for acceleration, which also makes the integration
trivial. The velocity’s value at time tA is therefore given by:

= = =

∫

2

0
0

 t
2 2

A
A

t
t

A A A
a A

A A

a a at
v t dt

t t

298 CHAPTER 9: Sensors

Repeating the same procedure at time tB, we get (I am going to consider here that the time samples
are equally spaced and tB = 2tA) the following:

1
 2 (a)

2

 −
− = + − = +

 ∫
B

A

t
B A

b a A B A B A
t A

a a
v v t a a dt t a

t

In the general case, the following recursion stands:

1 1
1
 (a)
2− −= + +n n A n nv v t a

In other words, you can calculate your device’s velocity at any time by sampling the acceleration and
applying this recursive relation.

You can measure displacement applying the same technique, but this time by integrating velocity,
as follows:

= = =

∫

2
2

0
0

2 2 4

A
A

t
t

A A A
A A

A

v a at
x t dt t

t

You will then also get a recursive relation of the following form:

− −= + +n n A n nx x t v1 1
1

 (v)
2

Gyroscope
A gyroscope measures angular velocity. By integrating the gyroscope readings with respect to time,
you will get the device’s angular position (note that you will need to integrate along all three axes of
the coordinate system to get a complete view of the device’s rotations). The gyroscope’s angular
velocity is given by:

θω =
d
dt

And the angular position is given by:

θ ω ω= ≅ ∆∑∫0
0

Nt

dt t

If you want to use the relation in recursive form, it is given by:

ω−θ = + ∆1 n n n tθ

299CHAPTER 9: Sensors

Combining Readings
In practice, you will combine the gyroscope and accelerometer readings to measure your device’s
displacement using six degrees of freedom (i.e., three translations measured by the accelerometer
and three rotations measured by the gyroscope).

The first application that comes to mind is gaming. For example, let us consider the infamous first
person shooter: you could use the gyroscope in order to “aim” with your weapon at various targets.
A tap on the screen would fire that weapon, and then jolting the device would reload the weapon.

Summary
This chapter introduced you to the rich world of sensors and their applications in mobile computing.
I showed you how to write sensor-aware applications by using the QtMobility module, which is part
of the BlackBerry 10 platform. You also saw how easily you could obtain sensor readings in C++ and
QML by using the sensor types supported by BlackBerry 10. I emphasized the fact that obtaining
those readings is extremely simple and that the real difficulty lies in the data post-processing.

The obvious application of sensors is in game programming by combining the accelerometer and
gyroscope. However, as the BlackBerry 10 platform evolves and new sensor types are introduced
in the future, the potential applications will grow exponentially. Applications in domains such as
personal health management have huge potential. For example, imagine an application using
sensors capable of monitoring your heart and stress levels and capable of playing a specific playlist
on your device in order to lower your stress.

Sensor-aware applications are a largely untapped market at the moment and this is something you
should definitely consider when designing your next BlackBerry 10 killer app.

	Chapter 9: Sensors
	Sensor Types
	Sensors in C++
	Determining Sensors Types
	Using Sensors in C++
	HybridSensor
	The Application Delegate

	Filters

	Sensors in QML
	Sensors Coordinate System
	Accelerometer and Gyroscope
	Accelerometer
	Gyroscope
	Combining Readings

	Summary

