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Abstract

Background: Both environmental and genetic factors contribute to individual susceptibility to initiation of
substance use and vulnerability to addiction. Determining genetic risk factors can make an important contribution
to understanding the processes leading to addiction. In order to identify gene(s) and mechanisms associated with
substance addiction, a custom platform array search for a genetic association in a case/control of homogenous
Jordanian Arab population was undertaken. Patients meeting the DSM-VI criteria for substance dependence
(n= 220) and entering eight week treatment program at two Jordanian Drug Rehabilitation Centres were
genotyped. In addition, 240 healthy controls were also genotyped. The sequenom MassARRAY system (iPLEX GOLD)
was used to genotype 49 single nucleotide polymorphisms (SNPs) within 8 genes (DRD1, DRD2, DRD3, DRD4, DRD5,
BDNF, SLC6A3 and COMT).

Results: This study revealed six new associations involving SNPs within DRD2 gene on chromosome 11. These six
SNPs within the DRD2 were found to be most strongly associated with substance addiction in the Jordanian Arabic
sample. The strongest statistical evidence for these new association signals were from rs1799732 in the C/−C
promoter and rs1125394 in A/G intron 1 regions of DRD2, with the overall estimate of effects returning an odds
ratio of 3.37 (χ2 (2, N= 460) = 21, p-value= 0.000026) and 1.78 (χ2 (2, N= 460) = 8, p-value= 0.001), respectively. It has
been suggested that DRD2, dopamine receptor D2, plays an important role in dopamine secretion and the signal
pathways of dopaminergic reward and drug addiction.

Conclusion: This study is the first to show a genetic link to substance addiction in a Jordanian population of Arab
descent. These findings may contribute to our understanding of drug addiction mechanisms in Middle Eastern
populations and how to manage or dictate therapy for individuals. Comparative analysis with different ethnic
groups could assist further improving our understanding of these mechanisms.
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Background
Substance addiction and dependency has been influ-
enced by both genetic and environmental risk factors
[1]. It has been estimated that genetic factors contribute
to 40%–60% of the vulnerability to drug addiction, and
environmental factors provide the remainder [2-6].
However, there is also evidence for shared genetic vul-
nerability to two or more drugs such as cannabis, seda-
tives, stimulants and opiates which may explain the
finding that addicted patients are often dependent on
more than one category of drug [2-9]. The presence of
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unique and shared genetic factors for substance addic-
tion [5,7] leads to the hypothesis that there is an associ-
ation between specific genetic polymorphisms and
increased risk of substance addiction.
Genetic susceptibility to addiction is the result of the

interaction of many genes related to the central nervous
system (CNS) [9-12]. In this system, dopamine is
thought to be the primary neurotransmitter involved in
the mechanisms of reward and reinforcement [13-16].
The function of dopamine is mediated by two classes of
dopamine receptors termed D1 like and D2 like families.
The D1 like family (D1 and D5 dopamine receptors) me-
diate a reduction in the drive to seek reinforcement
effects, in contrast to the family of D2-like receptors (in-
cluding D2, D3, and D4 dopamine receptors) mediate
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both reward and reinforcement effects [6,15-19]. The
dopamine receptor gene family, which comprises DRD1
(MIM *126449), DRD2 (MIM *126450), DRD3 (MIM
*126451), DRD4 (MIM * 126452) and DRD5 (MIM
*126453) is a prime candidate gene family for influen-
cing substance abuse because this gene family is thought
to play one of the most important roles in the neurobe-
havioral signaling pathways implicated in substance ad-
diction [15,18].
Several studies have implicated a role for the products

of dopamine receptor gene variants in mediating the be-
havioral and neurochemical properties of opiates such as
heroin [8,16]. It has also been suggested that the en-
dogenous dopamine system may also contribute to the
development of dependence on other drugs of abuse
such as alcohol, cannabis, cocaine and amphetamines
[7,11,12]. Various studies have shown that dopamine
receptors are involved in reinforcement of drug use in
addicted individuals [15]. Other neurotransmitters are
also thought to play a role in reinforcement including
the dopamine active transporter (DAT; gene symbol
SLC6A3, MIM *126455) [20], neurotrophines such as
Brain-derived neurotrophic factor (gene symbol BDNF,
MIM *113505) [21-24] and enzymes systems such as
catechol-O-methyltransferase (gene symbol COMT,
MIM *116790) [25]. All of these genes are expressed
within the meso-corticolimibic dopamine system or
associated structures such as the nucleus accumbens,
ventral tegmental area, amygdala, prefrontal cortex,
hippocampus and cerebral cortex [5,11,12,21].
Human molecular genetic studies are also implicating

the dopamine receptor gene family in substance use disor-
ders. The rs5326 SNP is located in the 5'-UTR of DRD1
gene and has been linked to heroin dependence in African
Americans [26]. While there are no similar confirmed
associations between DRD2 gene and substance addiction
[15,27], some variants within DRD2 gene such as the
rs1799732 SNP (C/-C, 5'-UTR) warrant further investiga-
tion as these variants have a functional effect on gene ex-
pression [28]. The DRD3 gene has been reported to be
associated with substance abuse [29] and cocaine [30] and
heroin abuse [31] but others have not reported association
with abuse of either drug [32,33]. The rs3758653 SNP
located in the 5'-UTR of the DRD4 gene has been reported
to be associated with heroin dependence in 53 heroin
Hungarian addicts [34]. The DRD5 gene has not been the
subject of many genetic studies.
The dopamine active transporter (DAT, SLC6A3) is

widely distributed throughout the brain in areas of dopa-
minergic activity [20]. The DA transporter DAT1 mediates
the active reuptake of DA from the synapse and is a prin-
cipal regulator of dopaminergic neurotransmission. Its ad-
dictive effects are thought to be principally mediated
through blockage of DAT, resulting in a substantial
increase in the concentration of extracellular DA and
stimulation of neurons in brain regions involved in reward
and reinforcement behavior [35]. Family and twin studies
suggest that DAT1 is a substantial genetic factor in the
vulnerability of individuals to cocaine dependence after
exposure [36-38]. Therefore, polymorphic functional var-
iants in the DAT gene may act to modify susceptibility to
substance abuse and dependence.
Brain-derived neurotrophic factor (BDNF) is a mem-

ber of the nerve growth factor family. This family is a
group of structurally related secretory proteins widely
expressed in neurons and their target cells [39]. Induced
by cortical neurons, BDNF is required to support exist-
ing neurons in the brain and help in the growth and dif-
ferentiation of new neurons and synapses [40-42].
Studies in animals and humans suggest that BDNF influ-
ences the dopaminergic and serotonergic functions that
are heavily linked to substance addiction [43-47]. In
mice, BDNF administration or BDNF genetic knockouts
have shown that this factor can alter drug preference or
drug-induced behavior. In humans, Uhl et al. (2001)
used 1494 SNPs to scan for vulnerability genes for poly-
substance abuse. Using 1004 European American and
African American samples; they found that positive as-
sociation markers flank the BDNF gene and Val66Met at
rs6265 position was associated with drug addiction vul-
nerability [46]. Recently, various studies have shown that
the Val66Met substitution in the prodomain may affect
intracellular trafficking and activity-dependent secretion
of BDNF [47,48]. Overall these animal and human stud-
ies indicate that BDNF may be involved in the mechan-
isms underlying substance addiction [49].
Catechol-O-methyltransferase (COMT) is one of several

enzymes that metabolises catecholamine such as dopa-
mine, epinephrine and norepinephrine and play a role in
the reinforcement mechanism [5,7]. Nikoshkov et al.
(2008) suggests that heroin addicts with homozygous
genotype at position rs4680 Met158/Met158 have a sig-
nificant up-regulation of COMT gene expression [50]. In
contrast, heroin addicts with the heterozygous genotype
(Vall158/Met158) or homozygous genotype of Vall158 at
this position show a down-regulation of COMT gene ex-
pression. Goldman (2005) reported that the Val158 variant
catabolizes dopamine up to four times the rate of its me-
thionine counterpart, resulting in significant lower synap-
tic dopamine levels following neurotransmitter release.
This ultimately reduces dopaminergic stimulation of the
post-synaptic neuron [5]. Therefore, due to the role of
COMT in prefrontal dopamine degradation, the Val158-
Met polymorphism is thought to be associated with
increased risk of substance addiction by modulating dopa-
mine signaling in the frontal lobes.
In the present study, we examined 49 SNPs within

eight candidate genes, the dopamine receptors DRD1,
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DRD2, DRD3, DRD4 and DRD5, the dopamine trans-
porter (SLC6A3) brain-derived neurotrophic factor
(BDNF) and catechol-O-methyltransferase (COMT) for
genetic association analysis with substance addiction in
Arab individuals. To the best of our knowledge, this re-
port is the first genetic association study for substance
addiction in a Middle Eastern population of Arab des-
cent. These findings may prove crucial to our under-
standing of substance addiction mechanisms in Arab
populations. At the individual level, this knowledge may
improve patient management and treatment.

Methods
Subjects
All substance addiction subjects were recruited from the
National Centre for Rehabilitation of Addicts (NCRA) at
Jordanian Ministry of Health and the Drug Rehabilita-
tion Centre at the Jordanian Public Security Directorate
(DRC-PSD). They were diagnosed as having substance
addiction using DSM-IV criteria (American Psychiatric
Association, 1994) [51]. A semi-structured interview
based on the Addiction Severity Index (ASI) criteria [52]
was used to collect clinical and demographic data for
each subject. The clinical and demographic data were
collected by an administering officer from each of the
addiction treatment Centres. The clinical data included
current drug of abuse, age at first use of drug, onset and
years of drug use, substance and psychiatric treatment,
drug overdose and history of substance abuse. Demo-
graphic data collected included date of birth, gender, na-
tionality was also provided. All data was coded and no
specific individual was identified. The mean age (±SD) of
these subjects was 32.7 (±8.4) years with an age range of
18 to 58 years.
In addition, 240 healthy males from an ethnically

homogenous Jordanian Arab population with no lifetime
history of psychosis or mood disorders, or alcohol or
heroin dependence according to the DSM-IV, were used
as controls. These controls were recruited from the
Blood Bank of the King Abdullah Hospital University,
Jordan University of Science and Technology. These
controls were frequency matched by age, sex and ethni-
city to the case subjects. The mean age (±SD) of the
controls was 31.5 (± 5.6) years with an age range of
18 years to 54 years.
This study was conducted according to the provisions

of the Australian Medical Association Code of Ethics
(2006) and the World Medical Association Declaration
of Helsinki (World Medical Association, 2008). The
study was also subject to, and in compliance with, the
National Statement on Ethical Conduct in Human Re-
search, Australia (2007). Ethical approval to conduct this
research was granted by the Human Research Ethics
Committee of The University of Western Australia (Ref
No. RA/4/1/4344). This study was also approved by the
Human Ethics Committee of the Jordanian Ministry of
Health (Ref No. Development/Trainees/535) and by the
Institutional Review Board of the Jordan University of
Science and Technology (Ref No. RA/16/1/2010). Writ-
ten informed consent was obtained from all subjects and
controls before participation in the study.

DNA extraction
After blood was drawn into EDTA tubes, genomic DNA
was extracted using the Gentra PuregeneW Blood Kit
(Qiagen, Valencia, CA, USA) according to the recom-
mendations of the manufacturer. Briefly, 300 μl of whole
blood from each sample was mixed with 200 μl of lysis
buffer (50 mM Tris pH 8.0, 100 mM EDTA, 100 mM
NaCl, 1% SDS) and 40 μl of Proteinase K. 100 μl of iso-
propanol and 500 μl of Inhibitor Removal Buffer (5 M
guanidine-HCl, 20 mM Tris–HCl pH 6.6) was then
added. The DNA was washed with a buffer (20 mM
NaCl; 2 mM Tris- HCl; pH 7.5) and centrifuged twice at
2,000 rpm. The DNA was washed using cold 70% etha-
nol, centrifuged at 3,000 rpm and the supernatant was
discarded, leaving a pellet that contained purified genomic
DNA. The DNA pellet was diluted in TE buffer (1 mM
EDTA; 10 mM Tris–HCl, pH 7.5) to a concentration of
approximately 50 ng.μl-1. DNA concentration (ng/μl) and
purity (A260/280) were also verified using the Nano-Drop
ND-1000 UV–vis Spectrophotometer (NanoDrop Tech-
nology, Wilmington, DE) and subsequently adjusted to
approximately 100 ng/μL. Purified DNA was stored at
−80°C before use.

Genotyping
In this study, 49 single nucleotide polymorphisms
(SNPs) within eight genes (DRD1, DRD2, DRD3, DRD4,
DRD5, BDNF, SLC6A3 and COMT) were selected from
public databases including the SNP database of the Na-
tional Centre for Biotechnology Information (NCBI;
http://www.ncbi.nlm.nih.gov/SNP/), the Applied Biosys-
tems SNP database (http://www.appliedbiosystems.com)
and the International HapMap Project (http://www.hap-
map.org/). The positions of the SNPs in these selected
genes and the relative distance to the translation initi-
ation site are given in Table 1.
SNP genotyping using the sequenom MassARRAYW

system (iPLEX GOLD) (Sequenom, San Diego, CA,
USA) was performed according to the manufacturer’s
recommendations (Sequenom, San Diego, CA, USA).
Briefly, PCR and single base extension primers (SBE)
were designed using MassARRAY assay design 3.1 soft-
ware (Sequenom MassARRAY system) that allows iPLEX
reactions for SBE designs with the modified masses asso-
ciated with the termination mix. Manufacturer’s instruc-
tions for the multiplex reaction were followed in the
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Table 1 List of Genes, their SNPs and positions, and genotyping data based on the whole cohort (460 subjects)

Gene Gene location SNP _ID Positiona SNP SNP location Discrepancy rateb Call ratec

DRD1 5q35.1 rs5326 174802802 G>A 5'-UTR 0.25% 99%

DRD2 11q23 rs1800496 112788698 C > T Exon 7 0.00% 100%

rs6277 112788669 T > C 3'-UTR 0.15% 99%

rs2511521 112790509 T > C Intron 4 0.00% 100%

rs12574471 112821446 C > T Intron 1 0.00% 100%

rs2283265 112790746 G> T Intron 4 0.00% 100%

rs6279 112786283 C >G 3'-UTR 0.00% 100%

rs4581480 112829684 T > C 5'-UTR 0.00% 100%

rs4350392 112840927 C >A 5'-UTR 0.00% 100%

rs10891556 112857971 G> T 5'-UTR 0.00% 100%

rs7103679 112808884 C > T Intron 1 0.00% 100%

rs4938019 112846601 T > C Intron 1 0.00% 100%

rs1076560 112788898 G> T Intron 5 0.00% 100%

rs2075654 112794276 G>A Intron 2 0.00% 100%

rs7125415 112815891 C > T 5'-UTR 0.00% 100%

rs4648317 112836742 C > T Intron 1 0.00% 100%

rs1125394 112802395 A>G Intron 1 0.00% 100%

rs4648318 112818599 A>G Intron 1 0.00% 100%

rs12363125 112791126 A>G Intron 5 0.00% 100%

rs2734836 112796449 G>A Intron 2 0.05% 99%

rs12364283 112852165 T > C 5'-UTR 0.00% 100%

rs1799978 112851561 A>G 5'-UTR 0.00% 100%

rs6275 112788687 C > T Exon 7 0.15% 99%

rs1800497 112776038 C > T Exon 8 0.00% 100%

rs1079597 112801496 A>G Intron 1 0.00% 100%

rs1799732 112851462 -C 5'-UTR 0.00% 100%

rs1800498 112796798 C > T Intron 2 0.00% 100%

DRD3 3q13.3 rs6280 115373505 C > T Exon 1 0.07% 99%

DRD4 11p15.5 rs3758653 626399 C > T 5'-UTR 0.05% 99%

DRD5 4p16.1 rs10033951 9388678 C > T 5'-UTR 0.05% 99%

SLC6A3 5p15.3 rs2963238 1497427 A>C Intron 1 0.12% 99%

rs6876225 1459036 C >A Intron 11 0.00% 100%

rs11564773 1449813 A>G Intron 14 0.00% 100%

rs1042098 1447815 T > C 3'-UTR 0.15% 99%

BDNF1 11p13 rs7103873 27656893 C >G Intron 1 0.07% 99%

rs1401635 27650567 C >G Intron 1 0.00% 100%

rs11030102 27638172 C >G Intron 1 0.00% 100%

rs17309930 27705069 A>C,G> T Intron 1 0.07% 99%

rs6265 27636492 G>A 3'-UTR 0.00% 100%

COMT 22q11.21 rs737866 18310109 T > C 5'-UTR 0.00% 100%

rs4680 18331271 A>G Exon 2 0.00% 100%
a.Chromosome positions are based on NCBI Human Genome Assembly Build 36.3.
b.Ratio of the number of discordant genotypes to the number of duplicates.
c.Ratio of the number of valid genotypes to the number of subjects genotyped (N= 460) at each locus.
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whole process, including the PCR amplification (Seque-
nom, San Diego, CA, USA), the shrimp alkaline phos-
phatase (SAP) enzyme (Sequenom, San Diego, CA,
USA) treatment to dephosphorylate dNTPs unincorpor-
ated in the PCR, the SBE reactions using an iPLEX
GOLD assay (Sequenom, San Diego, CA, USA), and the
clean-up with a resin kit (Sequenom, San Diego, CA,
USA) to desalt the iPLEX reaction products. PCR and
SBE primers sequences and all protocol conditions are
available upon request. Reaction products were dispensed
onto a 384-element SpectroCHIP bioarray (Sequenom)
using a MassARRAY nanodispenser and assayed on the
MassARRAY platform. Mass differences were detected
with matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF MS). MassARRAY
Workstation v.3.3 software was used to process and ana-
lyse the iPLEX SpectroCHIP bioarray. Typer Analyzer
v.4.0.2 software was used to analyse all genotypes obtained
from the assays. Scatter plots of rs1125394 and rs1799732
SNPs within DRD2 gene were colored according to geno-
type calls: AA (green), GA (yellow) GG (blue) and no call
(red) (Figure 1).

Quality control (QC)
Data cleaning was performed using the PLINK software
developed by Purcell et al. (2007) [49]. Using this soft-
ware, the genotype results of each marker are accepted
Figure 1 Representative Scatter plot from sequenom data. The left pa
rs1125394 SNPs within DRD2 gene, respectively. These two SNPs showed th
addiction in Arab population. The X and Y axes on both plots denote the m
versus high mass allele) at the rs1799732 SNP (panel a) and for the two alle
(panel b). Each point represents the measurements for a single individual. T
calls. For example in the left panel (a), green color denotes –C genotype; y
genotype and red color denotes no call. Genotypes determined by sequen
accurate with average success rate 100%. Genotype discrepancy average (±
cohort (460 subjects).
only if the success rate is at least 90%. SNPs were
excluded from the analysis based on the following cri-
teria: (1) minor allele frequency (MAF) < 0.05, or (2)
missingness per SNP > 5%, or (3) significant deviation
(p-value < 1.0 E-06) from the Hardy-Weinberg equilib-
rium (HWE).

Statistical methods
Hardy-Weinberg equilibrium
The HWE provides a measure of wether an evolution-
ary event has influenced an allele frequency. Theoretic-
ally calculated, expected and seen genotype frequencies
are compared to each other and a Pearson χ2 test is
used to test whether they significantly differ from each
other. In this study, the estimated genotype frequencies
were calculated as follows: p2 + 2pq + q2 = 1, in which p
represents the frequency of one allele, and q represents
the frequency of the other allele [53]. Significant devia-
tions from HWE may indicate genotyping errors.

Genetic association analysis
The software package PLINK [54] was used to test for asso-
ciation between genetic variants and substance addiction.

Correction for multiple testing
In order to correct for the effect of multiple testing for a
given phenotype, the effective number of SNPs using the
nel (a) and right panel (b) illustrate the scatter plot of rs1799732and
e strongest statistical evidence for association with substance
ass height measurement for the two alleles (C, C.DEL, low mass allele
les (G, A, low mass allele versus high mass allele) at the rs1125394 SNP
he points in the both panels are colored according to the genotype
ellow color denotes C/-C genotype and blue color denotes CC
om MassARRAYW system (iPLEX GOLD) for all 49 SNPs were highly
SD) rate across the 49 loci were only 0.02% (±0.06%) in the whole
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method of Li and Ji (2005) was estimated [55], which
employs a modification of an earlier approach by Nyholt
(2004) [56]. After obtaining the effective number of
SNPs (Nem), a modified Bonferroni procedure was applied
to identify a target alpha level (0.05/ Nem) that would
maintain an overall significance level of 0.05 or less.

Results
The study sample
Altogether 460 individuals were analysed in this study to
identify potential candidate genes related to substance ad-
diction. The study sample consisted of 220 Jordanian Arab
individuals with substance addiction and 240 matched
controls. The average age (±SD) was 32.70 (± 8.4) and
31.5 (± 5.6) years, respectively. No drug dependent indi-
vidual or control had any psychiatric diseases according to
the DSM-IV criteria assessment. There were no significant
differences found between individuals with drug depend-
ence and controls with regard to age and sex. Clinical and
demographic data including gender, age, current drug
abuse, dependence variables, drug overdose or toxicity,
history of drug use and substance and psychiatric treat-
ment is given in Table 2.

HWE test
HWE tests were performed in case and control groups
for the studied polymorphisms respectively. All poly-
morphism were in HWE in both case and control
groups except for the three SNPs within DRD2 gene
(rs1801028, rs2734838, and rs1110976) and two SNPs
within SLC6A3 gene (rs27048, rs6347). Two SNPs for
COMT gene (rs1544325, rs2239393) had p-values < 1.0
E-06 and were excluded from the study.

Quality control (QC)
All the genotyped SNPs were checked for HWE and
Mendelian errors. All duplicates were identical, water
controls were clean, markers were in HWE and no Men-
delian errors were observed. Genotypes determined by
sequenom MassARRAYW system (iPLEX GOLD) for all
49 SNPs were highly accurate with an average success
rate of 100%. The genotype discrepancy average (±SD)
rate across the 49 loci was only 0.02% (±0.06%) in the
whole cohort (460 subjects).

The candidate genes and the SNPs
The NCBI, dbSNP and HapMap databases were used
for the SNP selection. The goal was to select SNPs
that had significant functional relevance, covered the
genes of interest as widely as possible, and had been
previously genotyped. Using these criteria, a total of
49 SNPs were selected (Table 2). Of these, 41 (82%)
passed quality control and were used in the associ-
ation analysis.
Association of SNPs candidate genes with substance
addiction
Association analysis of eight genes (DRD1, DRD2,
DRD3, DRD4, DRD5, SLC6A3, BDNF and COMT) with
substance addiction was performed using PLINK Soft-
ware [54]. The association p- values from the PLINK
genetic association analysis are shown in Table 3.

Dopamine receptor genes
The top scoring SNPs for association with substance ad-
diction were from the DRD2 gene (Figure 1). The signifi-
cant p-values for genotypic frequency ranged from 0.03 to
0.000026 for six SNPs within DRD2 gene on chromosome
6 (Table 3). The strongest statistical evidence for these
new association signals were from rs1799732 in the C/−C
promoter and rs1125394 in A/G intron 1 regions of
DRD2, with the overall estimate of effects returning an
odds ratio of 3.37 (χ2 (2, N=460) = 21, p-value= 0.000026)
and 1.78 (χ2 (2, N= 460) = 8, p-value=0.001), respectively.
The p-values for allelic frequency ranged from 0.01 to
0.0001 for five SNPs (rs2283265 (G/T, intron 4),
rs1125394 (A/G, rs2075654, intron 1), rs2734836 (G/A,
intron 2), and rs1799732 (C/-C, 5'-UTR) (data not shown)
within DRD2 gene. The strongest statistical evidence of al-
lelic frequency for these new association signals were from
rs1799732 (χ2 (1, N=460) = 15, p-value= 0.0001) and
rs2283265 (χ2 (1, N= 460) = 8, p-value=0.005).

Solute carrier family 6, member 3(SLC6A3), brain-derived
neurotrophic factor (BDNF) and catechol-O-methyltransferase
(COMT) genes
There were no significant difference of genotype
(Table 3) or allele frequencies (data not shown) of the
studied SNPs in the SLC6A3, BDNF and COMT genes
between subjects with substance addiction and normal
controls.

Discussion
Although epidemiologic studies have shown that sub-
stance addiction is strongly influenced by genetic factors,
the number and identity of vulnerability genes remain
unknown [1,3-8]. This is the first study to examine eight
candidate genes for association with substance addiction
in individuals of Arab descent. These eight genes were
the Dopamine receptors (DRD1, DRD2, DRD2, DRD3
and DRD5), Solute Carrier Family 6, Member 3
(SLC6A3), Brain-Derived Neurotrophic Factor (BDNF)
and Catechol-O-Methyltransferase (COMT). Altogether
460 individuals were genotyped using 49 SNPs from
these eight genes. Of the samples tested, 220 were from
substance addicted male subjects of Arab descent. The
control group were an ethnically homogenous Jordanian
Arab population with no lifetime history of psychosis,
mood disorders or substance dependence.



Table 2 Characteristics of 220 substance abuse patients of Arab origin in this study

Category Subcategory Value (n) Percentage (%)/Mean± SD

Demographic data Gender Male 220 100.0%

Female 0 0.0%

Age (years) 18-20 12 5.5%

21-39 165 75.0%

+40 43 19.5%

Drug/alcohol problem Current drug abuse Nicotine 203 92.0%

Opiates 185 84.0%

Cannabis 128 58.0%

Alcohol 117 53.0%

Amphetamine 31 14.0%

Cocaine 7 3.0%

Dependence Age first drug use (years) 220 18.7 ± 10.1

Age of onset (years) 220 20.3 ± 10.9

Duration (years) 220 7.6 ± 6.6

Frequency (days/week) 220 3 ± 1.5

Drug overdose 100 45.5%

History of drug use 53 24.0%

Previous treatment Substance treatment Alcohol 117 53.0%

Drugs 185 84.0%

Psychiatric treatment Inpatient 15 7.0%

Outpatient 20 9.0%

Mean (M) data are provided with ± Standard Deviation (SD).
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Both dopamine and non-dopamine neurochemical path-
ways through neurotransmitters (SLC6A3), neurotrophic
factors (BDNF) and enzymes (COMT) are influenced by
drugs and their psychoactive and addictive effects
[8,10,12]. Dopamine is one of the main neurotransmitters
involved in the stimulation of reward pathways, which is
the important feature of substance addiction [13,15,57]. It
has been suggested that dopamine receptor genes play a
role in the genetics of substance addiction [58-60]. Previ-
ous studies have emphasized the importance of dopamine
gene family specifically DRD2 gene as a general risk factor
for substance dependence rather than a marker of risk for
a particular drug [13,15,18]. However, various genetic as-
sociation studies reported that there are inconsistencies in
the frequency of alleles within DRD2 gene in different
populations. For example, Barr and Kidd reported that the
A1 allele frequency differs dramatically among the popula-
tion studied from as low as 0.09 to as high as 0.075 [61].
As many studies indicated that multiple substances in-

fluence dopaminergic system activity, the investigation
of substance addiction may result in a complete examin-
ation of gene risk [7,11,12]. In this study, none of the
polymorphisms within the eight genes differed signifi-
cantly for allele or genotype frequencies, with exception of
six polymorphisms (rs2283265, rs10765560, rs2075654,
rs1125394, rs2734836 and rs1799732) within the DRD2
gene. The strongest statistical evidence for these associ-
ation signals was found within the DRD2 gene at two sites:
rs1799732 (C/-C, 5'-UTR) and rs1125394 (A/G, intron 1).
The strongest evidence of allelic frequency for these asso-
ciation signals were from rs1799732.
The rs1799732 (C/-C, 5'-UTR) is of particular interest be-

cause there is evidence that this allele has a functional effect
on DRD2 gene expression [27]. The dopaminergic system
is involved in reward and reinforcing mechanisms in the
brain [13,57] specifically the positive reinforcing effects of
substance addiction [59]. Animal and human studies of ad-
diction indicate that DRD2 plays a critical role in the mech-
anism of reward and reinforcement behavior [60-63].
Various animal studies reported that opiate rewarding
effects were absent in mice lacking D2 receptors, while
DRD2 overexpression in transgenic mice led to reduced
self-administration of alcohol [60,62]. A positron emission
tomography study of human brain showed that D2 receptor
density in the brain decreased significantly in alcoholic
compared with control subjects [63,64]. These findings sug-
gest that genetically determined variation in DRD2 expres-
sion and function can alter reward responses to a variety of
substances and may contribute to vulnerability to heroin
dependence in humans. For example, DRD2 gene was



Table 3 Association of genes SNPs with opiate drug dependence

Gene SNP _ID SNP M_Aa F_Ab F_Uc Pearson chi-square p-valued OR CMHe

DRD1 rs5326 G>A A 0.172 0.144 1.32 0.256 0.256

DRD2 rs1800496 C> T T 0.027 0.015 1.86 0.173 1.903

rs6277 T > C T 0.427 0.460 1.05 0.307 0.873

rs2511521 T > C G 0.370 0.383 0.16 0.685 0.946

rs12574471 C> T T 0.196 0.161 1.85 0.173 1.265

rs2283265 G> T T 0.146 0.087 8.70 0.001 2.785

rs6279 C>G C 0.406 0.435 0.79 0.374 0.888

rs4581480 T > C C 0.095 0.075 1.29 0.256 1.308

rs4350392 C >A A 0.173 0.217 2.82 0.093 0.755

rs10891556 G> T T 0.187 0.235 3.18 0.074 0.748

rs7103679 C> T T 0.121 0.083 3.48 0.062 1.506

rs4938019 T > C C 0.170 0.216 3.13 0.076 0.743

rs1076560 G> T T 0.157 0.108 4.73 0.031 1.531

rs2075654 G>A A 0.120 0.075 5.43 0.021 1.689

rs7125415 C> T T 0.100 0.118 0.78 0.376 0.829

rs4648317 C> T T 0.170 0.216 3.12 0.076 0.743

rs1125394 A>G G 0.152 0.091 8.00 0.001 1.780

rs4648318 A>G G 0.379 0.361 0.29 0.593 1.080

rs12363125 A>G C 0.513 0.472 1.52 0.217 1.170

rs2734836 G>A A 0.146 0.090 7.00 0.001 1.720

rs12364283 T > C G 0.097 0.129 2.24 0.134 0.730

rs1799978 A>G G 0.141 0.110 2.03 0.154 1.330

rs6275 C> T T 0.404 0.429 0.60 0.440 0.900

rs1800497 C> T T 0.195 0.156 2.37 0.123 1.310

rs1799732 -C -C 0.146 0.067 21.00 0.260E-4 3.370

rs1800498 C> T C 0.509 0.466 1.66 0.190 1.180

DRD3 rs6280 C> T C 0.355 0.370 0.21 0.645 0.938

DRD4 rs3758653 C> T C 0.263 0.287 0.66 0.410 0.886

DRD5 rs10033951 C> T T 0.306 0.325 0.36 0.550 0.917

SLC6A3 rs2963238 A>C A 0.436 0.462 0.63 0.427 0.899

rs6876225 C >A A 0.027 0.035 0.49 0.480 0.764

rs11564773 A>G G 0.043 0.437 0.00 0.978 0.991

rs1042098 T > C C 0.363 0.342 0.42 0.515 1.094

BDNF1 rs7103873 C>G C 0.463 0.510 2.02 0.154 0.827

rs1401635 C>G C 0.231 0.212 0.50 0.481 1.118

rs11030102 C>G G 0.163 0.138 1.17 0.279 1.221

rs17309930 A>C,G> T A 0.136 0.127 0.17 0.679 1.084

rs6265 G>A A 0.182 0.161 0.748 0.387 1.164

COMT rs737866 T > C C 0.363 0.312 2.69 0.100 1.259

rs4680 A >G A 0.475 0.502 0.67 0.411 0.897
a.M_A: minor allele for whole cohort sample.
b.F_A: minor allele frequency in affected individuals (substance addiction cases).
c.F_U: minor allele frequency in unaffected individuals (healthy controls).
d.p-value: two tailed p-value from the 2x2 allele count chi-squared test; p <0.05 (Bonferroni-adjusted).
e.OR CMH: allelic odds ratio from the 2x2xK Cochran-Mantel-Haenszel’s test.
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previously studied by Xu et al. (2004) to examine the sus-
ceptibility of this gene with heroin dependence in Chinese
and German population [65]. This study found that genetic
polymorphisms, specifically rs1799732 (C/-C), within
DRD2 gene play a role as a susceptibility gene with heroin
dependence in Chinese but not in German population [65].
Association with substance addiction was not seen in

the studied SNPs within SLC6A3, BDNF and COMT
genes. Conflicting results have been published in various
studies on the influence of these genes on the increased
risk of substance addiction [35-37,42-46]. Candidate
gene analysis is problematic because the prior probabil-
ity of seeing true association is exceptionally low [66],
unless a very strong case of specific phenotype for in-
volvement of a particular gene can be made. This is not
applied to substance addiction because compelling bio-
logical evidence implicating particular neurotransmitter
receptors in addiction is absent, with the possible excep-
tion of the opioid receptor gene family, and prior prob-
ability is impossible to determine [58]. Thus p-values of
0.05 are more likely to be chance occurrences, especially
when using cases and controls where hidden population
stratification as confounding factor is an inherent dan-
ger. However, a risk of population stratification as a con-
founding factor was not found in this study because the
Jordanian Arab population are considered to be genetic-
ally homogenous population. This offers an advantage
for genetic studies. For example, the numbers of different
variations in the genes behind phenotypes are expected to
be smaller than in more heterogeneous populations. This
increases the probability to find genetic associations [67].
Therefore, even a small study sample from a genetically
homogenous population, like the sample of subjects used
in this study, can give accurate results.
In this study, genotyping was carried out by sequenom

MassARRAYW system for 49 SNPs. The NCBI, dbSNP,
HapMap databases and previous published data were
used to select the studied SNPs, yielding reliable candi-
date SNPs database for genetic association analysis. In
this array we focused on genes of particular interest for
drug, alcohol and neuropsychiatric researchers because
they were reported to be involved in drug dependence
and other neurological and psychiatric disorders [4-12].
The chosen SNPs were also selected because they
showed the greatest potential to distinguish between
substance addicts’ individuals and control subjects in
previous studies [4-12]. Therefore, the distribution of
SNPs through the selected genes was optimal.
Various studies showed a risk of false positive results

due to population stratification. However, a risk of false
positive results was not found in this study because
genotypic frequencies of chosen SNPs in the patients
and controls met HWE expectations. In addition, it is
likely that there were genotyping errors. However,
genotyping errors were minimized by genotyped each
patient twice in order to avoid technical errors as evi-
denced by the low average rate of genotype discrepancy.
Genotyping was conducted for patients under the same
conditions and during the same period. Genotypes were
also evaluated by investigators who were blind to the
status of the subject and any discrepancies were resolved
by test replication.
A confounding factor which could have contributed to

the observed variations in the between this study and
previous studies is the heterogeneity of population based
on gender [66,67]. However in our study, only male indi-
viduals with substance addiction were genotyped. There-
fore, the generalisation of the results to all substance
addicts’ individuals is limited. Another confounding factor
is differences in phenotype in addiction such as polysub-
stance use, severity of addiction and the use of unstruc-
tured clinical interviews to obtain phenotypic data could
affect the genetic association analysis. However, these con-
founding factors are not found in our study as a specific
clinical structural interview was designed based on the
DSM-IV criteria and the Addiction Severity Index (ASI)
for collecting clinical and phenotypic data [52]. The care-
ful and extensive interview based phenotypic data collec-
tion has been performed by highly trained psychiatrist
consultants, yielding exceptionally reliable phenotype data.
In addition, the study sample is strongly enriched with
regular substance addicts’ individuals giving more statis-
tical power.

Conclusion
Overall our results indicate that the DRD1, DRD3,
DRD4, DRD5, SLC6A3, BDNF and COMT genes are not
likely to be a major genetic risk factor for substance ad-
diction in the Arab population, with the exception of
strong association between substance addiction and
DRD2 gene. However, it has been proposed that defects in
various combinations of these genes for these neurotrans-
mitters results in the Reward Deficiency Syndrome (RSD)
and that indivuals at risk for abuse of the unnatural rewards
[68]. Because of its importance, DRD2 gene was a major
candidate gene [68-70]. Several studies in the past decade
have shown that in various subject groups the DRD2 gene
is associated with alcoholism, drug abuse, smoking, obesity,
compulsive gambling, and several personality traits [69,70].
A range of other dopamine, opioid, cannabinoid, norepin-
ephrine, and related genes have since been considered to
be candidate genes. Like other behavioral disorders, these
genes are polygenically inherited and each gene accounts
for only a small per cent of the variance [68,69]. Techni-
ques such as the Multivariate Analysis of Associations,
which simultaneously examine the contribution of multiple
genes is required for understanding the genetic makeup of
polygenic disorders. In the future research could be also



AL-Eitan et al. BMC Research Notes 2012, 5:497 Page 10 of 11
http://www.biomedcentral.com/1756-0500/5/497
directed towards using a genome-wide association analysis
and including more specific case–control study with a
wider set of phenotypes.
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