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We study a certain route configuration problem via optimization theory. We consider the optimal bit error rate (BER) and
transmission rate allocations on each hop, subject to overall BER and delay constraints for a designated route. The pivot of the
problem lies in the delay constraint, which divides the problem into two cases—the loose and the tight delay case. In the former,
analytical solutions are obtained by applying the Karush-Kuhn-Tucker (KKT) theorem. Specifically, we discover in this case that
for a given target BER, the optimum solutions are only related to the hop lengths in the route. When the delay constraint is tight,
a mapping can be used to reduce the dimension of the problem by a factor of two; a numerical optimization algorithm has to be
used to find the optimum. Simulation results show that by optimally configuring a chosen route, substantial energy savings could
be obtained, especially under tight delay constraints. Simulation also reveals that a performance limit is reached as the number of
hops increases. A parameter determining this limit is defined, and physical explanations are given accordingly.

1. Introduction

In the past few years, much research effort has been devoted
to the field of wireless sensor networks (WSNs). Due to
some of their unique features, such as low cost, small
size, and limited transmission power, WSNs are in many
ways different from typical mobile networks and hence
pose many challenging problems. Some potential barriers
to organization and coordination of such networks were
identified by researchers (see, e.g., [1–3]). Usually, sensor
nodes are battery driven and are supposed to function for
a long-time period; possibly, for years. In many cases, it is
economically undesirable or even impossible to recharge or
replace the batteries. Hence one of the main concerns in
designing such networks is how to operate the sensor nodes
in an energy-efficient way.

In many applications of WSNs, the network is required
to cover a large geographical area. In such cases, com-

munication between two nodes far apart will require the
information to be relayed via several intermediate nodes.
In addition, as the energy radiated in space decreases
rapidly, roughly inversely proportional to at least the square
of the transmission distance, from an energy-preserving
perspective it can be worthwhile to forward the packets
by means of multiple hops rather than a single hop.
This motivates considering the problem of how to relay
packets via multihops at minimum energy cost. In par-
ticular, we consider a scenario where such a multihop
route is already formed from the source to the destination.
This could be, for example, a predefined route chosen
when the system was initially set up, an optimum route
computed and established by a given routing algorithm
in the network layer, or a route appointed by a well-
powered data sink. It should be noted that contrary to
the energy-aware routing algorithms for WSNs that have
been heavily studied in the existing literatures, for example,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81700833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:changmian.wang@gmail.com


2 EURASIP Journal on Wireless Communications and Networking

those in [4–6], in our work, we shall mainly set our
focus on optimizing the physical layer resource allocations,
such as the transmission power and the transmission
rate.

In [7], a related route configuration problem for a multi-
hop path was considered. Specifically, packet retransmissions
using an automatic repeat request (ARQ) mechanism were
studied, under a maximum transmission delay constraint,
and a required packet delivery ratio constraint. In [8], min-
imization of the total energy consumption was considered,
subject to a series of quality-of-service (QoS) constraints,
by combination of certain adaptive transmission techniques.
Results showed that large energy savings can be obtained by
using optimized adaptive transmission techniques. However,
the work in [8] was mainly based on simulation studies,
and little was done regarding theoretical analysis. To provide
more insights into the problem, in the present paper we
study a similar problem, with more emphasis on theoretical
analysis. Parts of the results in this paper were first published
in [9].

We shall extend the ideas of [8] and show that by jointly
considering per-hop bit error rate (BER) and transmission
rate allocations under an end-to-end delay constraint and
an end-to-end BER constraint, the route configuration
problem can be formulated as an optimization problem.
The delay constraint divides the whole problem into two
cases—the loose and the tight delay case. In the former, an
analytical solution can be obtained by using the Karush-
Kuhn-Tucker (KKT) conditions [10]. However, under a
tight delay constraint, the optimum cannot be acquired by
using the KKT conditions alone. Therefore, a numerical
optimization algorithm has to be employed to search for
the minimum. In the latter case, it can however be shown
that the number of unknown variables can be reduced by a
factor of two through a unique mapping, which also enables
the search algorithm to operate in an iterative manner.
In addition, each iteration consists of two subconstrained
convex optimization problems; hence the updating process
converges rapidly. Simulations show that substantial energy
savings can be attained with respect to a chosen benchmark
scheme with constant per-hop BER and transmission rate.
Results also reveal that a performance limit exists when the
number of hops increases. A parameter quantifying this limit
is defined, and explanations are given accordingly.

The remainder of this paper is organized as follows. In
Section 2, we construct the general model for the problem.
Section 3 solves the problem and evaluates the energy
savings in the loose delay constraint case. Section 4 discusses
the system performance under tight delay constraints, and
a parameter measuring the maximum energy savings is
defined. In Section 5 we discuss the effect of circuit power
consumption and of adding peak power constraint. Conclu-
sions are drawn in Section 6.

2. Model Construction and Problem Analysis

We consider ad hoc networks where there are multiple hop
routes from the data sources to the sink. In particular, we

focus on networks with low traffic density properties. Many
ad hoc networks fall within this category. For example, in
some event-monitoring WSNs, hundreds of wireless sensor
nodes will be randomly deployed to oversee a certain
area. To save energy, all nodes shall keep silent until a
target event is detected by one or a few nodes. Once the
relatively rare event is detected in a certain part of the
geographical area, data might be locally centralized within
a cluster first, and subsequently be forwarded to the data
sink.

In such a network, most traffic occurs only when an
event is detected. Due to this low traffic density nature,
there will mostly be almost negligible queuing delay, and
nodes typically forward the packet immediately upon receiv-
ing it. In addition, links in such networks would also
have few simultaneous transmissions. Therefore we simplify
the problem by assuming negligible queuing delay and
packet collision probability in all nodes throughout this
work.

For WSNs, it is usually required that the sensor nodes be
low cost, and small in size. Hence it is preferable to choose
low complexity circuitry. M-ary Quadrature Amplitude
Modulation (MQAM) schemes require the power amplifier
(PA) to have accurate linearity due to multilevel amplitudes,
and such amplifiers are usually expensive in practice. In M-
ary Phase Shift Keying (MPSK), however, the constellation
points are circled around the origin, which relaxes the PA
linearity demands. For this reason, we shall assume that
sensor nodes are using MPSK as their chosen modulation
scheme.

In our work, adaptive radio is also assumed to be
installed on each node. Results in [11] have shown that by
implementing adaptive radio in a sensor node, substantial
energy savings are possible in a single hop link. In [8], using
adaptive MQAM modulation, the authors of the present
paper have shown that this is also true for a multihop
link.

A well approximated bit error rate bound for MPSK on
an AWGN channel under various constellation sizes M was
given in [9, Chapter 9], by Pb = 0.2 exp[−7γ/(21.9k + 1)],
where k = logM is the number of bits per modulation
symbol, γ is the signal-to-noise ratio (SNR), and Pb is the
probability of bit error. Hence, to meet a certain target
BER Pb, the required SNR at the receiver would be γ =
(1/7) ln(1/5Pb)(21.9k + 1).

A deterministic κth-power path-loss model was used
in [11] to model the wireless link, resulting in an AWGN
channel between any pair of nodes. To emphasize the
energy consumption analysis rather than the packet error
rate analysis, this model is also used in the current work.
Assuming that the path-loss exponent κ is the same across the
route, the channel gain can be modeled as g(d) = 1/G1dκMl,
where d is the physical distance between two nodes, G1 is the
gain factor at d = 1 m, κ is the path-loss exponent, and Ml is
the link margin [11].

Hence, the SNR at the receiving node can be expressed as

γ = Ptg(d)
N0B

, (1)
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where Pt [W] is the average transmit power, B is the system
bandwidth, and N0 is the power spectral density [W/Hz] of
the additive white Gaussian noise (AWGN) at the receiver.
It should again be noted that we have assumed negligible
interference, hence we take only noise into account. If
however, interference cannot be ignored, then N0 can be set
as the average power spectral density of the interference plus
noise. In that case the conclusions of the present work still
apply as long as the interference has approximately Gaussian
characteristics.

In many WSNs, there are mechanisms designed for
each node to discover its position. For example, the
nodes could estimate their locations by measuring the
signal strength to a few known points, or by exchanging
information with neighboring nodes [12]. We assume that
accurate locationing methods are applied in the network;
thus the hop length information can be assumed to be
known to the participating nodes before the transmis-
sion starts. Under the given channel model, all channel
gains are then deterministically known to the transmit-
ters.

In a WSN, we should also take the relevant QoS con-
straints into account. One of the most common, and perhaps
the most important, constraints is the delay constraint,
which implies that the packets should be delivered to the data
sink or target node within a certain time limit. We denote this
time limit as T [s]. It is also required that the packets should
be delivered to the sink with a certain quality. That may, for
example, imply that after passing through several relays, the
packet should still satisfy an target end-to-end BER, denoted
by Ptar.

We now assume that there are L hops from the source
to the sink, and denote the BER at each hop, and the
transmission rate in bits per symbol to be used in each hop,
by xT = [x1, . . . , xL], and yT = [y1, y2, . . . , yL], respectively.
The packet length is assumed to be Q bits. Then the problem
can be formulated as a minimization of total energy across
all hops in the route:

Minimize
L∑

i

Pti
Q

Byi
=
[

(N0Q)
(

1
7

)
G1Ml

]

×
L∑

i

dκi ln
(

1
5xi

)(
21.9yi +1

) 1
yi

subject to suitable QoS constraints.
(2)

It should be noted that the logarithm function ln(1/5xi)
requires 0 < xi < 0.2. Assuming that each node performs
relaying in a decode-and-forward manner, the overall BER
constraint requires that [1−∏L

i (1−xi)] = Ptar, which can be
rewritten as

L∑

i

ln(1− xi)− ln(1− Ptar) = 0. (3)

It is of course also necessary that the BER in each hop satisfies
xi > 0 for i = 1, 2, . . . ,L. Furthermore, in practice, Ptar is
usually much lower than 0.2, and given any practical such
value, constraint (3) will imply xi < Ptar. Therefore we only
require that xi > 0, without demanding xi < 0.2 specifically.
The delay constraint can be written as

L∑

i

Q

Byi
≤ T , or equivalent as

TB

Q
−

L∑

i

1
yi
≥ 0. (4)

We also assume from now on that uncoded BPSK
is the lowest allowable modulation scheme in terms of
rate that can be used in each node. This requires yi ≥
1 for i = 1, . . . ,L. It has been shown in [9, Chapter
9] that the performance of discrete-rate link adaptation
schemes can often be accurately assessed by assuming that
the rate is a continuous variable. Since this simplifies
analysis, we also impose this assumption in this work by
assuming yi to be a real-valued continuous variable. If
we define the positive constant C = (N0Q)(1/7)G1Ml,
the problem can now finally be formulated as fol-
lows:

Minimize f
(
x, y

) = C
L∑

i

dκi ln
(

1
5xi

)(
21.9yi + 1

) 1
yi

(5)

subject to xi > 0 for i = 1, 2, . . . ,L, (6)

L∑

i=1

ln(1− xi)− ln(1− Ptar) = 0, (7)

yi − 1 ≥ 0 for i = 1, 2, . . . ,L, (8)

TB

Q
−

L∑

i=1

1
yi
≥ 0. (9)

To find the minimum f (x∗, y∗) of the objective function,
and the point (x∗, y∗) where it is attained, we apply
the Karush-Kuhn-Tucker conditions (see, e.g., [10, Chapter
12]). They state that in this minimum, ∇ f (x∗, y∗) =∑

i∈A λ∗i ∇ci(x∗, y∗), where ∇ is the gradient operator,
A denotes the set of active constraints, ci(x, y) are the
constraints, and the parameters λ∗i are the Lagrange mul-
tipliers. First, we assume that all the inequality constraints
are active, and to simplify the expression, we define the
function q′ to be q′(yi) = (1.9 ln 2)21.9yi(1/yi) − (21.9yi +
1)(1/y2

i ). It is the first-order derivative of function q, which
is defined as q(x) = (21.9x + 1)(1/x). In the appendix
we show that q′(yi) is strictly positive for yi ≥ 1.
Writing down the KKT equations, we obtain the following
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equation:

−C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dκ1
1
x1

(
21.9y1 + 1

) 1
y1

...

dκL
1
xL

(
21.9yL + 1

) 1
yL

dκ1 ln(5x1)q′
(
y1
)

...

dκL ln(5xL)q′
(
yL
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λd

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

1
y2

1
...

1
y2
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ λe

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x1 − 1

...

1
xL − 1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+λ1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

1

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · · + λL

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

0

...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

In (10), λd is the Lagrange multiplier for the delay
constraint (9), and λe is the Lagrange multiplier for the
overall bit error rate constraint (7). λ1, . . . , λL are the
Lagrange multipliers for the constraints in (8). Generally
the optimal solution does not necessarily require all the
inequality constraints to be simultaneously active, and in
principle, we have to include all possible combinations of
the inequality constraints as equalities and check which
combination yields the smallest value of f (x∗, y∗). However,
we may simplify the problem in a different way, as shown in
the next two sections, discussing, respectively, the cases of the
loose and tight delay constraint.

3. Loose Delay Constraint

3.1. Closed Form Optimum Solutions. Let us first assume
that at the KKT point, the delay constraint (9) is inactive,
that is, λd = 0. Since xi represents the BERs, it is easy
to verify that −C · dκi ln(5xi)q′(yi) > 0, as long as Ptar <
0.2. Hence, the positivity of −C · dκi ln(5xi)q′(yi), together
with the nonnegativity of all λi for i = 1, . . . ,L, implies
that all the inequality constraints in (8) will become active,
since otherwise no solution exists. In this case, the optimal
solution for the per-hop bit rate in hop i, yi is y∗i = 1 for

i = 1, . . . ,L. Therefore, the optimal per-hop BER in hop i, xi,
is the solution of the equation

−C · (21.9 + 1)︸ ︷︷ ︸
C′

dκi
1
x∗i
= λe

1
x∗i − 1

. (11)

The optimal solution can be written as

x∗ =
[

C′dκ1
C′dκ1 − λe

, . . . ,
C′dκL

C′dκL − λe

]T

, y∗ = [1, . . . , 1]T ,

(12)

where λe can be obtained by substituting the optimum
solution into constraint (7), which yield that λe should be
the root of the polynomial equation

L∏

i=1

(
λe − C′dκi

)− 1
1− Ptar

= 0. (13)

The fact that the optimum solution requires yi = 1, for
i = 1, . . . ,L, means that using BPSK in every node is the
best choice. This solution also makes sense in practice. Since
lower-order modulation consumes less power compared to
high-order modulations, it is preferable to use the lowest
possible transmission rate as long as the resulting delay is
acceptable. In our model, we have restricted ourselves to
uncoded BPSK as the lowest possible rate.

We should re-emphasize that the above closed-form
optimum solutions have been attained under the condition
that the delay constraint is inactive, which happens if and
only if the time is sufficiently large. The minimum under
this condition is then uniquely given by (12). It might seem
obvious, but we shall see that the contrapositive of this
proposition can help us to identify one active constraint at
all candidate KKT points in the tight delay constraint case.

The above optimal solutions have another layer of
meaning. Note that the solution x∗ is optimal when y∗i = 1
for all i. Hence, in this case, the problem has been converted
to the question of how to optimally allocate the per-hop BERs
in the route, when every node adopts the same modulation
scheme. Solution x∗ in (12) is the answer to this. To get a
better understanding about this optimum solution we shall,
in the following, also develop an approximate solution, which
will indicate clearly that for a given Ptar, the optimal per-
hop BER allocation scheme is only related to the distance
and is roughly κth order inversely proportional to the ratio
of its own distance to the overall distance of the entire
route. Before getting into this, we will however first show the
performance of the optimal configurations in the loose delay
case through simulations.

3.2. Numerical Results and Approximation. Table 1 shows the
numerical example parameters used in the simulations (we
borrow some of these practical values from [11]). In many
situations, the sensor nodes in a WSN are deployed in a
random fashion. The hop length in a particular route will
then behave like a random variable. In our simulations,
we have assumed that the hop length obeys a Rayleigh
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Table 1: System parameters.

G1 = 30 dB Ml = 40 dB

κ = 3.5 B = 10 kHz

N0 = −173.7 dBm/Hz Q = 2 kb
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Number of hops

Ptar = 10−3
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Figure 1: Average improved performance due to optimum BER
allocations under different hop lengths for the loose delay case.

distribution, as this is shown in [8] to match very well the
empirical hop length distribution when nodes are uniformly
distributed across a finite square. The mean value of the hop
length is set equal to 10 meters.

Figure 1 shows the simulation result regarding energy
savings for different Ptar under different numbers of hops
in the loose delay case. For a given Ptar the performance
improvements are drawn as comparisons between optimally
allocated BERs in all hops according to x∗ in (12), and the
case when the per-hop BERs are evenly assigned as in [8],
that is, by Pbi = 1− L

√
1− Ptar. Because of the random nature

of the route lengths, the gain for each route realization will
be different; each dot drawn in Figure 1 is hence plotted
after taking an average over 1000 randomly generated routes.
Figure 1 shows that by optimally allocating the BER along the
route, the total energy consumption across the route could
indeed be reduced compared to uniformly assigning BER,
roughly by around 7% on the average.

One prominent feature we can see from Figure 1 is that
the average energy gains clearly drop when Ptar decreases.
The reason for this could be seen from the objective function
(5), where the BERs contribute to the energy budget by the
terms ln(1/5xi), where xi represents the BER in each hop. The
logarithm function is insensitive to changes in its argument
when it is large. Therefore, when a lower target bit error
rate is set up, the optimal BER assigned to each hop will
accordingly become smaller. Hence, even if we optimally
choose the BER, the performance gain will not be as obvious
as in the larger Ptar case.

The second important feature from Figure 1 is that
the performance gain grows larger as the number of hops
increases. We may also explain this by means of the
approximation ln(1− x) ≈ −x, which holds whenever x ≈ 0.
Since x represents the BER, which is typically a very small
value, we could then approximate the constraint (7) well as a
linear equality constraint:

L∑

i=1

xi = Ptar. (14)

Now, we can use this constraint to compute λe instead
of using (13). By recalculating the above steps and following
exactly the same argument, this will give us the optimum
solution x∗i = C′dκi /λe, where the Lagrange multiplier λe
could be obtained by satisfying the equality constraint in
(14). This leads us to the approximate optimum solution

x∗ = Ptar

[
dκ1∑L
i=1 d

κ
i

, . . . ,
dκL∑L
i=1 d

κ
i

]T

, y∗ = [1, . . . , 1]T .

(15)

It can be seen from x∗ in (15) that for a given small
Ptar, the BER allocation scheme is only related to the hop
lengths in the route. We should also note that in (15), for
one particular target route, the denominator

∑L
i=1 d

κ
i will

become a constant. Therefore, the optimum BER allocation
for a specific hop i is proportional to the current hop length
di powered by the path-loss exponent κ. This implies that
we should allow larger error probabilities on those hops
with long transmission distances, but that be very restrictive
on the short hops. Thus, compared to the case where the
per-hop BERs are evenly distributed, the energy savings are
obtained by using relatively more power on the short hops,
and relatively less on the long ones, as it costs much more
transmit power to attain the same BER on a long hop than on
a short hop. The result, compared to x∗ in (12), directly and
profoundly reveals the relation between the optimum results
and the hop lengths, and it also matches our intuition.

This analytical result can also be used to understand the
second feature mentioned above: why the energy saving gains
become greater as the number of hops increases. This can
be seen through a simple example, where we assume a route
consisting only of two hops. Denote their lengths by d1 and
d2, respectively, The total length of the route is set to be fixed,
that is, d1 +d2 = c. It is known from above that the optimum
BER allocations of this two-hop route is

Pb1 = Ptar
dκ1

dκ1 + dκ2
, Pb2 = Ptar

dκ2
dκ1 + dκ2

. (16)

We now explore the worst case where we have the max-
imum total energy consumption. Equivalently, this means
that we need to solve the following constrained optimization
problem:

Maximize C′ ·
[
dκ1 ln

(
5Ptar

dκ1
dκ1 + dκ2

)
+ dκ2 ln

(
5Ptar

dκ2
dκ1 + dκ2

)]

subject to d1 + d2 = c.
(17)
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The function x log x is known to be strictly convex in x. Since
the objective function is the sum of two such strictly convex
functions with a sign reversal (C′ is negative), it is a strictly
concave function. It is not difficult to prove that this function
reaches its maximum when d1 = d2 = c/2 which implies that
the power savings are minimum when the hop lengths are
equally distributed, and any unevenly distributed hop lengths
will result in a potential for further energy gain. In other
words, the more the hop lengths deviate from the constant
length, the more gain we can obtain.

As mentioned earlier, in the above simulations, we
have assumed the hop lengths to be i.i.d. Rayleigh random
variables. As the number of hops increases, we are then more
likely to experience large deviations in the hop lengths across
the route, which after optimization will result in a higher
performance gain. However, Figure 1 also shows that all
performance gain curves saturate as the hop number grows
greater than 10. The reason is that, as the number of hops
increases, though we generally deviate more from a uniform
distribution of the hop length, at the same time there is
also a larger probability of having a noticeable number of
hops which will have approximately the same length, which
actually contribute very little to the overall performance
improvement. The relative gain is thus becoming more
stable. In the next section, we will be able to quantify this
effect more exactly, through a single parameter quantifying
the maximum possible gain.

4. Tight Delay Constraint

4.1. Two Convex Subproblems. As previously emphasized,
if the delay constraint is inactive, then the time must be
sufficiently large. The contrapositive of this implies that if
the time is not sufficiently large, then the delay constraint must
be active. This means that the optimal solution will stay the
same if we rewrite the inequality constraint (9) as an equality,
and it also means that we will have one more active constraint
when writing the KKT equations. However, this will not help
us further, since we still need to check the combinations of
the rest of the inequality constraints. In this case, therefore
numerical optimization algorithms must be used to search
for the minimum. The change from inequality to equality
does however facilitate the converging speed of the numerical
algorithm (we used the MATLAB function fmincon to solve
the optimization problem).

To aid the speed of the numerical optimization even
more, further simplifications can also be explored, as will
now be explained. If we assume that y is given (i.e., we know
the modulation order used in each hop), then the problem
left will be the following optimization problem:

Minimize f
(
x | y) = C

L∑

i

(
21.9yi + 1

) 1
yi
dκi ln

(
1

5xi

)
(18)

subject to xi > 0, for i = 1, 2, . . . ,L, (19)

L∑

i=1

ln(1− xi)− ln(1− Ptar) = 0. (20)

For this model, since y is given, the objective function is
a weighted sum of ln(1/5xi) over all i, which can easily be
shown to be strictly convex with respect to xi for xi < 0.2.
Constraint (19) is a strict inequality constraint; however, it
is not hard to see that the function f (x | y) will be infinite
and thus cannot reach its minimum at the point x whenever
xi = 0 for i = 1, 2, . . . ,L. Therefore it is no harm for us to
modify the constraint (19) to a constraint where equality is
included, that is, xi ≥ 0, for i = 1, 2, . . . ,L. Furthermore,
we will again use the approximate linear equality constraint∑L

i=1 xi = Ptar, instead of the exact nonlinear constraint
(20). Hence, the optimization problem for a given y can be
rewritten as

Minimize f
(
x | y) = C

L∑

i

(
21.9yi + 1

) 1
yi
dκi ln

(
1

5xi

)
(21)

subject to xi ≥ 0, for i = 1, 2, . . . ,L, (22)

L∑

i=1

xi = Ptar. (23)

It should be noted that the replacement of the nonlinear
constraint by the linear constraint will not introduce much
of a gap between the exact and approximate optimal gains.
We can see this from Figure 1 where the order of magnitude
of variation on the target BER only results in a few percentage
changes in the gain. This suggests that BER allocations in
general have limited impact in the energy savings, and we
will show later that compared with the gain achieved by
introducing optimal transmission rate allocations, this gap
can be ignored.

The constraints we have now consist of several sets
of linear inequality constraints, and one linear equality
constraint. Since the linear functions are also convex, the
constraints (22) and (23) together define a convex feasible
domain. Hence, by the convex KKT theorem (see, e.g.,
[13]), any KKT point will also be the global minimum. The
previously noted fact that the minimum cannot exist at any
point with xi = 0, for i = 1, 2, . . . ,L, implies that none
of the constraints in (22) will be active at the minimum
point, and thus they could be excluded when applying the
KKT conditions. On the other hand, we know that the BER
constraint (23) will surely be active; therefore, applying the
KKT theorem gives us the following equation:

−C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
21.9y1 + 1

) 1
y1
dκ1

1
x∗1

...

(
21.9yL + 1

) 1
yL
dκL

1
x∗L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= λe

⎡
⎢⎢⎢⎢⎣

1

...

1

⎤
⎥⎥⎥⎥⎦
. (24)

By solving this equation, we get the following optimum
solution for any given y:

x∗i = −
Cdκi

(
21.9yi + 1

)(
1/yi

)

λe
, (25)
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where λe satisfies the equality constraint
∑L

i=1 x
∗
i = Ptar.

Therefore, this gives us the following global minimum for
problem (21):

x∗i =
Ptard

κ
i

(
21.9yi + 1

)(
1/yi

)

∑L
j=1 d

κ
j

(
21.9yj + 1

)(
1/y j

) . (26)

One meaning of the above derived solution is that it
tells how to find the optimum BERs along the route, given
the transmission rate of all the nodes. Another is that it
suggests that the existence of a set of mappings, denoted by
x∗1 = m1(y), x∗2 = m2(y), . . . , x∗L = mL(y), which together
make sure that x∗ is the global minimum for the function
f (x | y) defined above. We can thus eliminate xi in the
problem formulation, and the problem is now reduced to
finding the y∗ which can minimize the original problem (5).
The whole problem under a tight delay constraint can now
be written as the following optimization problem:

Minimize f
(
y
) = C

L∑

i=1

dκi ln

(
1

5mi
(
y
)
)
(
21.9yi + 1

) 1
yi

(27)

subject to yi − 1 ≥ 0, for i = 1, 2, . . . ,L, (28)

L∑

i=1

1
yi
≤ TB

Q
. (29)

Thus, we have reduced the number of unknowns by a
factor of two, which will help to increase the numerical
algorithm’s search speed. The first constraint above is a set
of linear inequality constraints, which naturally define a
convex set. The second constraint is in fact a set of nonlinear
inequality constraints. Hence, if we define c(y) =∑L

i=1(1/yi),
the Hessian (see, e.g., [10, Appendix A]) of c(y) will be

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
y3

1
0 · · · 0

0
1
y3

2
· · · 0

...
...

. . .
...

0 0 · · · 1
y3
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

Since by (28) yi ≥ 1 for all i, this matrix is diagonal with
all entries strictly positive. Hence, it is a positive definite
matrix, which in turn implies that c(y) is a strictly convex
function. The argument that the level set of a convex function
is also convex (see, e.g., [14, Chapter 1]) makes (29) define a
convex set. Moreover, since (28) is a set of linear inequality
constraints, the argument of the intersection of convex sets
being convex guarantees that the problem is defined on a
convex feasible domain.

It should be noted that, as we have argued above, (29) can
be written as an equality. However, to prove the convexity,
it is admissible if we extend the domain to include the
inequality cases, since we are still in the feasible domain.
Furthermore, given an initial y value, due to the mapping of

(26), the problem in (27)–(29) is equivalent to the following
optimization problem:

Minimize f
(
y | x) = C

L∑

i

(
21.9yi + 1

) 1
yi
dκi ln

(
1

5xi

)
(31)

subject to yi − 1 ≥ 0, for i = 1, 2, . . . ,L, (32)

L∑

i=1

1
yi
≤ TB

Q
. (33)

This objective function can be proven to be convex with
respect to y (see the appendix). It suggests that we can
find a unique global minimum y that corresponds to the
given x, which is also uniquely determined by the previous
y through (26). Hence, the search can operate in an iterative
manner. From an initial y1 we find an optimum x∗1 through
(26), and this x∗ in turn update y1 to a new value of y2

by solving problem (31). In particular, both subproblems
are constrained convex optimization problems, which ensure
that the extremum found is unique and global for each
iteration. The above iterative process repeats until both x and
y converge. In order to find the global minimum to the whole
problem, different initial values of y (which should comply
with the constraints (32) and (33)) should be tested.

4.2. Numerical Results and Analysis. The system performance
under optimum configuration is depicted in Figure 2, where
average energy savings are obtained by jointly optimizing the
transmission rate and the BER allocation. In particular, the
target BER is set to Ptar = 10−3 for all curves. The gain is
plotted as a comparison between the optimal configuration
and the case when both the BERs and transmission rates
are evenly assigned along the route. To be consistent with
simulation in the loose delay case, the hop length was still
assumed to obey a Rayleigh distribution with mean value 10
meters. The curve is drawn over different values of the delay
constraint. In particular, T = 1 implies the situation that
if every node adopts BPSK, the delay constraint will be just
met.

From the figure, all the curves indicate that we can
have a significant average energy saving gain when the delay
constraint is tight. For instance, in the 11 hops case, when the
delay constraint is 0.1 (i.e., the acceptable delay is only 10%
of what we would have when BPSK is used) the gain could be
as much as 63%. Even in the 3 hops case, the gain could be
close to 50%. This suggests that it is crucial to use adaptive
transmissions if the delay requirement is tight and an energy
efficient solution is required.

A typical sensor node usually consists of a sensing unit
and a central processing unit, a transceiver unit, and energy
spent on transmission is often dominant in the total energy
cost. An improvement in transmission energy savings as seen
in Figure 2 could therefore almost double a node’s lifetime
on the average. We also notice from Figure 2 that generally,
the gain goes down as the delay constraint become less
tight. This is again because, as the delay becomes larger, the
optimum strategy is to better utilize the time and choose a
lower modulation order, and the modulation in all nodes will
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Figure 2: Energy savings for different number of hops under a tight
delay constraint with target BER = 10−3.

gradually converge to BPSK. Thus the system’s performance
will eventually approach the previously discussed loose delay
case, in which only the per-hop BERs and corresponding
transmit powers are optimally allocated.

Attention should also be paid to the gain performance
as the hop number increases. It first improves fast over the
whole range of delays; then, however, very little performance
gain is obtained by going from 11 hops to 13 hops. This
suggests that there is a performance limit; that is, the gain
converges to a constant value as the number of hops grows
very large. This phenomenon can be connected with the
loose delay case where the BERs were optimally allocated. In
Figure 1 we also observed that the improvement slows down
when the number of hops grows very large. This implies
that the system’s maximum gain is limited by some inherent
factor, to be explained next.

4.3. The D Parameter and Its Impact. It is important to
understand the reason why substantial energy savings can
be acquired when the number of hops goes from 3 to 8 in
Figure 2. In the loose delay case, we demonstrated that the
gain comes from the uneven distribution of the hop lengths.
Similarly, if all hops had the same length, then the best
strategy would be to let all hops use the same transmission
rate and be assigned the same BER, which would produce no
gain at all.

Also in the tight delay case, the gain actually comes
from the differences in the hop lengths. These differences
are ultimately controlled by the degree of deviation from the
uniform hop length distribution. To characterize this effect,
we hereby define this degree of deviation, D, by the ratio of
the variance to the square of the mean:

D = E
[
d2
]− E2[d]
E2[d]

= E
[
d2
]

E2[d]
− 1. (34)

Specifically, the D parameter for the Rayleigh distribution is
in fact a constant, (4 − π)/π ≈ 0.273. This explains why the
simulation above indicates a performance limit, since as the
hop number increases, the degree of deviation experienced
in the hop length distribution of one route realization will
statistically converge to this value. In the case shown in
Figure 2, 11 hops are actually already large enough for this
statistical convergence to occur, hence there is very limited
gain by going from 11 hops to 13 hops. With a smaller
number of hops, this situation of deviation effect is relatively
less evident, which explains why the gain increment is more
obvious for fewer hops.

The above analysis, on the other hand, also suggests
that a higher performance gain could be obtained if the D
parameter grows large. To verify this, we assume that the
distance d obeys a Gamma distribution instead of Rayleigh
and carry out a new simulation under this assumption. The
probability density function of the Gamma distribution is
defined by two parameters k and θ and is given by

f (d; k, θ) = dk−1 e−d/θ

θkΓ(k)
, for d > 0, k, θ > 0, (35)

where Γ denotes the gamma function. The mean value is
kθ, and the variance is kθ2. Therefore, the D parameter for
Gamma distribution is D = 1/k. To be consistent with the
simulation carried out previously, again we set the mean
distance to be 10 meters, but with several different k and θ
values such that the D parameter is varying. The Ptar is set
to be 10−3, and we choose a route consisting of 11 hops with
delay set to be 0.3.

Figure 3 shows the results. We see a clear improvement
when increasing the D parameter. It should be noted that
the energy gain depicted in this figure is an average, since
the hop lengths in a route are random variables. Figure 3
should thus be treated as an indicator of the average possible
energy gain on the network level, since in an ad hoc network,
communication can take place between arbitrary nodes, and
hop lengths in the routes given by the routing algorithm can
be random. It should also be noted that, in reality, if one
particular route is given, it is more proper to configure the
route according to the situation, since we might encounter
the case where the network as a whole has a small overall
D value, but a specific route inside might have a large hop
length deviation, implying that a large energy saving gain
can be achieved. Therefore, it is crucial to measure the D
parameter of a specific route of interest.

Another thing we have not investigated so far is how the
target BER Ptar affects the system performance in the tight
delay constraint case. As we saw in the above analysis, for
a Rayleigh hop length distribution, the system approaches a
limit after approximately 11 hops. Therefore, we choose two
representative numbers of hops, 3 and 11 hops, and run the
simulations under different Ptar values.

Figure 4 shows the average system performance gain
for different delay constraints and under different Ptar. In
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Figure 3: Performance improvement for different D parameters
under a 11 hops route with delay constraint T = 0.3 and target
BER = 10−3.
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Figure 4: Performance improvement for different delay constraints
under different Ptar.

general, the average performance is nearly the same as in
Figure 2. Within each hop number, the curves are very close
to each other, which means that there is no significant
difference in relative energy saving gains on the average as we
vary Ptar. We also notice that as the delay become larger, the
discrepancies of the curves within the same cluster become
more apparent. This is because, when the delay constraint
is tight, the optimal BER assignment does not affect the
average performance significantly, since at this point, the
modulation order is very high. Thus the energy consumed
by the modulation is dominant; whereas when the delay
requirement is sufficiently loose, the modulation order will
drop, and the energy spent on BER adaptation starts to come
into play.

5. Circuit Power Consumption and
Peak Power Constraints

When the communication distance is short, it has been
shown that the circuit power consumption is approximately
on the same order of magnitude as the transmission power
and should be taken into account in the system optimization
[11]. To keep this work fit for general ad hoc networks
where transmission energy is most often dominant, circuit
power consideration was however not particularly addressed
so far. Also, the circuit power consumption, including the
power of filters and power amplifiers, will be dependent
on the practical parameters in use, such as bandwidth and
PA efficiency. The power consumption in the circuitry can
however be modeled as a given constant for one specific
transceiver pair during the transmission. If we denote this
constant by Pcir, the energy dissipated on the circuit along
the whole route can be written as

PcirQ

B

L∑

i=1

1
yi

, for yi ≥ 1. (36)

Equation (36) is a function of y and it is of similar form as
(29), which was proven to be convex. Hence, taking circuit
power consumption into account preserves the convexity.

Similar to circuitry power consumption, peak power
constraints have not been addressed either. One reason was
that this would depend very much on specific implementa-
tion details such as the type of battery installed, the power
shared by the other components other than the transceiver
such as the sensing unit, and the central processing unit.
Another reason was that the peak power constraint might
be different from node to node in a particular route, since
nodes may have different residual energy. However, we can
show that adding a peak power constraint also preserves the
convexity. If we denote the maximum available transmission
power on node i as Pni, then this peak power constraint on
node i can be formulated as

1
7

(N0B) ln
(

1
xi

)(
21.9yi + 1

) ≤ Pni, for yi ≥ 1. (37)

It can be seen that the constraint above defines a convex
set if xi is given. Similarly, xi is linked to yi through (26).
Therefore, for each iteration under an given initial value
of y, the problem in (27) remains convex. Moreover, it is
foreseeable that the circuit power consumption and the peak
power constraint only function as setting up an upper and
lower bound for the feasible x, y, and neither of them will
lead to a fundamental change of the results we get so far.

6. Conclusions

In this work, we have discussed a particular route configu-
ration problem under a series of QoS constraints. It can be
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seen that by using the KKT theorem, the delay constraint
divides the problem into two cases: the loose delay and tight
delay case. In the loose delay case, an analytical solution was
obtained, and the problem was proved to be equivalent to the
question of how to optimally assign BERs along the route.
Under a pure path-loss channel model, we have also shown
that the optimal BER allocation scheme for a given target bit
error rate, perhaps somewhat surprisingly, is only related to
the hop lengths di.

In the tight delay case a numerical optimization algo-
rithm has to be employed to solve the problem. We
could however reduce the dimensions of the original
problem by a factor of 2 through a unique mapping,
which enabled the search algorithm to operate in an
iterative manner. Simulations showed that large energy
savings are possible, especially when the delay constraint
is tight. At the same time, we also noticed that the
energy saving performance seems to converge to a certain
limit as the number of hops increases. A parameter D
measuring this limit was defined accordingly. Simulation
results substantiate the validity of the parameter definition
by indicating that more energy saving gain is possible as D
increases.

It should be noted that, to keep the problem’s generality,
the problem has been analyzed on the basis of the most
general physical layer QoS constraints, that is, the packet
quality constraint (in terms of BER) and the delay constraint.
Peak power constraints and circuit power consumption were
not addressed, as these two parameters are highly dependent
on the specific hardware implementations. However, we can
show that these two constraints will not alter the convexity
of the feasible domain, which implies that adding these two
constraints would not fundamentally influence the analysis
in the paper. Adding these two constraints can be thought
of as imposing two additional bounds on the domain of x
and y, again indicating that they will not change the results
fundamentally.

It should also be noted that in this paper, the trans-
mission rate at each hop is assumed to be a continuous
variable. However, in practical implementations, a discretiza-
tion operation is needed since only integer number of
constellation size can be supported. How to optimally do
the discretization and to analyze in detail the performance
after discretization are beyond the scope of this paper and
is a topic for further research. Work on discrete rates
to achieve the maximum average spectral efficiency can
be found in [15]. In addition, analysis based on other
modulation schemes other than MPSK is definitely worthy
of studying. This can be useful for example in well-
powered ad hoc networks such as in multimedia WSNs,
where spectral efficiency is more emphasized. In addition,
due to the dense traffic properties in such cases, packet
collisions and queuing delay should also be taken into
account.

Finally, our proposed work can also be combined with
routing protocol design. Specifically, it can be added as
a measure for the route decision mechanism and help to
identify the least energy-consuming route among several
options after route configuration.

Appendix

The Function q and Its Properties

The function q is defined as

q(x) = (
21.9x + 1

)1
x
. (A.1)

Now we prove that the function q(x) is a positive, monoton-
ically increasing convex function for x ≥ 1. The first-order
derivative of q(x) is

q′(x) = [(1.9 ln 2)x − 1]21.9x − 1
x2

. (A.2)

It is easy to verify that q′(x) is greater than 0 for x ≥ 1.
Meanwhile, q(1) ≈ 2.732 > 0. Hence q(x) is strictly positive
and monotonically increasing. The second-order derivative
of q(x) is

q′′(x) = (1.9 ln 2)221.9xx3 − [
(1.9 ln 2 · x − 1)21.9x − 1

]
2x

x4

(A.3)

>

[
(1.9 ln 2)2x2 − 2(1.9 ln 2)x + 1

]
x21.9x

x4
. (A.4)

The term [(1.9 ln 2)2x2−2(1.9 ln 2)x+1] in (A.4) is a second-
order polynomial, which is increasing and strictly positive for
x ≥ 1. The linear function x and the exponential function
21.9x are both increasing and positive for x ≥ 1. Hence q′′(x)
is strictly positive when x ≥ 1. We conclude that q(x) is
strictly convex for x ≥ 1. Therefore, q(x) is monotonically
increasing and convex for x ≥ 1.
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