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Steady-State VEP-Based Brain-Computer Interface
Control in an Immersive 3D Gaming Environment
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This paper presents the application of an effective EEG-based brain-computer interface design for binary control in a visually
elaborate immersive 3D game. The BCI uses the steady-state visual evoked potential (SSVEP) generated in response to phase-
reversing checkerboard patterns. Two power-spectrum estimation methods were employed for feature extraction in a series of
offline classification tests. Both methods were also implemented during real-time game play. The performance of the BCI was
found to be robust to distracting visual stimulation in the game and relatively consistent across six subjects, with 41 of 48 games
successfully completed. For the best performing feature extraction method, the average real-time control accuracy across subjects
was 89%. The feasibility of obtaining reliable control in such a visually rich environment using SSVEPs is thus demonstrated and
the impact of this result is discussed.
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1. INTRODUCTION

The concept of a brain-computer interface (BCI) stems from
a need for alternative, augmentative communication, and
control options for individuals with severe disabilities (e.g.,
amyotropic lateral sclerosis), though its potential uses extend
to rehabilitation of neurological disorders, brain-state mon-
itoring, and gaming [1]. The most practical and widely ap-
plicable BCI solutions are those based on noninvasive elec-
troencephalogram (EEG) measurements recorded from the
scalp. These generally utilize either event-related potentials
(ERPs) such as P300 [2] and visual evoked potential (VEP)
measures [3], or self-regulatory activity such as slow corti-
cal potentials [4] and changes in cortical rhythms [5, 6, 7].
The former design, being reliant on natural involuntary re-
sponses, has the advantage of requiring no training, whereas
the latter design normally demonstrates effectiveness only
after periods of biofeedback training, wherein the subject
learns to regulate the relevant activity in a controlled way.

Performance of a BCI is normally assessed in terms of
information transfer rate, which incorporates both speed
and accuracy. One BCI solution that has seen considerable

success in optimizing this performance measure relies on
steady-state visual evoked potentials (SSVEPs), a periodic
response elicited by the repetitive presentation of a visual
stimulus at a rate of 6–8Hz or more [8]. SSVEPs have
been successfully utilized in both above-mentioned BCI
designs—gaze direction within a matrix of flickering stim-
uli is uniquely manifest in the evoked SSVEP through its
matched periodicity [3, 9], and also the self-regulation of
SSVEP amplitude has been reported as feasible with appro-
priate feedback [10].

The effectiveness of SSVEP-based BCI designs is due to
several factors. The signal itself is measurable in as large a
population as the transient VEP—very few fail to exhibit this
type of response [8, 11]. The task of feature extraction is re-
duced to simple frequency component extraction, as there
are only a certain number of separate target frequencies, usu-
ally one for each choice offered in the BCI. High signal-to-
noise ratios are obtainable when analyzing the SSVEP at suf-
ficiently high frequency resolution [8]. Finally, SSVEPs are
resilient to artifacts, as blink, movement, and electrocardio-
graphic artifacts are confined mostly to lower EEG frequen-
cies [11]. Moreover, the source of ocular artifacts (blinks, eye
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movements) is located on the opposite side of the head to
the visual cortex over which the SSVEP is measured. Though
these characteristics are well affirmed by the success of cur-
rent SSVEP-based BCIs [3, 9], it is not known to what degree
performance may be compromised by concurrent unrelated
visual stimulation, where an individual’s visual resources are
divided, as in a video gaming environment.

In this paper, the authors wish to address a novel applica-
tion of the SSVEP-based BCI design within a real-time gam-
ing framework. The video game involves the movement of
an animated character within a virtual environment. Both
the character and environment have been modelled as 3D
volumes. The lighting and virtual camera position change
in response to the character’s movements within the envi-
ronment. Overall, the result is a very visually engaging video
game.

The SSVEP response constitutes only a portion of the
overall set of visual processes manifest in the ongoing EEG
during game play. In this study, we address the challenge of
extracting and processing SSVEP measures from a signal of
such indeterminate complexity in real time for BCI control.

The design of the SSVEP-based BCI was split into two
parts. First, a preliminary offline analysis was conducted to
determine the most favourable signal processing methodol-
ogy and choose suitable frequencies. Once satisfactory offline
analysis results were obtained, the full real-time game was
implemented. Performance of the real-time BCI game when
played by six normal subjects is presented.

2. PRELIMINARY ANALYSIS

2.1. Methods

(A) Subjects

Five male subjects, aged between 23 and 27, participated in
the preliminary study. All subjects had normal or corrected-
to-normal vision.

(B) Experimental setup

Subjects were seated 70 cm from a 43 cm (“17”) computer
monitor. EEG was acquired in a shielded room from two Ag-
AgCl scalp electrodes placed at sites O1 and O2, according to
the 10–20 international electrode-positioning standard [12],
situated over the left and right hemispheres of the primary vi-
sual cortex, respectively. Skin-electrode junction impedances
were maintained below 5 kΩ. Each channel, referenced to
the right ear lobe on bipolar leads, was amplified (20K),
50Hz line filtered, and bandpass filtered over the range 0.01–
100Hz by Grass Telefactor P511 rack amplifiers. Assuming
that eye movement and blink artifacts did not threaten sig-
nal integrity at frequencies of interest, neither horizontal nor
vertical EOG signals were recorded. Subjects were monitored
visually throughout for continued compliance. Signals were
digitized at a sampling frequency of 256Hz.

Initial testing of the experimental setup involved acquir-
ing data from two subjects while gazing at either a circu-
lar yellow flicker stimulus on black background or a sim-
ilarly sized rectangular black and white checkerboard pat-
tern, modulated at several test frequencies between 6Hz and

25Hz. On visual inspection of power spectra, it was found
that the checkerboard pattern produced a more pronounced
SSVEP than a flicker stimulus modulated at the same fre-
quency. Furthermore, it has been found that to elicit an
SSVEP signal at a certain frequency, a flicker stimulus must
bemodulated at that frequency, while a checkerboard pattern
need only be modulated at half that frequency, as the SSVEP
is produced at its rate of phase-reversal or alternation rate
[13]. This is an important consideration when using a stan-
dard monitor with refresh rate of 100Hz. Hence, checker-
board patterns were chosen as stimuli in the following pre-
liminary tests and BCI game. From this point, checkerboard
frequencies will be given in terms of alternation rate, equiva-
lent to the frequency of the SSVEP produced.

Twenty five seconds of eyes-closed data were first ac-
quired for each subject to accurately locate alpha frequency.
Testing then proceeded with several 25-second trials during
which the subject viewed a full-screen checkerboard pattern
at frequencies between 6Hz and 25Hz, excluding the indi-
vidual’s alpha band [9]. The power spectra for these data
were examined and the two frequencies eliciting the largest
SSVEPs were identified. The subject then underwent 25-
second trials in which he viewed each one of two bilateral
checkerboard patterns phase-reversing at the two selected
frequencies and this was repeated with positions reversed,
giving a total of 4 trials. Each 4 × 4 checkerboard pattern’s
medial edge was situated 4.9◦ bilateral to a central cross, cen-
tered on the horizontal meridian, and subtended a visual an-
gle of 6.5◦ vertically and 7.2◦ horizontally. These dimensions
were determined empirically.

(C) Feature extraction

Two feature extraction methods were employed for compar-
ison in the preliminary data. Each was aimed at utilizing the
separable aspects of the SSVEP signals. For both methods,
each 25-second trial was divided into approximately 50 over-
lapping segments, each of which counts as a single case for
which the feature(s) is derived. Both 1-second and 2-second
segments were used for comparison, with a view to assessing
speed achievable by using each method in real time.

Method 1: squared 4-second FFT

In this method, each one- or two-second segment was ex-
tracted using a Hamming window, zero-padded to 1024 sam-
ples (4s), and the fast Fourier transform (FFT) was calculated
and squared. A single feature was extracted for each segment:

F1(n) = log

(
Xn( f 1)
Xn( f 2)

)
, (1)

where

Xn = mean2
(
FFT

(
xn(t)

)∣∣
O1, FFT

(
xn(t)

)∣∣
O2

)
, (2)

that is, the square of the FFT averaged over electrode sites
O1 and O2, of the nth segment xn(t), and f 1 and f 2 are the
chosen checkerboard frequencies.
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Figure 1: Power spectra for full-screen checkerboard trials at 17 and 20Hz for subject 1. Spectra were calculated using the squared FFT
method averaged across the entire 25-second trial.

Method 2: FFT of autocorrelation

This method is similar in that it also corresponds to calculat-
ing a PSD estimate. In this case, the autocorrelation function
is calculated for each segment followed by the FFT:

F2(n) = log

(
Yn( f 1)
Yn( f 2)

)
, (3)

where

Yn = mean
(
FFT

(
Rxx

n)∣∣
O1, FFT

(
Rxx

n)∣∣
O2

)
,

Rxx
n(t) = E

{
xn
(
t0
)
xn
(
t0 − t

)}
,

(4)

where the second formula in (4) is the autocorrelation func-
tion of the nth segment xn(t).

This method of PSD estimation is more resilient to noise
due to the fact that the autocorrelation of white noise is zero
at all nonzero latencies.

(D) Classification

Linear discriminants were used as the classifier model for
this study, providing a parametric approximation to Bayes’
rule [14]. In the case of both feature extraction methods,
this corresponds to calculating a threshold in one dimension.
Optimization of the linear discriminant model is achieved
through direct calculation and is very efficient, thus lending
itself well to real-time applications.

Performance of the LDA classifier was assessed on the
preliminary data using 10-fold cross-validation [14]. This
scheme randomly divides the available data into 10 approxi-
mately equal-sized, mutually exclusive “folds.” For a 10-fold
cross-validation run, 10 classifiers are trained with a different
fold used each time as the testing set, while the other 9 folds
are used for the training data. Cross-validation estimates are
generally pessimistically biased, as training is performed us-
ing a subsample of the available data.

Results

All subjects during preliminary testing were reported to be
fully compliant in following given directions. Analysis of
power spectra during full-screen checkerboard trials resulted
in the selection of 17Hz and 20Hz as the bilateral checker-
board frequencies. These frequencies were employed in each
of the four test trials for all subjects. Power spectra for full-
screen checkerboard trials for a representative subject are
shown in Figure 1.

Note that peaks exist at both the frequency of modula-
tion of each constituent square of the checkerboard (hence-
forth referred to as the first harmonic) and the alterna-
tion rate (second harmonic). Both the flicker stimulus and
checkerboard SSVEP frequency effects described above are
exhibited in the spectrum due to the large size of the con-
stituent squares of the full-screen checkerboard pattern. As
expected, the second harmonic was more dominant once
the checkerboards were made smaller such that the pat-
tern as a whole could be viewed in the subjects’ foveal vi-
sion.

The power spectra for left and right gaze directions for a
representative subject are shown in Figure 2. It can be seen
that for this subject, the magnitude of the SSVEP response
to a 17Hz stimulus is greater than that for a 20Hz stim-
ulus, which demonstrates the need for classifier training to
determine a decision threshold. Each subject’s alpha rhythm
caused little contamination of the spectra, being of low am-
plitude during testing—rapid stimulus presentation results
in very little cortical idling in the visual cortex, and short
trial length prevents arousal effects known also to affect al-
pha [15].

The classification accuracy for all five subjects using the
two feature extraction methods are listed in Tables 1 and 2.
Performance was assessed using both 1- and 2-second seg-
ments, and the question of whether inclusion (by averag-
ing) of the first harmonic in the feature had any effect was
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Figure 2: Power spectra for left and right gaze directions for subject 4. Spectra were calculated using the squared FFT method averaged
across the entire 25-second trial.

Table 1: Offline performance for Method 1 averaged over two checkerboard configurations.

Subject
2nd harmonic only 1st + 2nd harmonic

1s window 2s window 1s window 2s window

Subject 1 88.4% 92.2% 79.3% 88.2%

Subject 2 72.2% 79.0% 70.4% 74.3%

Subject 3 58.7% 62.0% 62.4% 69.3%

Subject 4 75.7% 81.4% 67.4% 72.9%

Subject 5 57.0% 54.2% 52.1% 50.8%

Average across subjects 70.4% 74.4% 66.3% 71.1%

addressed. This results in the augmented feature

F1′(n) = log

(
mean

(
Xn( f 1),Xn( f 1/2)

)
mean

(
Xn( f 2),Xn( f 2/2)

)
)

(5)

for Method 1 and similarly for Method 2.
For both methods, analysis using 2-second segments is

shown to perform better than 1-second segments. Also it can
be seen that inclusion of the first harmonic in the augmented
feature in fact degraded performance slightly. Performance
of these two methods was comparable, with the more noise-
resilient autocorrelation method performing marginally bet-
ter as expected.

3. REAL-TIME BCI GAME

3.1. Methods

(A) MindBalance—the game

The object of the MindBalance game is to gain 1D control
of the balance of an animated character on a tightrope using
only the player’s EEG. As mentioned in Section 1, the game
involves the movement of the animated character within
a virtual environment, with both the character and envi-
ronment modelled as 3D volumes. The lighting and virtual

camera position change in response to the character’s move-
ments within the environment. During the game, a musical
soundtrack as well as spoken comments by the character are
also played over the aforementioned speakers to make the
game more engaging.

A checkerboard is positioned on either side of the charac-
ter. These checkerboards are phase-reversed at 17 and 20Hz.
A game begins with a brief classifier training period. This
requires the subject to attend to the left and right checker-
boards as indicated by arrows for a period of 15 seconds
each. This process is repeated three times (Figure 3). During
this training period, audio feedback is continually presented
using speakers located behind the subject. The audio feed-
back is in the form of a looped double-click sound, the play
speed of which is linearly related to the feature (F1 in the
case of Method 1 or F2 in the case of Method 2). Feedback
is presented in order to ensure compliance during the critical
training period.

In the game, the tightrope walking character walks to-
wards the player and stumbles every 1.5–5.0 seconds to
one side chosen randomly. The player must intervene to
shift the character’s balance so that it remains stable on the
tightrope. To do this, the player must direct his gaze and fo-
cus on the checkerboard on the opposite side of the screen to
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Table 2: Offline performance for Method 2 averaged over two checkerboard configurations.

Subject
2nd harmonic only 1st + 2nd harmonic

1s window 2s window 1s window 2s window

Subject 1 89.8% 96.1% 82.9% 89.1%

Subject 2 71.0% 80.4% 73.2% 80.8%

Subject 3 61.7% 65.8% 62.7% 73.5%

Subject 4 80.1% 82.3% 71.9% 78.9%

Subject 5 59.5% 62.0% 59.4% 55.0%

Average across subjects 72.4% 77.3% 70.0% 75.5%

Figure 3: The training sequence.

which the character is losing balance (Figure 4). The char-
acter’s off-balance animation lasts for 3 seconds. This du-
ration was chosen to give the player time to realize which
checkerboard required fixation to elicit the required SSVEPs
and help the character regain his balance. At the end of
the 3-second animation, a decision based on the most re-
cent 1 or 2 seconds of EEG is obtained. To allow for bet-
ter game play, a second more pronounced off-balance 3-
second animation was used in order to give a player a sec-
ond chance in the case where an incorrect decision was
obtained from the EEG. There was also an optional play
mode where an EEG feature value within a certain range
of the decision threshold, when detected at the end of the
off-balance animation, resulted in no decision being taken
and the original 3-second off-balance animation being sim-
ply replayed. This dead zone was removed during our online
tests.

(B) Signal processing and the C# engine

The overall processing system is shown in Figure 5. In or-
der to carry out this study, a programming engine and plat-
form were required, capable of rendering detailed 3D graph-
ics while at the same time processing continuous EEG data
to control a sprite within the game. This was accomplished
using a combined graphics, signal processing, and network
communications engine implemented in C#.1 One machine

1Implemented by the MindGames Group at Media Lab Europe.

Figure 4: The character loses balance during the game.

is dedicated to the rendering of the 3D graphics while a sec-
ond machine was dedicated to the real-time data acquisition
and signal processing of the EEG data. This signal processing
engine allows selection of signal processing functions and pa-
rameters as objects to be included into a chain of signal pro-
cessing blocks to perform the required processing. Whenever
a decision on the fate of the animated character is required, a
request in the form of a UDP packet is sent over the local area
network to the signal processing machine which sends back a
decision based on the most recent feature extracted from the
EEG.

(C) Interface equipment of game control

The setup for the real-time BCI game was similar to that used
in the preliminary offline analysis. One difference was the
amplification stage in which the Grass Telefactor P511 rack
amplifiers were replaced by Biopac biopotential amplifiers.

The subject was seated in front of a large screen on which
a 140 × 110 cm image was projected. Within the game pic-
tured in Figures 3 and 4, each 4 × 4 checkerboard pattern’s
medial edge was situated 8.5◦ bilateral to the tightrope, cen-
tered on the horizontal meridian, and subtended a visual an-
gle of 11.4◦ vertically and 11.8◦ horizontally.

(D) Subjects and test protocol

Six male subjects aged between 24 and 34 participated in the
following test procedure to assess performance of the real-
time BCI game. All subjects had normal or corrected-to-
normal vision.
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Figure 5: Flowchart of signal processing stages employed in real-time BCI game.

Table 3: Percentage of correct decisions in real-time game play, us-
ing Method 1 with second SSVEP harmonic only.

Subject 1s window 2s window

Subject 1 75.0% 100%

Subject 2 72.7% 100%

Subject 3 75.0% 70.6%

Subject 4 69.2% 100%

Subject 5 87.5% 78.2%

Subject 6 100% 88.2%

Average across subjects 79.9% 89.5%

Each subject was asked to play the game eight times. Four
of the games were played where the EEG was analyzed by
the FFT method described above as Method 1 for the of-
fline data. In two of these games, the decision on the fate
of the tightrope walking character was based on a 1-second
window of EEG data, and in the other two games, the deci-
sion was based on a 2-second window. The other four games
were played using EEG analyzed by Method 2, the autocor-
relation followed by FFT method. Again, two games used 1-
second segments of EEG data and two games used 2-second
segments.

On average, there were eight trials per game. This varied
from game to game as a result of the random number of steps
taken by the character between losses of balance and the fact
that in seven of the 48 games played, two consecutive errors
occurred resulting in the character falling from the tightrope
and the end of the game.

Results

Tables 3 and 4 list the percentage of correct decisions result-
ing in the desired regain of balance on the tightrope. In seven
of the 48 games played, two consecutive errors occurred re-
sulting in the character falling from the tightrope, causing
the game to end. Three of the six subjects did not allow the
character to fall off the tightrope in any of the eight games.

One objective measure of BCI performance is the bit rate,
as defined by Wolpaw [16]. For a trial with N possible sym-
bols in which each symbol is equally probable, the probabil-
ity (P) that the symbol will be selected is the same for each

Table 4: Percentage of correct decisions in real-time game play, us-
ing Method 2 with second SSVEP harmonic only.

Subject 1s window 2s window

Subject 1 87.5% 91.7%

Subject 2 50.0% 58.3%

Subject 3 85.7% 46.2%

Subject 4 85.7% 75.0%

Subject 5 63.6% 100%

Subject 6 87.5% 92.3%

Average across subjects 76.7% 77.3%

symbol, and each error has the same probability, then the bit
rate can be calculated as follows:

Bits per symbol = log2N + P · log2 P + (1− P) · log2
1− P

N − 1
,

Bit Rate = bits per symbol∗ symbols per minute.
(6)

In the case of the present study, one symbol is sent per trial.
Using this definition of bit rate and given that each trial lasts
for 3 seconds and the peak accuracy for the real-time system
is 89.5%, the bit rate is 10.3 bits/min.

4. DISCUSSION

The results from this study indicate that the distinct SSVEP
responses elicited by phase-reversing checkerboard patterns
can be successfully used to make binary decisions in real time
in a BCI-controlled game involving a visually elaborate envi-
ronment.

The two feature extraction methods can be directly com-
pared for the offline data, given that the methods were used
to classify the same data set. The results for both methods
are comparable, withMethod 2 performingmarginally better
than Method 1. This may be due to the resilience of Method
2 to uncorrelated noise.

In the real-time gaming situation, Method 1 and Method
2 were employed during separate games. Therefore, classifi-
cation for the two methods was performed on different data
sets. For this reason, and because each subject undertook
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a relatively small number of trials, a direct comparison be-
tween the methods in the real-time tests is not as meaningful.
The fact that Method 1 performs better than Method 2 may
be attributable more to the anomalous performance of sub-
jects 2 and 3 during the games played using Method 2 than
to the feature extraction method itself.

In both online and offline testings, classification based
on 2-second windows exceeded that of 1-second windows
for all features. This is to be expected as a 2-second window
gives higher-frequency resolution and allows more accurate
extraction of the SSVEP peak amplitudes. As mentioned ear-
lier, a bit rate 10.3 bits/min is achievable using the full trial
length of 3 seconds, allowing for the time taken for the sub-
ject to respond to the loss of balance of the character in the
game and for the elicitation of the SSVEP. It is also useful
to calculate theoretical bit rate maxima based purely on the
1- and 2-second EEG windows. This gives a peak bit rate
of 15.5 bits/min for the 2-second window and 16.6 bits/min
for the 1-second window. It is worth noting that the bit rate
defined in (6) is designed to encourage accuracy over speed
and as a result, the penalty incurred by the drop in accuracy
almost negates the doubling of the number of symbols per
minute achieved using the 1-second window.

The decrease in performance obtained by the inclusion of
the first harmonic in the offline testing may be attributed to
noise added to the first harmonic due to activity in the alpha
band. It was for this reason that the frequencies of the stimuli
were originally chosen outside the alpha range and only the
second harmonic was used in the real-time testing.

Two additional interesting observations were made dur-
ing both the offline and online testings. Firstly, the two inves-
tigators who themselves participated as subjects in the study
achieved better performance both in terms of accuracy in
the offline analysis and in terms of success in completing the
game. This implies that either practice or a more motivated
approach to stimulus fixation results in a more pronounced
visual response. This may be thought of in terms of visual
attention. Endogenous modulation of SSVEP response has
been reported as possible in relation to both foveal fixated
stimuli [10] and covertly attended stimuli in peripheral vi-
sion [17]. The improved discriminability of the SSVEP with
increased “conscious effort” may be related to the ability of
the subject to focus selective attention on the fixated stimu-
lus, as well as the ability to inhibit processing of distractors
in the peripheral visual field.

Secondly, in post-experiment debriefing, subjects re-
ported that audio feedback during training aided in the suc-
cessful sustained fixation on a particular stimulus and the
inhibition of responses to distractions. Also, in the case of
an error causing the character to drop to the second level
of imbalance, subjects found it possible to adjust their fix-
ation strategy, most notably through observing the checker-
board as a whole rather than specifically fixating on any indi-
vidual elements or allowing perception of the phase reversal
as a moving pattern. These adjustments in fixation strategy
prompted by the discrete presentation of biofeedback during
the game in conjunction with the motivation to succeed in
the task evoked by the immersive environment may be the

reason for the better average performance during the real-
time sessions (peak 89.5%) when compared with the offline
results (peak 75.5%).

A possible explanation for the high performance of this
BCI design in spite of continuous distracting stimulation
may be offered by considering the underlying physiology.
The topographic organization of the primary visual cortex
is such that a disproportionately wide cortical area is devoted
to the processing of information from the central or foveal
region of the visual field, and thus directing one’s gaze at a
desired repetitive stimulus produces an SSVEP response to
which all other responses to competing stimuli are small in
comparison.

The SSVEP BCI design has not been actively employed in
alternative or augmentative communication (AAC) for the
disabled. This is partly due to the fact that, for successful
operation, the subject’s ocular motor control must be fully
intact to make selections by shifting gaze direction. Given
the range of accessibility options available for the disabled,
it is only in very extreme cases, such as those where reli-
able eye movement is not possible, that a communication
medium driven by EEG generated by the brain itself is ap-
plicable.

While the need for reliable ocular motor control is a
prerequisite for using the BCI described in this paper, we
speculate that the use of the BCI to control a character in
an engaging game such as that described may prove a use-
ful tool in assisting with motivational issues pertaining to
ALS patients. As BCI systems take considerable training to
master, typically several months, this system may serve to
encourage patients to train for a greater length of time. It
may also be possible that through continued and regular
playing of the game, an ALS patient may be able to retain
an acceptable level of control, even after ocular motor con-
trol has deteriorated to the point where eye-tracking sys-
tems are no longer feasible. This would involve detection of
changes in the amplitudes of the SSVEP as modulated by
attention to the stimuli in one’s peripheral vision. In order
to explore this idea, the authors are currently extending this
study to covert visual attention, in which subjects direct at-
tention to one of two bilateral stimuli without eye move-
ment.

Also worthy of investigation is the presentation of more
stimuli in order to give multidimensional control in the 3D
environment.

5. CONCLUSION

This paper presented the application of an effective EEG-
based brain-computer interface design for binary control in
a visually elaborate immersive 3D game. Results of the study
indicate that successful binary control using steady-state vi-
sual evoked potentials is possible in an uncontrolled environ-
ment and is resilient to any ill effects potentially incurred by
a rich detailed visual environment. All six subjects demon-
strated reliable control achieving an average of 89.5% correct
selections for one of the methods investigated, correspond-
ing to a bit rate of 10.3 bits/min.
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