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Abstract Consider a multiclass stochastic network with state-dependent service
rates and arrival rates describing bandwidth-sharing mechanisms as well as admis-
sion control and/or load balancing schemes. Given Poisson arrival and exponential
service requirements, the number of customers in the network evolves as a multi-
dimensional birth-and-death process on a finite subset of N

k . We assume that the
death (i.e., service) rates and the birth rates depending on the whole state of the sys-
tem satisfy a local balance condition. This makes the resulting network a Whittle
network, and the stochastic process describing the state of the network is reversible
with an explicit stationary distribution that is in fact insensitive to the service time
distribution. Given routing constraints, we are interested in the optimal performance
of such networks. We first construct bounds for generic performance criteria that can
be evaluated using recursive procedures, these bounds being attained in the case of
a unique arrival process. We then study the case of several arrival processes, focus-
ing in particular on the instance with admission control only. Building on convexity
properties, we characterize the optimal policy, and give criteria on the service rates
for which our bounds are again attained.
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1 Introduction

The Erlang formula [6] has proved to be a central tool of performance evaluation
for telephone networks. Its impressive and lasting success in an engineering context
can be explained by both its simplicity and its robustness [1]. The Erlang formula is
insensitive to the call duration distribution and depends on a unique parameter: the
traffic intensity. The only assumptions which are required to apply the formula are
Poisson arrivals. At the mathematical level, the key property is the reversibility of the
one-dimensional birth-and-death process. On the base of this early work of Erlang has
developed the whole theory of stochastic networks whose state evolves as a reversible
stochastic process. Such networks became very popular with the seminal work of
Kelly [8], further developed by Whittle [15]. The crucial insensitivity property of the
Erlang model extends to circuit-switched networks (without admission control and
dynamic load balancing). More recently, (quasi-)reversible networks have emerged
as a powerful tool to capture the essential dynamics of complex and diverse real-life
telecommunication networks; see for instance [4, 5]. Because the key performance
indicators of these models are independent of all traffic characteristics beyond the
traffic intensity, they provide simple and robust engineering rules, just like the Erlang
formula.

The situation gets more complicated in the presence of admission control and/or
load balancing. Admission control consists in possibly rejecting customers even when
the full capacity of the network is not utilized. Load balancing consists in routing an
arriving customer to one of the queues in a subset of possible target queues. These
techniques ensure an efficient utilization of resources by taking into account the sys-
tem state to make decisions. They have become a key component of computer and
communication systems.

The corresponding mathematical model can be described by a general multi-
dimensional birth-and-death process on a finite subset of N

I , where I is the finite
set of nodes (queues) of the network. The death (i.e., service) transition rates depend
on the whole state of the system. Defining an admission control and/or a load balanc-
ing policy consists in tuning the birth (i.e., arrival) transition rates. More precisely, let
us concentrate on one given class of customers arriving at rate ν. Admission control
consists of defining, as a function of the state of the system x, the rate λ(x) ≤ ν at
which the customers are admitted in the network. Assume that for this class, the arriv-
ing customers can be served by any of the nodes in a subset I ′ of I . Load balancing
(aka routing) consists in choosing the rates λi(x), i ∈ I ′,

∑
i λi(x) = λ(x), at which

the admitted customers are assigned to the different nodes.
The goal is to find the policy which optimizes some performance criterion, typ-

ically the blocking probability of an arriving customer. This leads in many cases to
very difficult optimization problems. A discussion of some existing results appears
in [4]; see also the references therein. The book of Ross [13] is also devoted to a spe-
cial instance of this question: the model considered, known as the stochastic knapsack
model, is a model with admission control but without routing (each class of customer
is assigned to a specific and different node). Partial optimality results in dimensions 2
and 3 are obtained for service rates depending only on the local number of customers
at the node.
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In the present paper, we restrict our attention to networks where the service rates
satisfy the “balance condition,” and we consider the optimization problem within the
restricted subclass of policies for arrivals which satisfy an analogous “balance condi-
tion;” these are called the insensitive policies. They are called insensitive because the
resulting stochastic network is insensitive in the sense that its stationary distribution
depends on the service time distribution only via its mean.

So the questions are threefold: (1) Is it possible to find the optimal insensitive
policy? (2) Can we efficiently evaluate the optimal insensitive policy? (3) Is the per-
formance of the best insensitive policy close to the one of the best policy? Here we
address only the first two questions, keeping in mind the hope that the answer to
the third question is yes for a broad range of parameters. In any case, the optimal
performance of insensitive policies provides a bound for the optimal performance of
general policies. This may bring enough motivation for studying the former.

Since these questions are difficult to answer in general, we first focus on policies
with an admission region shaped as a rectangular hyper-parallelepiped and give ef-
ficient recursive formulas to evaluate their performance. This provides computable
lower and upper bounds for the performance of the optimal insensitive policy.

We then study the tightness of our bounds. When there is a unique arrival process,
our bounds are always attained, i.e., the optimal insensitive policy can be described
as a specific rectangular shaped policy.

Later on we turn our attention to the case of several arrival processes and con-
sider, as its simplest instance, the case of networks with admission control only. This
problem is of crucial importance when looking at the flow level modeling of fixed
and wireless data networks [12]. We assume that the state space is coordinate-convex
(see Fig. 1). A coordinate-convex policy is a policy with full admission within a
coordinate-convex subset of the state space, and full rejection out of it (see Fig. 1).
We prove that these policies are extremal within insensitive policies: any insensitive
policy can be decomposed as a convex combination of coordinate-convex policies.
Using this result, we prove that the minimal blocking probability for insensitive poli-
cies is reached by a coordinate-convex policy.

We define a decentralized policy to be a coordinate-convex policy in which the
admission region is the intersection of the whole state space with a rectangular hyper-
parallelepiped. On Fig. 1, the left case corresponds to a nondecentralized coordinate-
convex policy, while the other two cases correspond to decentralized policies.

Fig. 1 Coordinate-convex policy (left) and decentralized policies (middle and right)
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Our results show that, in general, decentralized policies are not optimal within
insensitive policies. In other terms, there exist instances in which a coordinate-convex
policy achieves a blocking probability which is strictly smaller than the one achieved
by the best decentralized policy, which contrasts with the case of a unique arrival
process. We provide a toy example of a network in which this phenomenon occurs.
This emphasizes the intrinsic increased complexity of models where several classes
of customers are competing. To give a complete picture, we also provide sufficient
conditions on the model (monotonicity or light traffic) under which complete sharing
policies (decentralized policies admitting all the traffic inside the state space) are
optimal among insensitive policies.

The paper is organized as follows. Section 2 introduces the model, the notation,
and the objectives. In Sect. 3, we provide computable bounds for a broad set of per-
formance criteria in the general case. Section 4 is a detailed analysis of networks with
admission control only. In Sect. 5, we illustrate the concepts and the results on a toy
example, which can be described as the simplest nontrivial multiclass model.

2 General framework

Notation Let ei be the point of N
k defined by (ei)i = 1, (ei)j = 0, j �= i. A Ferrers

set is a finite subset E of N
k such that

[x ∈ E,xi > 0] �⇒ x − ei ∈ E.

In other words, it is a coordinate-wise convex finite set. The set of all Ferrers sets is
denoted by F (Nk). The set of Ferrers sets included in E ⊂ N

k is denoted by F (E).
The notation x ≤ y is used for the coordinate-wise ordering: ∀i, xi ≤ yi . We further
denote

|x| =
k∑

i=1

xi and

(|x|
x

)

= |x|!
x1! · · ·xk! .

We denote by 1S the indicator function of S, that is the map taking value 1 inside
S and 0 outside. We denote respectively by R+ and R

∗+ the set of nonnegative and
positive reals.

2.1 Model

Consider a network with a finite set of servers (nodes) I . An arriving customer is
served by one of the nodes and then leaves the network. More precisely, I is par-
titioned into finitely many nonempty subsets Ik , k ∈ K, each customer has a class
which is an element of K, and a customer of class k has to be served by one of the
nodes in Ik . The state of the system is described by a vector in N

I corresponding to
the number of customers in each node. The state space, denoted by X , is assumed to
be a Ferrers set:

X ∈ F
(
N

I )
.
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Class-k customers arrive according to a Poisson process of intensity νk . The dif-
ferent arrival processes are mutually independent. An arriving customer of class k

is either routed to a node in Ik or rejected (recall that the state space is finite). The
routing/admission policy depends on the whole state of the system at the instant of
arrival. The service requirements of the customers are independent and exponentially
distributed with parameter 1. The service rate at a given node depends on the whole
state of the system.

Let X be the stochastic process valued in X describing the state of the system. The
above assumptions result in X being a continuous-time jump Markov process, on the
state space X , with infinitesimal generator Q = (q(x, y))x,y∈X given by: ∀x ∈ X ,

{
q(x, x − ei) = φi(x), if x − ei ∈ X ,
q(x, x + ei) = λi(x), if x + ei ∈ X ,
q(x, y) = 0, if y ∈ X , y �= x − ei , x + ei .

(1)

It is convenient to define φi, λi , for all x in N
I , so we set φi(x) = 0 if (x − ei) /∈ X ,

and λi(x) = 0 if (x + ei) /∈ X . The scalars λi(x) define the routing/admission policy.
By definition of the model, they satisfy

Intensity constraints: ∀k ∈ K,
∑

i∈Ik

λi(x) ≤ νk. (2)

By definition, the rejection rate of class-k customers in state x is equal to νk −∑
i∈Ik

λi(x). The intensity h : X → R
∗+ of a routing is defined by

h(x) =
∑

i∈I
λi(x). (3)

The maximum routing intensity ν : X → R
∗+ is defined by

ν(x) =
∑

k∈K
νk1{∃i∈Ik,x+ei∈X }. (4)

Clearly, the intensity h of any routing satisfies ∀x ∈ X , h(x) ≤ ν(x).
Concerning the service rates, we make the following assumption:

∀i ∈ I, ∀x ∈ X , xi > 0, φi(x) > 0. (5)

In this paper, the service rates φi(x) are assumed to be given and fixed. On the
other hand, the routing rates λi(x) will vary, and the actual state space of the process
X will depend on this. For some choices of the routing rates, Q will not be irre-
ducible. However, according to (5), the set of recurrent states of Q is always strongly
connected, and belongs to F (X ). In particular, there exists a unique stationary distri-
bution for X that we denote by π .

Performance criterion Below, the goal is to choose the routing rates in order to
optimize a performance criterion. This criterion can be typically chosen as a given
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linear combination of the blocking probabilities of each class of customers. Consider
p = (pk)k∈K, pk > 0,

∑
k pk = 1. Set

Bp =
∑

x∈X
π(x)

∑

k∈K
pk

(

1 −
∑

i∈Ik
λi(x)

νk

)

. (6)

Using the PASTA property, the blocking probability B of an arriving customer is
a special case of this generic criterion: B = B(νk/ν̄)k , where ν̄ = ∑

k νk . When the
routing policy is defined via a balance function Λ, we denote the associated blocking
probability by Bp(Λ).

We also give results which are valid for any criterion of the form E[f (X)], for a
given f : X → R.

2.2 Balanced services and routing

The service rates are said to be balanced if there exists Φ : X → R
∗+ such that

∀i, ∀x ∈ X , xi > 0, φi(x) = Φ(x − ei)

Φ(x)
. (7)

Consider the following property:

∀i, j, ∀x ∈ X , xi > 0, xj > 0, φi(x)φj (x − ei) = φj (x)φi(x − ej ). (8)

Clearly (7) implies (8). Conversely, assume that (8) holds. Set o = (0, . . . ,0). Con-
sider a directed path from o to x in N

I , that is, a sequence of points (x0 = o,
x1, . . . , xn = x), such that xk − xk−1 = eik , ∀1 ≤ k ≤ n. Define Φ: X → R

∗+ by
the formula

Φ(x) = C
[
φi1(x1)φi2(x2) · · ·φin(xn)

]−1
,

where C is some positive constant. Using (8), we can prove that the value of Φ(x)

does not depend on the chosen directed path from o to x. Formula (7) follows readily.
Similarly, the routing rates are balanced if the following equivalent conditions are

satisfied:

∃Λ : X → R
∗+, ∀i, ∀x ∈ X , x + ei ∈ X , λi(x) = Λ(x + ei)/Λ(x),

∀i, j, ∀x ∈ X , x + ei ∈ X , x + ej ∈ X, λi(x)λj (x + ei) = λj (x)λi(x + ej ).
(9)

It is often convenient to define Λ or Φ on N
I instead of X . Of course, the actual

rates λi and φi depend only on the restrictions of Λ and Φ to X .
Assume that both the service and the routing rates are balanced. Using (7) and (9),

we get, ∀x ∈ X , x + ei ∈ X ,

Φ(x)Λ(x)λi(x) = Φ(x + ei)Λ(x + ei)φi(x + ei).
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Since λi(x) = q(x, x+ei) and φi(x+ei) = q(x+ei, x), we conclude that the process
X is reversible and that the stationary distribution is given by

π(x) = Φ(x)Λ(x)
∑

y∈X Φ(y)Λ(y)
. (10)

The balance conditions are obviously restrictive conditions. For instance, (9) is not
satisfied for usual routing policies such as “join-the-shortest-queue.”

The balance condition goes back to Kelly [8] (the slightly different concept of
job-balance was developed by Hordijk et al. [7]). Balance is satisfied, for example,
if the rates at node i depend on x only via xi or if the service capacities are fairly
shared between classes, i.e., φi(x) = c

xi|x| , or more generally in a bandwidth-sharing
network operated under the balanced fairness allocation [3].

It was recently proved that balance conditions are closely related to insensitivity.
Assuming that the service rates are balanced, a necessary and sufficient condition for
the insensitivity property to hold is that the routing rates be balanced; see [2, 14].

In the sequel we always assume that the service rates and the routing rates are
balanced which implies the insensitivity of the studied network. We shall then speak
of insensitive policies to refer to those policies with balanced service and routing
rates. The model defined in Sect. 2.1 corresponds, at the network level, to exponen-
tially distributed service times. However, since we restrict our attention to insensitive
policies, all the results remain true for i.i.d. generally distributed service times.

2.3 Admissible balance functions

From now on, assume that the service rates (φ(x))x∈X are balanced (by a balance
function Φ) and fixed.

Let A be the set of normalized balance functions which satisfy the routing con-
straints, i.e.,

A =
{

Λ : NI → R
+, ∀x /∈ X , Λ(x) = 0,

∑

x∈X
Λ(x)Φ(x) = 1, (11)

∀x, ∀i ∈ K,
∑

j∈Ii

Λ(x + ej ) ≤ νiΛ(x)

}

. (12)

Such balance functions are called admissible. To each admissible balance function,
we can associate the routing rates defined by (9). Below we often identify an admis-
sible balance function with the routing policy it defines.

In the following it will often be convenient to relax the normalization condi-
tion (11) when considering a balance function. To differentiate between both cases
we shall use the notation Λ̃ instead of Λ when a balance function is not normalized.

We can characterize the structure of A as follows.
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Proposition 2.1 The set A is convex and compact (for the topology of pointwise
convergence). The blocking probability Bp is a linear function on A:

Bp(Λ) = 1 −
∑

x∈X
Φ(x)

∑

i∈K

pi

νi

∑

j∈Ii

Λ(x + ej ).

Proof From the constraints (11) and (12), it is easily checked that if Λ1 and Λ2
belong to A so does tΛ1 + (1 − t)Λ2 for t ∈ [0,1]. Since A is a set of bounded
functions with finite support X , it is compact. Consider now a balance function Λ.
Expressing the routing rates as a function of Λ and using (10), we can rewrite (6) as

Bp(Λ) =
∑

x∈X
Λ(x)Φ(x)

∑

k∈K
pk

(

1 − 1

νk

∑

i∈Ik

Λ(x + ei)

Λ(x)

)

= 1 −
∑

x∈X
Φ(x)

∑

k∈K

pk

νk

∑

i∈Ik

Λ(x + ei).

As a consequence, Bp(tΛ1 + (1 − t)Λ2) = tBp(Λ1) + (1 − t)Bp(Λ2). �

3 Rectangular balance functions and performance bounds

In this section we focus on balance functions characterized by an admission region re-
duced to the intersection of X with a rectangular hyper-parallelepiped y↓ = {x ≤ y}.
We show how to use these balance functions to derive computable lower and upper
bounds for the performance of the optimal insensitive policy.

3.1 Rectangular balance function

Definition 3.1 Consider a point y ∈ X and a function g : X → R
∗+ such that g ≤ ν,

where ν is the maximum routing intensity defined in (4). The rectangular balance
function Λ̃y,g : NI → R+ associated with y and g is defined by

Λ̃y,g(x) =
{1, if x = y,

g(x)−1 ∑
i∈I Λ̃y,g(x + ei), if x ≤ y, x �= y,

0, otherwise.

Any admissible balance function defined on X ∩ y↓ can be represented as a rec-
tangular balance function by choosing g appropriately. This can be shown recur-
sively, starting with the extremal points of the state space, that is, x ∈ X ∩ y↓, ∀i,
x + ei /∈ X ∩ y↓.

On the other hand, a normalized rectangular balance function Λy,g is not necessar-
ily admissible. Consider the rates λi(x) associated with Λy,g and defined according
to (9). We have

∑
i∈I λi(x) = g(x) ≤ ν(x). However, the rates may or may not sat-

isfy the intensity constraints (2). This is an important point, so we illustrate it with an
example.
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Fig. 2 Network of Example 1:
the admission constraints are
x1 ≤ N , x2 ≤ N

Example 1 Let I = K = {1,2} with I1 = {1} and I2 = {2}. (See Fig. 2.) Let the
arrival rates be ν1 = ν2 = 1/2. The routing constraints are given by

λ1(x) ≤ 1/2,

λ2(x) ≤ 1/2,

which for balance functions become

Λ(x) ≥ 2Λ(x + e1),

Λ(x) ≥ 2Λ(x + e2).

Consider the state space X = {(x1, x2), x1 ≤ N, x2 ≤ N}. The maximum routing
intensity is

ν(x) =
{1, for x1 < N , x2 < N ,

1/2, for x1 < N , x2 = N or x1 = N , x2 < N ,
0, for x1 = N , x2 = N .

Consider the point y = (n,n) with n < N , and the function g = ν. The corresponding
rectangular balance function is

Λ̃y,ν :

1 · · · 1 1 1 1
... 4 3 2 1
... 10 6 3 1
... 20 10 4 1
...

...

· · · · · · · · · · · · · 1

. (13)

The intensity constraints are not satisfied except on the diagonal {(i, i), 0 ≤ i ≤
n − 1}. For instance, for the point x = (n − 1, n − 2), we have

λ1(x) = Λ̃y,ν(x + e1)/Λ̃
y,ν(x) = 1/3,

λ2(x) = Λ̃y,ν(x + e2)/Λ̃
y,ν(x) = 2/3 � ν2.

Assume now that ν1 = x and ν2 = 1 − x, for x irrational between 0 and 1. The
maximum routing intensity is unchanged and equal to 1 on y↓. So the rectangular
balance function associated with y and ν is still given by (13). But now the intensity
constraints are violated at all the points of y↓.
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We now determine an explicit expression for rectangular balance functions. An
increasing path from x to y, y ≥ x, is a sequence of points (x0 = x, x1, . . . , xk = y)

such that xj+1 − xj = eij for all j . Let P(x, y) be the set of increasing paths from x

to y.

Lemma 3.2 We have

Λ̃y,g(x) =
{1, if x = y,∑

p∈P(x,y)

∏
z∈p,z �=y g(z)−1, if x ≤ y, x �= y,

0, otherwise.
(14)

Proof Denote by H(x,y) the right-hand side of (14). If x < y, a path from x to y can
be decomposed as a path from x to x +ei and a path from x +ei to y, for some i such
that xi < yi . As a consequence, we have H(x,y) = ∑

i:xi<yi
H(x +ei, y)g(x)−1. We

conclude that H and Λ̃y,g satisfy the same recursive equations and the same initial
condition: H(y,y) = 1 = Λ̃y,g(y). �

3.2 Recursive evaluation of rectangular balance functions

We now show how to compute the performance of policies corresponding to rectan-
gular balance functions.

We hence still assume that the service rates (φ(x))x∈X are balanced (by a bal-
ance function Φ) and fixed. We fix a rectangular balance function Λ̃y,g (y ∈ X ) and
consider the routing rates λi(x) associated with the balance function and defined ac-
cording to (9).

As underlined by Example 1, the intensity constraints may not be satisfied. How-
ever, let us consider the model operated under this (possibly nonadmissible) policy.
That is, consider the stochastic process X with infinitesimal generator (1) for λ, φ.
We first show how to compute the performance of the policy. Later on, we will use
this to bound the performance of admissible policies.

Define

C(y,g) =
∑

x∈X
Λ̃y,g(x)Φ(x), P j (y, g) =

∑

x∈X
Λ̃y,g(x + ej )Φ(x).

Observe that C(y,g) is the normalizing constant, that is, the stationary distribution
πy,g satisfies

∀x ∈ X , πy,g(x) = C(y,g)−1Λ̃y,g(x)Φ(x).

Proposition 3.3 Let Bp = Bp(Λy,g) be the blocking probability defined as in (6). We
have

Bp = 1 −
∑

j∈K pjν
−1
j

∑
i∈Ij

P i(y, g)

C(y,g)
. (15)
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The quantities P j and C can be computed using the following recursive schemes:

C(y,g) = Φ(y) +
∑

i∈I:yi>0

C(y − ei, g)g(y − ei)
−1, (16)

P j (y, g) = Φ(y − ej )1{yj >0} +
∑

i∈I:yi>0

P j (y − ei, g)g(y − ei)
−1. (17)

Proof Formula (15) is obtained directly from Proposition 2.1. Let us prove (16). If
x ≤ y, x �= y, we have

Λ̃y,g(x) =
∑

i:xi<yi

Λ̃y−ei ,g(x)g(y − ei)
−1.

So we get

C(y,g) =
∑

x∈X
Λ̃y,g(x)Φ(x)

= Λ̃y,g(y)Φ(y) +
∑

x≤y,x �=y

Φ(x)
∑

i: xi<yi

Λ̃y−ei ,g(x)g(y − ei)
−1

= Φ(y) +
∑

i: yi>0

C(y − ei, g)g(y − ei)
−1.

The proof of (17) is analogous. �

An equivalent recursive formula implying the service rates instead of the balance
function can be considered instead of (16)–(17). Define P ′

j , j ∈ I, and C′ such that
P ′

j (y, g)/C′(y, g) = Pj (y, g)/C(y,g) and

C′(y, g) = 1 +
∑

i:yi>0

C′(y − ei, g)φi(y)g(y − ei)
−1,

P ′
j (y, g) = φj (y)1{yj >0} +

∑

i:yi>0

P ′
j (y − ei, g)φi(y)g(y − ei)

−1.

Other performance criteria Consider a performance criterion of the form Pf =
E[f (X)] for some function f : X → R+.

Proposition 3.4 We have Pf (y) = D(y,g)/C(y,g), where D(y,g) can be evalu-
ated using the recursive scheme

D(y,g) = f (y)Φ(y) +
∑

i∈I:yi>0

D(y − ei, g)g(y − ei)
−1.
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3.3 Decentralized policies

We introduce a subclass of admissible balanced functions called decentralized bal-
ance functions. Let k be a class, and define x(k) to be the point such that

x
(k)
j =

{
xj , for j ∈ Ik ,
0, otherwise.

Decentralized balance functions correspond to policies having the desirable property
that the routing intensities concerning a given class of customers depend only on the
number of customers of that class present in the network.

Definition 3.5 Consider a point y ∈ N
I , not necessarily in X . The decentralized

balance function Λ̃y associated with y is defined by

Λ̃y(x) =
{

∏
k∈K

(|y(k)−x(k)|
y(k)−x(k)

)
ν

−|y(k)−x(k)|
k , if x ∈ y↓ ∩ X ,

0, otherwise.
(18)

The normalized version of Λ̃y is easily seen to be an admissible balance function.
When y ∈ X , the decentralized balance function is the rectangular balance function
(see Definition 3.1) associated with y and ν.

Let us define the decentralized routing policy associated with the decentralized
balance function. The intensity function (see (3)) of the decentralized routing policy
is

∀x ≤ y, hy(x) =
∑

k∈K
νk

∑

i∈Ik

yi − xi

|y(k) − x(k)|1{x+ei∈y↓∩X }.

The decentralized policies work as follows. Do not accept customers outside the
region y↓. Inside the region y↓ ∩ X all possible customers are accepted, except at
points x ∈ y↓ ∩ X such that

∃k ∈ K,∃i, j ∈ Ik, x + ei ∈ y↓ ∩ X , x + ej ∈ y↓ ∩ X c. (19)

Therefore, the decentralized policy becomes particularly simple when there exists no
such point. This happens in the following two cases among others:

1. When y ∈ X , implying that y↓ ∩ X = y↓. When |K| = 1, the decentralized poli-
cies with y ∈ X are extremal and become the simple policies described in [4] (see
Sect. 3.6).

2. When |I| = |K| (each class is assigned to a specific node). In that case, such
policies are sometimes called threshold policies in the literature, with the point y

determining the threshold. We elaborate further on this case in Sect. 4.

Let us illustrate the above with a few examples.
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Fig. 3 Network of Example 3:
the admission constraints are
x1 ≤ N , x2 ≤ N

Example 2 Consider the same model as in Example 1. Consider the point y = (n,n)

with n < N . The decentralized balance function associated with this point is

Λ̃y :

2n · · · 8 4 2 1
... 16 8 4 2
... 32 16 8 4
... 64 32 16 8
...

...

22n · · · · · · · · · · · · 2n

. (20)

Here we check that we have full admission of customers strictly inside the region
y↓ ∩ X = y↓.

Assume now that n > N . We obtain Λ̃y by restricting (20) to the state space X .
After renormalization, we obtain exactly the same function as before. So we still
have full admission strictly inside y↓ ∩ X . More generally, it is easily seen that full
admission would hold for the decentralized policy associated with any point y. This
is consistent with the fact that |I| = |K|.

Example 3 Let I = {1,2} and K = {1}. (See Fig. 3.) Let the arrival rate be ν1 = 1.
Consider the state space X = {(x1, x2), x1 ≤ N,x2 ≤ N}. Choose y = (y1, y2) ∈ X .
Applying (18), we get

Λ̃y :

1 · · · 1 1 1 1
... 4 3 2 1
... 10 6 3 1
... 20 10 4 1
...

...

· · · · · · · · · · · · · 1

. (21)

Observe that the balance function coincides with the balance function obtained in
Example 1. This is natural since the balance function considered in Example 1 cor-
responds to the possibility of routing the total traffic indistinctively to both classes
which essentially is a single-class system with two nodes.
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Fig. 4 Network of Example 4:
the admission constraints are
x1 ≤ N , x2 + x3 ≤ N

For a point x = (x1, x2), x ∈ y↓, x �= y, the routing is

λ1(x) = y1 − x1

y1 − x1 + y2 − x2
, λ2(x) = y2 − x2

y1 − x1 + y2 − x2
.

So we have λ1(x) + λ2(x) = 1, and there is full admission at point x for x ∈ y↓,
x �= y.

Example 4 Let I = {1,2,3} and K = {1,2}, I1 = {1,2}, I2 = {3}. (See Fig. 4.) Let
the arrival rates be ν1 and ν2. Consider the state space X = {(x1, x2, x3), x1 ≤ N,

x2 + x3 ≤ N}. Choose y = (y1, y2, y3). Applying (18), we get

Λy(x) =
(|y(1) − x(1)|

y(1) − x(1)

)

ν
−|y(1)−x(1)|
1 ν

−y3+x3
2 .

For a point x = (i, j, k) ∈ X , the routing is

λ1(x) = ν1
y1 − i

y1 − i + y2 − j
1{i+1≤N}, λ2(x) = ν1

y2 − j

y1 − i + y2 − j
1{j+k+1≤N}

and

λ3(x) = ν21{k+1≤y3}1{j+k+1≤N}.

Hence we have

λ1(x) + λ2(x) = ν1

(
y1 − i

y1 − i + y2 − j
1{i+1≤N} + y2 − j

y1 − i + y2 − j
1{j+k+1≤N}

)

.

We do not have full admission at point x when i + 1 ≤ N and j + k + 1 > N .

3.4 Recursive evaluation of decentralized policies

When y ∈ X , the decentralized policies are a subclass of the rectangular policies
defined in Sect. 3.1. So the recursive formula (15) can be applied directly.

If y /∈ X , then the decentralized policy is not rectangular but is however the restric-
tion of a rectangular policy defined on a larger state space containing both X and y↓.
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By following the exact same steps, we prove that the results of Proposition 3.3 hold
in this generalized context. More precisely, we have the following.

Let X ′ be a finite Ferrers set containing both X and y↓. For z ∈ X ′, let Λ̃z be the
decentralized balance function on X associated with z and defined according to (18).
For z ∈ X ′, define

C(z) =
∑

x∈X
Λ̃z(x)Φ(x), P j (z) =

∑

x∈X
Λ̃z(x + ej )Φ(x).

Define ν′ : X ′ → R
∗+ by

ν′(x) =
∑

k∈K
νk1{∃i∈Ik,x+ei∈X ′}.

Proposition 3.6 Consider y /∈ X . The blocking probability of the decentralized pol-
icy on X associated with Λy satisfies

Bp

(
Λy

) = 1 −
∑

j∈K pjν
−1
j

∑
i∈Ij

P i(y)

C(y)
.

The quantities P j and C can be computed using the recursive schemes

C(z) = Φ(z)1{z∈X } +
∑

i∈I : zi>0

C(z − ei)ν
′(z − ei)

−1,

P j (z) = Φ(z − ej )1{z−ej ∈X } +
∑

i∈I : zi>0

P j (z − ei)ν
′(z − ei)

−1.

3.5 Bounds

We obtain bounds by applying the following simple principle. Consider a routing
associated with the intensity function h. If h ≤ g, then the balance function can be
decomposed in terms of balance functions of rectangular policies with intensity g.
We state this result more formally in the following theorem.

Theorem 3.7 Consider an admissible balance function Λ with intensity h such that
h ≤ g; we have

Λ =
∑

y∈X
cyΛ

y,g,

with (cy)y∈X defined by cy = Λy,g(y)−1(Λ(y) − g(y)−1 ∑
i∈I Λ(y + ei)).

Proof Introduce the frontier of the attainable states under Λ, H = {x: Λ(x) �= 0,

∀i ∈ I,Λ(x + ei) = 0}. Since Λ is admissible, for every reachable state not in H, we
have

h(x)−1
∑

i∈I
Λ(x + ei) = Λ(x) �⇒ g(x)−1

∑

i∈I
Λ(x + ei) ≤ Λ(x).
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Set cy = Λy,g(y)−1(Λ(y)−g(y)−1 ∑
i∈I Λ(y + ei)). We have shown that cy is non-

negative. Now define Λ′ = ∑
y∈X cyΛ

y,g. Using an induction on the state space
(starting from the states in H), we prove that Λ = Λ′. �

A direct consequence of the above proposition is that

Bp(Λ) ≥ min
y∈X

Bp

(
Λy,g

)
. (22)

Corollary 3.8 Denote by B∗
p the minimum value of the blocking probability Bp

over A. We have the following bounds:

min
y∈X

Bp

(
Λy,ν

) ≤ B∗
p ≤ min

y∈NN
Bp

(
Λy

) = min
y: ∀i, y(i)∈X

Bp

(
Λy

)
.

Proof Since ν is an upper bound of the intensity for any admissible policy, we can
always apply (22) with g = ν. This provides the lower bound for B∗

p . The upper
bound is clear: it follows from the fact that the decentralized balance functions Λy

are admissible. �

Remark 3.1 We could have stated the same result for any performance criterion
Pf : A → R+ which is convex, that is, which satisfies

∀t ∈ [0,1], ∀Λ1,Λ2 ∈ A, Pf

(
(1 − t)Λ1 + tΛ2

) ≥ (1 − t)Pf (Λ1) + t Pf (Λ2).

(23)

3.6 One class of customers

Structural and optimality results for networks with only one arrival process have been
given in [4]. We show that the results from [4] are a special case of the above results.
Also the situation becomes much simpler, and, for instance, the bounds of Corol-
lary 3.8 are attained.

The set I is defined as before. The set K is reduced to a singleton, and we simplify
the notation accordingly. For instance, ν is the rate of the unique arrival process.

Consider a rectangular balance function associated with y ∈ X and ν. We have
by definition

∑
i∈I λi(x) = ν. Since there is a single arrival process, the intensity

constraint (2) is satisfied and Λ̃y,g is admissible. Also, we have (using (14) and (18))

Λ̃y,g(x) = Λ̃y(x) =
{(|y−x|

y−x

)
ν−|y−x|, if x ∈ y↓,

0, otherwise.

Therefore any rectangular balance function is decentralized. The decentralized bal-
ance functions (also called “simple” balance functions) are in that case “extremal”
and form a basis to decompose admissible balance functions. The next result is a
corollary of Theorem 3.7 (see also [4, Theorem 1]).
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Corollary 3.9 Consider an admissible balance function Λ. There exists (cx)x∈X ,
cx ≥ 0,

∑
x cx = 1, such that

Λ =
∑

y∈X
cyΛ

y. (24)

This implies, in particular, that for the blocking probability B defined in (6), a sim-
ple balance function is optimal. This holds more generally for any convex (see (23))
performance criterion.

Furthermore, the blocking probability can be evaluated very easily. By specializing
the results in Sect. 3.2, we get that B(Λy) = πy(y) = Φ(y)/C(y), which can be
evaluated recursively using the formula (16) for C(y):

(
B

(
Λy

))−1 = 1 +
∑

i∈I : yi>0

φi(y)

ν

(
B

(
Λy−ei

))−1
, (25)

with B(Λo) = 1.

4 Networks with admission control

We now consider models with more than one arrival process. We restrict ourselves to
the situation where each node is fed by only one arrival process: K = I . There is no
“routing” but only admission control. The model includes, for example, a bandwidth-
sharing, processor-sharing network operated under balance fairness [3] and subject
to admission control schemes. Note that the service rates can be coupled in a very
complex way.

The book of Ross [13] gives a good overview of existing results when the service
rates are “uncoupled,” i.e., they depend on the local number of customers at each
node only: φi(x) = φi(xi) (called the stochastic knapsack problem). The author stud-
ies several types of insensitive policies under more specific assumptions on the state
space and/or the service rates of the network. The optimality results provided con-
cern the case of locally dependent routing intensities, λi(x) = λi(xi), and mostly in
dimension 2 or 3.

In this section we do not restrict ourself to the assumption that φi(x) = φi(xi)

but consider any balanced service rates (i.e., satisfying (7)). We first give a charac-
terization of any insensitive policy in terms of coordinate-convex policies, i.e., poli-
cies such that customers are fully accepted in a Ferrers-shaped subset of the state
space. This allows us to conclude that an optimal insensitive policy is necessarily
coordinate-convex. We then give conditions for which the optimal policy is the com-
plete sharing policy, i.e., it consists in always accepting customers when possible. In
this last case, we will be able to compute efficiently the optimal performance of the
network.

4.1 Extremal stationary measures

Let X , I = K, and Φ be fixed.
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The complete sharing policy is the policy in which customers are admitted when-
ever it is possible. It is characterized by the rates

∀x ∈ X , ∀i ∈ I, λi(x) =
{

νi, if x + ei ∈ X ,
0, otherwise.

We denote by Λd the balance function corresponding to the complete sharing policy:

∀x ∈ X , Λ̃d(x) =
∏

i

ν
xi

i .

Observe that Λd coincides with the normalized decentralized balance function Λy

associated with a point y such that X ⊂ y↓.

Definition 4.1 Consider a Ferrers set C ∈ F (X ). The coordinate-convex balance
function associated with C is defined by,

Λ̃C (x) = Λ̃d(x)1{x∈C}.

It corresponds to the following coordinate-convex policy: if x + ei ∈ C , then λi(x) =
νi , if x +ei /∈ C , then λi(x) = 0. In words, customers are accepted in a Ferrers-shaped
subset of the state space.

We now state the main result of this section.

Theorem 4.2 An admissible balance function Λ can be decomposed as

Λ(x) =
∑

C∈F (X )

β(C)ΛC (x),

with β(C) ≥ 0 for all C and
∑

C∈F (X ) β(C) = 1.

Observe the difference with Theorem 3.7: here all the balance functions ΛC are ad-
missible. Theorem 4.2 is hence similar to the decomposition obtained for the single-
class systems in Corollary 3.9.

Proof We use an induction on the cardinality of the state space. If the state space
contains one state, the result is obviously true. Suppose it is satisfied for any X ∈
F (NI ) of cardinality less than or equal to n − 1. Consider a state space X ∈ F (NI )

of cardinality n and an admissible balance function Λ̃. We are going to show that
Λ̃(x) = βΛ̃X (x) + G̃(x), with G̃ being an admissible balance function defined on a
strictly smaller state space X ′ ⊂ X .

Consider H(x) = Λ̃(x)/
∏

i ν
xi

i . Recall the intensity constraints (see (2) and (9)):
∀i, ∀x, Λ̃(x + ei)/Λ̃(x) ≤ νi . These inequalities can be rewritten as ∀i, ∀x, H(x) ≥
H(x + ei).

Now define ω as the smallest value of H on X (which is attained on the frontier of
X since H is coordinate-wise decreasing) and x0 as a point of the frontier such that
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H(x0) = ω. Set G(x) = H(x) − ω1{x∈X }. We have, ∀x ∈ X ,

Λ̃(x) = G(x)
∏

i

ν
xi

i + ω
∏

i

ν
xi

i ,

Λ̃(x) = G(x)
∏

i

ν
xi

i + ωΛ̃X (x).

For all x ∈ X , x + ei ∈ X ,

G(x + ei) = H(x + ei) − ω ≤ H(x) − ω = G(x). (26)

Set G̃(x) = G(x)
∏

i ν
xi

i . Using (26), we obtain that G̃(x + ei)/G̃(x) ≤ νi . Therefore
G̃ is an admissible balance function. By construction G̃(x0) = 0. Therefore, G̃ is
nonzero on a set of cardinality less than or equal to n − 1. Also, since X is a Ferrers
set and the point x0 belongs to the frontier of X , the set X \ {x0} is still a Ferrers set.
So, G̃ can be viewed as an admissible balance function on the Ferrers set X \ {x0} of
cardinality n − 1. This concludes the proof. �

Let the performance criterion be the blocking probability Bp defined in (6). We can
deduce from Theorem 4.2 that the optimal insensitive policy is a coordinate-convex
policy.

Corollary 4.3 Let B∗
p be the infimum of Bp over all insensitive policies. We have

B∗
p = min

C∈F (X )
Bp

(
ΛC )

,

where ΛC is introduced in Definition 4.1.

This optimality result extends to any convex criterion. In general, the minimum is
not attained for a decentralized policy. This is illustrated in Sect. 5.

4.2 Recursive formulas and optimality of a complete sharing policy

We show how to compute the blocking probabilities recursively (Proposition 4.4). We
also provide sufficient conditions to guarantee that the optimal policy is a complete
sharing policy. As in Sect. 3, for a Ferrers set C , define

C(C) =
∑

z∈C
Λ̃C (z)Φ(z), P j (C) =

∑

z∈C
Λ̃C (z + ej )Φ(z).

Proposition 4.4 Consider a Ferrers set C ∈ F (X ) and the corresponding coordinate-
convex policy. The blocking probability Bp(ΛC ) satisfies

Bp

(
ΛC ) = 1 − 1

C(C)

∑

i

piP
i(C)

νi

. (27)
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The quantities P i(C) and C(C) can be evaluated recursively. For a point x /∈ C such
that C ∪ {x} is also a Ferrers set, we have

C
(

C ∪ {x}) = C(C) + Λ̃d(x)Φ(x), (28)

P i
(

C ∪ {x}) = P i(C) + Λ̃d(x)Φ(x − ei). (29)

Proof Let us prove formula (27). Recall that the stationary distribution is given
by (Φ(x)ΛC (x))x∈C . Using λi(x) = ΛC (x + ei)/Λ

C (x), the blocking probability
Bi(Λ

C ) of customers of class i satisfies

1 − Bi

(
ΛC ) =

∑

x∈C
Φ(x)ΛC (x)

ΛC (x + ei)

ΛC (x)

1

νi

=
∑

x∈C

Φ(x)Λ̃C (x)
∑

y∈C Φ(y)Λ̃C (y)

Λ̃C (x + ei)

Λ̃C (x)

1

νi

=
∑

x∈C

Φ(x)Λ̃C (x + ei)
∑

y∈C Φ(y)Λ̃C (y)

1

νi

= P i(C)

νiC(C)
.

Formula (27) follows readily.
Consider a Ferrers set C and a point x /∈ C such that C ∪ {x} is also a Ferrers set.

We have

C
(

C ∪ {x}) =
∑

z∈C∪{x}
Λ̃d(z)1{z∈C∪{x}}Φ(z) = C(C) + Λ̃d(x)Φ(x),

Pj

(
C ∪ {x}) =

∑

z∈C∪{x}
1{z+ej ∈C∪{x}}Λ̃d(z + ej )Φ(z).

Using the fact that C ∪{x} is a Ferrers set, z+ ej ∈ C ∪{x} and z ∈ C ∪{x} implies
z ∈ C and z + ej ∈ C or z = x − ej . Hence,

Pj

(
C ∪ {x}) =

∑

z∈C
1{z+ej ∈C}Λ̃d(z + ej )Φ(z) + Λ̃d(x)Φ(x − ej ),

Pj

(
C ∪ {x}) = Pj (C) + Λ̃d(x)Φ(x − ej ). �

Proposition 4.5 Let X be a random variable (r.v.) distributed according to the sta-
tionary number of customers. We have

Bp

(
ΛC ) = 1 −

∑

i∈I

pi

νi

E
[
φi(X)

]
. (30)

Let x be a point such that C ∪ {x} ∈ F (X ). The blocking probabilities satisfy

[
Bp

(
ΛC∪{x}) ≤ Bp

(
ΛC )] ⇐⇒

[∑

i∈I

pi

νi

E
[
φi(X)

] ≤
∑

i∈I

pi

νi

φi(x)

]

. (31)
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Proof Denote by Bi(Λ
C ) the blocking probability of class i customers. We first prove

the rate conservation law:

νi

(
1 − Bi

(
ΛC )) = E

[
φi(X)

]
.

Let (X(t))t be a Markov process describing the state of the network in stationary be-
havior. The processes Mt = Xi(t)−∫ t

0 (λi(X(s))−φi(X(s)) ds are square integrable
martingales, for all i ∈ I , see, for instance, [11]. By Doob’s martingale convergence
theorem, Mt converges almost surely (a.s.) to a finite limit as t goes to infinity, so
Mt/t converges a.s. to 0. Since the state space is finite, we also have that Xi(t)/t

converges a.s. to 0. It implies that

1

t

∫ t

0

(
νi1{X(s)+ei∈C} − φi

(
X(s)

))
ds

t→ νi

(
1 − Bi

(
ΛC )) − E

[
φi(X)

] = 0.

By summing over i, we get (30).
Now let us prove (31). Write Pp(C) = ∑

i (pi/νi)Pi(C). We have

[
Bp

(
ΛC∪{x}) ≤ Bp

(
ΛC )] ⇐⇒

[
Pp(C ∪ {x})
C(C ∪ {x}) ≥ Pp(C)

C(C)

]

.

Using Proposition 4.4, simple computations, and (30), this is equivalent to

∑

i∈I

pi

νi

φi(x) ≥ Pp(C)

C(C)
= 1 − Bp

(
ΛC ) =

∑

i∈I

pi

νi

E
[
φi(X)

]
.

�

The simple comparison rule (31) allows us to conclude that a complete sharing
policy is optimal when the load of the network is small enough, or when the network
is work conserving. We thus have the following results as direct consequences of
Proposition 4.5.

Corollary 4.6 (Light traffic regime) Suppose that

min
x∈X −o

∑

i∈I

pi

νi

φi(x) ≥ 1, (32)

then a complete sharing policy is optimal for the blocking probability Bp .

Corollary 4.7 (Work-conserving network) Suppose that

∑

i

φi(x) = c1{x �=o}, (33)

for some constant c ∈ R
∗+. Then a complete sharing policy is optimal for the blocking

probability of an arrival customer, that is, Bp with pi = νi/(
∑

j νj ).

Finding the optimal routing can be done by using Proposition 4.4. However, the
complexity of such an optimization program might be too big to be considered as a
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practical scheme. In any case, the results of Sect. 3 still apply: by focusing on policies
having rectangular hyper-parallelepiped state spaces, we get easily computable upper
and lower bounds of the optimal performance.

5 A four-state example

Consider a model with two classes of customers and two nodes (|K| = |I| = 2) and
a state space X = {(0,0), (1,0), (0,1), (1,1)}. The arrival rates of the classes are
denoted by λ1 and λ2, respectively. Let λ = λ1 + λ2. The service rates φi(x) are
supposed to be balanced, which means that φ1(1,1)φ2(0,1) = φ2(1,1)φ1(1,0). We
use the notation

φ1(1,0) = a, φ2(0,1) = b, φ1(1,0)φ2(1,1) = c.

In Fig. 5, we have represented all the different coordinate-convex insensitive poli-
cies as well as various sensitive policies (for which the traffic of a given class in a
given state is either fully accepted or fully rejected). The vertices represent the reach-
able states for each policy while the edges correspond to the transitions between
states, of intensity λ1 for a horizontal edge and λ2 for a vertical one. We denote by
Pa , Pb , Pabc the three decentralized policies, and by Pab the unique nondecentralized
coordinate-convex policy. The blocking probabilities of an arriving customer for the
four insensitive policies are given by

B(Pa) =
λ2

1
λ(a+λ1)

+ λ2

λ
,

B(Pb) = λ1

λ
+ λ2

2

λ(b + λ2)
,

B(Pab) = λ2/a + λ1/b

1 + λ1/b + λ2/a
,

Fig. 5 Insensitive policies and sensitive policies
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Fig. 6 Rectangular (not
necessarily admissible) policies

Fig. 7 (Color online) Blocking probabilities of the coordinate-convex policies

B(Pabc) = λ1(λ1/b + λ1λ2/c) + λ2(λ2/a + λ1λ2/c)

(λ1 + λ2)(1 + λ1/b + λ2/a + λ1λ2/c)
.

Consider now the rectangular (not necessarily admissible) policies of Sects. 3.1
and 3.2. They are all represented in Fig. 6, with the transition intensities being repre-
sented on the edges. The two policies on the left of Fig. 6 are nonadmissible (let us
call them P1 and P2), while the one on the right is Pabc . The blocking probabilities
of an arriving customer for P1 and P2 are

B(P1) = λ1

λ
+ λ2

a(1 + λ/a)
, B(P2) = λ2

λ
+ λ2

b(1 + λ/b)
.

In particular, we check that it is possible to have

min
(
B(P1),B(P2)

)
< min

(
B(Pa),B(Pb),B(Pab),B(Pabc)

)
,

in which case the lower bound computed in Corollary 3.8 is not attained.
We represent in Fig. 7 the value of the blocking for each coordinate-convex policy

when c = 0.1 (left), and c = 2 (right) for a and b varying from 0 to 4. The color code
is as follows: the green curve corresponds to Pa , the blue curve corresponds to Pb ,
the yellow one to Pab , and the red one to Pabc . Hence, the optimality of the non-
decentralized policy Pab can be observed for c = 0.1, while for c = 2 the complete
sharing policy Pabc is always optimal. In accordance with Corollary 4.6, the complete
sharing policy Pabc is optimal in light traffic in both cases.

We now compare, for different values of the parameters, the minimum block-
ing probabilities of the three sets of policies represented in Fig. 5: decentralized,
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Table 1 Parameters of the four
scenarios Scenario a b c/a λ2

1 2 2 2 1

2 0.3 2 2 1

3 2 6 2 1

4 2 6 1 1

Fig. 8 Blocking probabilities (log scale) for scenarios 1 (left) and 2 (right)

coordinate-convex, and sensitive policies, together with the lower bound of Corol-
lary 3.8. The parameters of the four scenarios are gathered in Table 1.

Different observations can be made:

• Scenario 1 falls into a well-studied case of a loss network with two circuits and
symmetric service requirements since φ1(1,0) = φ2(0,1) = φ1(1,1) = φ2(1,1).
The optimal policy is known to be one of the policies of Fig. 5, see [13]. We are
in the domain of application of Corollary 4.6, so the complete sharing policy is
optimal among insensitive policies. Since all the service rates are equal, it is clear
that this policy is actually optimal among sensitive policies as well. It explains
why all the curves correspond in Fig. 8 (left). The nonmonotonicity of the blocking
probability with respect to the load (due to the trade-off between the influences of
the two classes) can be observed.

• In the scenarios 2, 3, and 4, the asymmetry of the service rates makes the insensitive
policies perform worse than the sensitive ones for some loads. The lower bound of
Corollary 3.8 becomes very loose in light traffic, while it is attained in heavy traffic.
(See Figs. 8 and 9.)

• In scenarios 2 and 3, decentralized policies are optimal among insensitive poli-
cies, while a nondecentralized policy is the best insensitive policy in scenario 4 for
moderate loads. (See Figs. 8 and 9.)
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Fig. 9 Blocking probabilities (log scale) for scenarios 3 (left) and 4 (right)

Other numerical studies Of course, realistic examples have a much larger number
of states. Several recent papers numerically compare insensitive and sensitive policies
with the help of Markov decision process techniques [9, 10]. The example of Sect. 5
in [9] is enlightening. It has 4 nodes, I = {a, b, c, d}, and 3 classes of customers,
K = {1,2,3}, with I1 = {a}, I2 = {b, c}, I3 = {d}. The service rates are balanced and
given by a fair sharing between classes (i.e., of the type φi(x) = xi/(

∑
j xj )). The

authors show numerically that decentralized policies are actually optimal in the whole
class of insensitive policies, for the whole range of load parameters, when classes 1
and 3 have the same mean service requirement. (Note that our results of Sect. 5
allow us to efficiently compute the performance of these decentralized policies.) This
example gives hope that the optimality of decentralized policies holds more generally
under certain, still unknown, conditions.

6 Conclusion

We give efficient recursive formulas to evaluate rectangular policies in the general
case. This enables us to obtain computable bounds for the performance of the opti-
mal insensitive policy. We then give a precise characterization of the optimal insen-
sitive policies for networks with admission control. To find conditions ensuring the
optimality of decentralized policies is still a challenging open question for general
network topologies. Another important remaining issue is to determine whether the
performance of the best insensitive policy is close to the one of the best policy.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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