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Statistical model validation tools such as cross-validation, jack-knifing model parameters and permutation tests are meant to

obtain an objective assessment of the performance and stability of a statistical model. However, little is known about the

performance of these tools for megavariate data sets, having, for instance, a number of variables larger than 10 times the number of

subjects. The performance is assessed for megavariate metabolomics data, but the conclusions also carry over to proteomics,

transcriptomics and many other research areas. Partial least squares discriminant analyses models were built for several LC-MS

lipidomic training data sets of various numbers of lean and obese subjects. The training data sets were compared on their modelling

performance and their predictability using a 10-fold cross-validation, a permutation test, and test data sets. A wide range of cross-

validation error rates was found (from 7.5% to 16.3% for the largest trainings set and from 0% to 60% for the smallest training set)

and the error rate increased when the number of subjects decreased. The test error rates varied from 5% to 50%. The smaller the

number of subjects compared to the number of variables, the less the outcome of validation tools such as cross-validation, jack-

knifing model parameters and permutation tests can be trusted. The result depends crucially on the specific sample of subjects that

is used for modelling. The validation tools cannot be used as warning mechanism for problems due to sample size or to

representativity of the sampling.
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1. Introduction

Metabolomics studies are performed to investigate
responses of biologic systems on environmental influ-
ences due to, for instance, toxicological exposure,
nutrition or medical treatment. In this field, metabolites
in biological samples like plasma or urine are analyti-
cally determined using techniques such as nuclear
magnetic resonance (NMR; Derome, 1987), liquid or
gas chromatography mass spectrometry (LC-MS and
GC-MS, respectively; Wilson et al., 2005; Lenz et al.,
2004; Lafaye et al., 2003; Plumb et al., 2003; Van der
Greef et al., 2003; Fiehn, 2002). These analytical tech-
niques can generate a large amount of data containing
information about a large number of correlated vari-
ables, which asks for appropriate statistical tools for
data analysis. Multivariate data analysis (MVA) is used
to analyze the correlated data. MVA can be used to
summarize the data by reducing the dimensions of the
data, for regularization purposes, for variable selection,
etcetera. One of the applications of MVA is to use
correlations and trends in the data in order to discrim-
inate between groups (Massart et al., 1997; Vandeginste
et al., 1998).

Discriminant analysis (DA) is a MVA method that
can be used if the interest is focused on differences
between groups of objects or on subgroup structures
and can serve two slightly different purposes. If it is used
to separate distinct sets of objects or observations, dis-
crimination is the main purpose. If it is used to define
classification rules to allocate new objects or observa-
tions to previously defined groups, it is used for classi-
fication (Vandeginste et al., 1998).

However, the results found in DA cannot always be
trusted as they are sensitive to chance-correlations and/
or to the risk of overfitting. Validation tools like cross-
validation (Stone, 1974; Martens and Naes, 1989; Hastie
et al., 2001), permutation tests (Efron and Tibshirani,
1993; Manly, 1997; Good, 2000; Mielke and Berry,
2001), jack-knifing model parameters (Efron, 1982;
Martens and Martens, 2000) and test data sets are used
to address these problems and provide an objective
assessment of the performance and stability of a model.
These tools are commonly used to validate the results of
multivariate data analyses. When multivariate data
become megavariate data, the number of variables is
even larger and, due to the curse of dimensionality, the
chance of false correlations and the risk of overfit is
even higher. In the present study, a data set having a
number of variables larger than 10 times the number of
subjects is defined to be megavariate. The validity of
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cross-validation for small-sample classification was
assessed under low dimensionality (Martens and Dard-
enne, 1998; Braga-Neto and Dougherty, 2004), but
still little is known about how validation tools such as
cross-validation, jack-knifing and permutation tests will
perform for megavariate data.

Cross-validation is used to choose the optimal model
parameters as well as to test the predictability of the
statistical model. Cross-validation uses the available
data minus a particular part (e.g. 1/k-th part of the total
data set) to fit the model and the part that was left out to
test the model (Hastie et al., 2001). However, the pre-
dictability based on a single cross-validation is biased
and often too optimistic because the determination of
the model meta-parameters (e.g. number of latent vari-
ables or any regularization term) is based on the same
set as is used to determine the predictability. Hence, still
a separate test set is required to determine the predict-
ability for future data. This problem can be addressed
by double cross-validation, which makes most efficient
use of the available data as all objects are used for model
building and validation (Stone, 1974).

The stability of model parameters is assessed by the
jack-knife procedure. All available data minus the data
of one (or more) objects is used to fit the model and for
each perturbed set, the parameters estimates can be
obtained. A graphical presentation or an evaluation of
(relative) standard deviations of the estimates gives an
impression of the stability of the estimates (Efron, 1982;
H. Martens and M. Martens, 2000).

A permutation test is used to assess the significance of
a classification. The class assignment can be permuted
several times and for each permutation, a model
between the data and the permuted class-assignment can
be built. The discrimination between classes of the
model based on the permutated class-assignment is
compared to the discrimination of the model based on
the original classification (Efron and Tibshirani, 1993;
Manly, 1997; Good, 2000; Mielke and Berry, 2001).

The classification of a test data set using the model-
parameters based on the training data set, provides
information about the generalizability of a model;
whether the model is only applicable for the subjects in
the training set or whether it can also be used to predict
the classification of new subjects. All these tools can be
used to prevent that conclusions about the discrimina-
tion between classes may be drawn, which cannot be
statistically supported.

In order to assess the performance of statistical vali-
dation tools for megavariate data sets, several data sets of
various sizes, all derived from the same original data set of
human LC-MS lipidomic data, are compared on their
modelling performance and their predictability. These
data were obtained from a co-operative metabolomics
study of TNO, Nestlé Research Centre (Lausanne,
Switzerland) and the EU NUGENOB project (NUGE-
NOB is the acronym of the project ‘Nutrient-Gene

interactions in human obesity – implications for dietary
guidelines’ supported by the European Community
(Contract no. QLK1-CT-2000-00618), see the web-site
http://www.nugenob.com; Petersen et al., 2005; Blaak
et al., 2006). The main objective of this metabolomics
study was to find biomarkers that characterize differences
between high and low fat burners in lean and obese sub-
jects. A strategy for data preprocessing, data analysis and
validation of statistical models was also developed (Bi-
jlsma et al., 2006). The present study was performed in
order to investigate the effect of decreasing the number of
subjects on the performance of the statistical validation
tools. Although metabolomics data were used for the
analyses, the issue also carries over to proteomics and
transcriptomics data.

2. Materials and methods

2.1. Data

2.1.1. General
Although real-life data may lead to less distinguishing
differences between sets, it was preferred above simu-
lated data because it illustrates the problems researchers
have to deal with best. Both biological and analytical
variations are present in the data and may be of influ-
ence on the results. Data of a co-operative metabolomics
study of TNO, Nestlé Research Centre (Lausanne,
Switzerland) and the EU NUGENOB project were used.
This study involved plasma from 50 lean and 100 obese
human subjects, collected at four different time points
(t = 0, 1, 2, and 3 h) after a single intake of a fat rich
meal. All samples were analysed using four analytical
platforms: NMR, GC-MS, LC-MS polar and LC-MS
lipid. Details about the study design can be found in
Petersen et al. (2005), whereas details about the data
and data preprocessing can be found in Bijlsma et al.
(2006). The data set used in the present study was based
on the LC-MS lipid data measured at t=0 h, which
contained 947 LC-MS peaks (variables).

2.1.2. Base data set
The focus was on differences between lean and obese
subjects in the LC-MS lipid. In order to avoid con-
founding of the results due to an unbalanced number of
lean and obese subjects, a random selection of 50 out
of the 100 obese subjects was made. The created data set
of 50 obese and 50 lean subjects was used as base data
set (data50:50). Subsets of the data50:50 were used to
study the effect of the decrease of the number of subjects
on the analysis and validation results.

2.1.3. Data subsets
A data set was generated containing the data of 40 lean
and 40 obese subjects (data40:40). The inclusion of a
subject into the data40:40 data set was based on random
selection without replacement. The creation of the
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data40:40 set was repeated 10 times, each based on a
new random selection of the original data50:50 set
(base data set). This process was repeated for 10 sets of
30 lean and 30 obese subjects (data30:30), for 10 sets
of 20 lean and 20 obese subjects (data20:20), for 10 sets
of 10 lean and 10 obese subjects (data10:10) and finally,
for 10 sets of 5 lean and 5 obese subjects (data05:05), all
based on random selection out of the data50:50 base
data set. Although additional information about the
subjects such as being a high or low fat burner or the
center at which the sample was collected (Petersen et al.,
2005), was not used in the statistical analysis, equal
representation of these factors over the created subsets
was secured.

The subset data sets were used for modelling and
were used as so called training data sets. The data of the
remaining subjects were used as test data sets. The test
data set of the data40:40 set contained the data of the
remaining 10 lean and 10 obese subjects, the test data set
of the data30:30 set contained the data of the remaining
20 lean and 20 obese subjects, the test data set of the
data20:20 set contained the data of the remaining 30
lean and 30 obese subjects, the test data set of the
data10:10 set contained the data of the remaining 40
lean and 40 obese subjects, and the test data set of the
data05:05 set contained the data of the remaining 45
lean and 45 obese subjects. As a consquence of this
procedure, the size of the test sets differ. To rule out the
possible effect of the test data set size, an extra test set,
based on a random selection without replacement of the
data of 10 obese and 10 lean subjects, was also created
for each subset. Summarizing, one base data set was

generated as well as 50 training sets (5�10) and 50 test
sets (5�10) and 50 extra test sets (5�10). The procedure
that was followed to obtain all data sets, is illustrated in
figure 1. This procedure was chosen to mimic reality, in
which very few samples are available for data analysis.
The data05:05 may be unrealistically small for human
studies, but was incorporated for illustrative purposes.

2.2. Statistical analysis

Partial least squares discriminant analysis (PLS-DA;
Vong et al., 1988; Barker and Rayens, 2003) was used to
find a small number of linear combinations of the ori-
ginal variables (called ‘latent variables’; LVs), that was
predictive for the class membership and that described
most of the variability of the LC-MS metabolic profiles.
PLS-DA is a linear regression method whereby the
multivariate variables (the X-block) corresponding to
the observations are related to the class membership (the
Y-Block) for each subject. The Y-block contains ‘‘1’’
and ‘‘0’’ only, corresponding to the lean and obese class
assignment. It is a classical PLS regression (Geladi and
Kowalski, 1986; Martens and Naes, 1989; Massart
et al., 1997; Vandeginste et al., 1998) where the response
is a categorical one expressing the class membership of a
subject. PLS-DA will maximise the covariance between
the predicting data set (X block with LC-MS meta-
bolomic profiles) and the data to be predicted (Y-block
with class assignments).

Data were mean-centered before analyses. The cen-
ter-parameters of the training set were used to transform
the corresponding test data set. Details about other

Figure 1. Illustration of the procedure that was followed to obtain the data sets.
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aspects of the data pre-processing can be found in
Bijlsma et al. (2006). All analyses were performed using
Matlab Version 7.0.4 R14 (The Mathworks, Inc.) and
the PLS Toolbox Version 3.0.4 (Eigenvector Research,
Inc.).

2.3. Statistical model validation

2.3.1. Cross-validation
The use of a double cross-validation would be pre-
ferred (Stone, 1974), because a single cross-validation
may lead to bias and overestimation of the true error
rate (Hastie et al., 2001). However, the issue of bias is
in this case of less importance, because only the error
rates are compared and it is assumed that the bias in
each model is similar. For this reason and for the
fact that in case of very small data sets a double
cross-validation becomes less appropriate, a single
cross-validation was used instead of a double cross-
validation. A single 10-fold venetian blind cross-vali-
dation based on stratified sampling having the lean
and obese class membership as strata, was used to
choose the optimal number of LVs as well as to
obtain an estimate of the error rate of the PLS-DA
model. In the first cross-validation step, 1/10-th of a
training data set was left out, under the restriction
that the number of lean subjects that was left out was
equal to the number of obese subjects that was left
out, and data of the remaining subjects were used to
build a PLS-DA model. The model was used to pre-
dict the class assignment of the ‘‘left out’’ subjects.
This was repeated until all subjects were left out once.
The number of LVs yielding the lowest percentage of
misclassifications (error rate) was chosen as the opti-
mal model. Note that by using a 10-fold cross-vali-
dation for data05:05, only 1 subject is left out at each
step of the cross-validation. Hence in this case, the 10-
fold cross-validation is equal to a ‘‘leave-one-out’’
cross-validation.

2.3.2. Jack-knife
The stability of the regression coefficients of the PLS-
DA models was assessed by jack-knifing (Efron, 1982;
H. Martens and M. Martens, 2000). In order to be able
to use the same data set parts as was used in cross-
validation, all available data minus 1/10-th was used to
fit the model, instead of leaving-out-one observation
per jack-knife step which is a more usual way of jack-
knifing. In the first jack-knife step, 1/10-th of a training
data set was left out, under the restriction that the
number of lean subjects that was left out was equal to
the number of obese subjects that was left out, and data
of the remaining subjects were used to build a PLS-DA
model. This was repeated until all subjects were left out
once. The 10 variables having the largest coefficient in
the reference model data50:50 were evaluated graphi-
cally using Box-and-Whisker-plots.

2.3.3. Permutation test
Cross-validation can be used to assess the class-
predictability of a model. In order to asses the dis-
crimination, an exact or an approximate permutation
test can be used (Efron and Tibshirani, 1993; Manly,
1997; Good, 2000; Mielke and Berry, 2001).

The class assignment was permuted in such a way
that the ratio between the number of lean (‘‘0’’) and
obese (‘‘1’’) subjects remained equal, and this was done
1000 times with replacement of the class vector. As an
exact permutation test would lead to too many combi-
nations, an approximate permutation test was per-
formed on each of the data sets. For the data05:05
subset, only 100 permutations of the Y-block were
performed, because the number of possible permuta-
tions is much lower than 1000. For each permutation, a
PLS-DA model was built between the X-block and the
permuted Y-block using the same optimal number of
LVs as determined by cross-validation for the model
based on the original class assignment. The ratio of the
between sum of squares and the within sum of squares
(B/W-ratio) for the class assignment prediction of each
model was calculated. If the B/W-ratio of the original
class assignment is a part of the distribution based on
the permuted class assignments, the contrast between
the two classes cannot be considered to be significantly
different from a statistical point of view. If, on the other
hand, the B/W-ratio based on the original class assign-
ment is much higher compared to the ratios based on the
permuted class assignments, the differences between the
classes are statistically significant. Because exact accu-
racy percentages are not important in the scope of this
paper, the permutation test is evaluated visually
according to figure 2 (Bijlsma et al., 2006).

2.3.4. Predictability
Cross-validation, jack-knifing and the permutation test
provide information about the validity of the model
based on the information in the training data set. The
generalizability suggested by the cross-validation error

Figure 2. Visual evaluation of the permutation test.
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rate was assessed by the prediction of the class assign-
ment of new subjects, which are in this case defined as
the subjects in the test data sets. The class assignment
prediction of the subjects in these test data sets was
determined based on the model parameters of the cor-
responding training data set. Hence, the prediction was
based on the same (number of) LVs as was used for the
training set. The error rate of the test data set, being the
percentage of misclassified subjects, was calculated and
was used as measure for the generalizability of the
model. Ideally, the test error rates are comparable to the
ones found by 10-fold cross-validation.

3. Results and discussion

3.1. Training sets

The results of the PLS-DA model for the data50:50
are presented in figure 3. As this model is based on all
lean and obese subjects, this model is considered to be
the reference model. For data50:50, the cross-validation
error rate of the model is 11% (0.11 in figure 3a) based
on 11 LVs and is shown in figure 3a. Figure 3b shows
the prediction based on the cross-validation for the lean
(first 50; marked as ‘o’) and the obese (second 50;
marked as ‘*’) subjects. The overlap between the two
classes shown in this sub-figure corresponds to the error

rate of 11%. In figure 3c the final fit is shown, which is
much more optimistic compared to the prediction based
on cross-validation. Finally, in figure 3d the jack-knife
results for the 10 largest regression coefficients is given.
The results in figure 3 are similar to the results found by
Bijlsma et al. (2006) in the analyses on the data set based
on 100 obese and 50 lean subjects.

A summary of the results of the PLS-DA models
based on all training sets is given in table 1. Per data set
and per model, the error rate based on the 10-fold cross-
validation, the number of used LVs and the evaluation
of the permutation test are given. Also the mean and
standard deviation of the error rate and the mean
number of LVs per data set are presented.

The mean cross-validation error rate and the variance
of the error rate both increase if the number of subjects
in the data set decreases. The results of the analysis of
the data05:05 sets are the most variable, showing a
range of error rates from 0% for the 10th selection to
60% for the 4th selection. The results of the 4th and the
10th selection of data05:05 are presented in figure 4A
and B. The jack-knife results confirm the above descri-
bed discrepancy between the conclusions based on both
sets of data05:05. The 10 largest regression coefficients
found in the reference model of data50:50 were consid-
ered to be the most important variables for the dis-
crimination between the two groups and therefore, only
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these 10 were used to evaluate the jack-knife results.
Needless to say, the absolute values presented in fig-
ure 4A and B are not comparable to the values pre-
sented in figure 3. The coefficients of the 4th selection of
data05:05 show a lot of variation and the coefficients of
the 10th selection show only little variation but were
almost all equal to zero. This finding confirms that it can
be expected that both sets were not representative for
the total set of 50 lean and 50 obese subjects.

3.2. Test sets

The test data sets were used to determine the gener-
alizability of the models. The number of LVs was based
on the number of LVs used for modelling the training
data set. The mean and the standard deviation of the
test error rate per data set are presented in table 2 and
reveal that the predictability of the models based on
small training data sets was worse than the predictability
of the models based on larger training data sets.

The test error rates varied from 5% to 30% for the
test sets corresponding to data40:40 and from 35% to
50% for the test sets corresponding to data05:05. The
mean test error rates in table 2 are similar to the cross-
validation error rates of the corresponding training data
sets in table 1, except for data10:10. The standard
deviations of the test error rates are less variable com-
pared to the cross-validation error rates of the training
data sets presented in table 1.

Although the 10th selection of data05:05 had a
much better cross-validation error rate for the training
set (0%) compared to the 4th selection (60%), their test
error rate based on the corresponding test set is similar
(both 50%). The results of the extra test data sets of 10
obese and 10 lean subjects are also presented in table 2.
Although the mean levels of the error rates are similar,
the rates are more variable compared to the original

test data sets, due to the smaller size of the extra test
data sets.

3.3. Discussion

The results are predominantly driven by the size of
the training data set and the selection of the subjects in
that data set, which is especially illustrated by the
smaller training data sets. The mean cross-validation
error rate increases as the number of subjects in the
training data set decreases. In itself this is not a spec-
tacular finding. A model based on a larger training data
set can be determined more precisely than a model based
on a smaller data set. On the other hand, the larger the
test data set, the more precise the mean test error rate
can be estimated. Ideally, test error rates are of the same
order as cross-validation error rates. The test set error
rates and the cross-validation error rates were quite
similar at a mean level, except for data10:10. However,
at individual set level, the cross-validation error rate is in
most cases not comparable to the test error rate. This
illustrates that the result crucially depends on the spe-
cific sample of subjects that was used for modelling.

With only a small selection from a total population it
is more likely that the selected subjects are not repre-
sentative for the studied population, because it is pos-
sible that only subjects out of the extremes of the
population distribution are selected. This study shows
that the selection of subjects is crucial for the conclu-
sions that are drawn about the model.

The effect is best seen in the results of data05:05. The
10th selection of data05:05 had a much better cross-vali-
dation error rate for the training set compared to the 4th
selection. If the 5 lean and 5 obese subjects of the 10th
selection were selected as the representatives of the pop-
ulation under study, the conclusion would be that the 2
groups can be separated based on their LC-MS lipidomic

Table 1

Summary of PLS-DA results based on all training sets (ER = cross validation error rate in %, LV = number of latent variables, P = eval-
uation permutation test with e = excellent, g = good, m = moderate, b = bad)

Model Training data set

4040 3030 2020 1010 0505

ER LV P ER LV P ER LV P ER LV P ER LV P

1 12.5 6 e 20.0 7 e 17.5 2 g 25.0 4 m 10.0 4 m

2 16.3 7 e 15.0 6 e 25.0 6 g 10.0 3 g 20.0 4 m

3 13.8 7 e 18.3 7 e 5.0 11 g 10.0 8 g 20.0 4 b

4 12.5 7 e 18.3 7 e 22.5 6 g 20.0 3 m 60.0 3 b

5 11.3 6 e 18.3 7 e 12.5 10 g 10.0 2 g 50.0 1 b

6 15.0 7 e 8.3 7 e 20.0 6 e 10.0 2 g 40.0 1 b

7 15.0 7 e 15.0 7 e 20.0 8 g 15.0 3 m 20.0 1 m

8 11.3 6 e 16.7 7 e 17.5 6 g 25.0 1 m 40.0 1 b

9 16.3 7 e 16.7 7 e 35.0 6 g 50.0 5 b 40.0 2 b

10 7.5 8 e 13.3 6 e 10.0 9 g 20.0 5 m 0.0 1 g

Mean 13.1 7.0 16.0 7.0 18.5 7.0 19.5 4.0 30.0 2.0

SD 2.7 3.4 8.3 12.3 18.9
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profiles, even based on cross-validation results. If the 10
subjects out of set 4 were the subjects selected as the rep-
resentatives of the population under study, the conclusion
would be completely opposite. This means that the con-
clusions about the model completely depend on the
selected 10 subjects. Nevertheless, the error rates based on

the corresponding test sets were quite similar. As the
predictability of both models was poor, it can be
expected that both sets were not representative for the
total set of 50 lean and 50 obese subjects. This illus-
trates how it could go wrong using data sets having
considerably less subjects compared to the number of
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Figure 4. PLS-DA results for the 4th selection (A) and the 10th selection (B) of data05:05: Cross-validation error rate (a), Prediction based on

cross-validation (b; o = lean, * = obese), Prediction based on fit (c; o = lean, * = obese), and Jack-knife (d).
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variables and it also shows the risk of drawing (too)
optimistic conclusions about the distinction between
the two classes, even based on cross-validation results.
The size of the test data set did not seem to be an
issue, as the results of the extra test data sets of 10
obese and 10 lean subjects were similar to the results
based on the original test data sets.

Because different purposes are served, the conclusions
about model validity based on cross-validation are not
always comparable to the conclusions drawn based on
the permutation test. The variation in performance of
the permutation test was lower compared to the varia-
tion in error rates. The test only assesses the significance
of the classification and does not take the predictability
into account, which can explain why a model having a
high cross-validation error rate can perform well in
the permutation test.

All results indicate that cross-validation, jack-knif-
ing and permutation tests are insufficient validation
tools for megavariate data sets with only a few sam-
ples. The lower the ratio between the number of
subjects and the number of variables, the less the
validation results can be trusted. Taking only the
results of these validation tools into account can be
very misleading and may lead to incorrect conclusions.
In order to avoid these problems, the number of
samples per group should be large enough. In the
present study, the turning point seemed to be between
the sets having 10 and 20 subjects per group and
based on about 950 variables. Unfortunately, it is
impossible to translate this into a ‘‘golden rule’’ for all
megavariate data sets.

Due to practical or budgetary limitations, it is often
impossible to include the number of subjects that would
be necessary to avoid the problems presented above.
Another way to deal with megavariate data sets is to

make the sets ‘‘less megavariate’’ by reducing the num-
ber of variables that are used for the statistical data
analysis. This can be done, for instance, based on (i)
analytical grounds by using a target approach instead of
the total screening approach, (ii) biological grounds by
using a priori variable selection, (iii) a selection method
using statistical tools (Smilde et al., 2005), (iv) grey
models, in which prior knowledge about (groups of)
variables is taken into account (Bijlsma and Smilde,
2000; Gurden et al., 2001) or (v) regularization tech-
niques, like using simplified correlation matrices (Schä-
fer and Strimmer, 2005). The disadvantage of the third
and fifth approach is that the variables are selected using
MVA methods which use the full data and similar
problems as mentioned above can affect the selection.
Using this approach, the bias due to selection should be
assessed and corrections should be made (Ambroise and
McLachlan, 2002). In case of a small number of subjects
compared to the number of variables, contradictory
results can be expected. Whether more simple statistical
methods, e.g, those ignoring correlations like Nearest
Shrunken Centroids (Tibshirani et al., 2002; Tibshirani
et al., 2003), can be used to reduce the number of vari-
ables, is still under investigation.

The performance is assessed using this specific
megavariate metabolomics data, but it is expected that
the conclusions will also carry over to many other
research areas. It was known that the data represented
small differences between obese and lean subjects
(Bijlsma et al., 2006). It is possible that the findings
would be less dramatic if data that represents larger
differences between groups is used.

The present study did not take the variable selection
into account and only investigated the influence of the
number of samples in the data sets. Future research
may reveal the impact of the variable selection on the

Table 2

Summary of PLS-DA results based on the projection of all test data sets (number of LVs based on corresponding training data sets).

Model Training data set

4040 3030 2020 1010 0505

Size testset Size testset Size testset Size testset Size testset

1010 1010 2020 1010 3030 1010 4040 1010 4545 1010

1 15.0 15.0 35.0 45.0 30.0 35.0 40.0 45.0 50.0 50.0

2 10.0 10.0 30.0 30.0 41.7 35.0 30.0 10.0 38.9 40.0

3 30.0 30.0 27.5 25.0 50.0 50.0 46.3 55.0 50.0 50.0

4 30.0 30.0 42.5 40.0 18.3 10.0 48.8 45.0 46.7 50.0

5 30.0 30.0 17.5 10.0 13.3 15.0 50.0 50.0 50.0 50.0

6 25.0 25.0 22.5 30.0 48.3 50.0 43.8 45.0 50.0 50.0

7 15.0 15.0 17.5 10.0 33.3 40.0 38.8 55.0 50.0 50.0

8 20.0 20.0 20.0 25.0 50.0 50.0 50.0 50.0 50.0 50.0

9 5.0 5.0 35.0 30.0 35.0 35.0 50.0 50.0 37.8 35.0

10 25.0 25.0 35.0 40.0 30.0 20.0 50.0 50.0 50.0 50.0

Mean 20.5 20.5 28.3 28.5 35.0 34.0 44.8 45.5 47.3 47.5

SD 9.0 9.0 8.7 11.8 12.8 14.7 6.7 13.0 4.9 5.4
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reliability of the standard statistical validation tools for
megavariate data.

4. Concluding remarks

The lower the number of subjects compared to the
number of variables, the less the outcome of validation
tools such as cross-validation, jack-knifing and permu-
tation tests can be trusted. The result depends crucially
on the specific sample of subjects that is used for mod-
elling. The validation tools cannot be used as warning
mechanism for problems due to sample size or repre-
sentativity issues.
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