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3 Department of Physics and Astronomy, University of Lethbridge, Alberta T1K 3M4, Canada
4 Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Received: 5 January 2016 / Accepted: 26 April 2016 / Published online: 19 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We investigate the Michel-type accretion onto a
static spherically symmetric black hole. Using a Hamilto-
nian dynamical approach, we show that the standard method
employed for tackling the accretion problem has masked
some properties of the fluid flow. We determine new ana-
lytical solutions that are neither transonic nor supersonic as
the fluid approaches the horizon(s); rather, they remain sub-
sonic for all values of the radial coordinate. Moreover, the
three-velocity vanishes and the pressure diverges on the hori-
zon(s), resulting in a flow-out of the fluid under the effect
of its own pressure. This is in favor of the earlier predic-
tion that pressure-dominant regions form near the horizon.
This result does not depend on the form of the metric and
it applies to a neighborhood of any horizon where the time
coordinate is timelike. For anti-de Sitter-like f(R) black holes
we discuss the stability of the critical flow and determine
separatrix heteroclinic orbits. For de Sitter-like f(R) black
holes, we construct polytropic cyclic, non-homoclinic, phys-
ical flows connecting the two horizons. These flows become
non-relativistic for Hamiltonian values higher than the criti-
cal value, allowing for a good estimate of the proper period
of the flow.

1 Introduction

General relativity is one of the best-tested theories in physics,
however, there seem to be indications that it might be modi-
fied at sufficiently large scales (as well as small scales). The
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most important indication of the modification of general rel-
ativity comes from the observations made on the Supernova
type Ia (SN Ia) and Cosmic Microwave Background (CMB)
radiation [1–3]. These observations indicate that our universe
is undergoing accelerated expansion. This could be explained
by dark energy, and the vacuum energy in quantum field theo-
ries could have been used as a proposal for dark energy [4,5].
However, the problem with this proposal is that the vacuum
energy in quantum field theory is much more than the dark
energy required to explain the present rate of expansion of
the universe. There seem to be serious limitations on modi-
fying quantum field theories such that the vacuum energy is
reduced to fit the amount of dark energy in the universe. In
fact, it has been argued that such modifications will lead to a
violation of the weak equivalence principle [6,7].

The action for general relativity has also been modified to
explain the accelerated expansion of the universe, and cur-
rently f(R) gravity is one of the best-studied modifications
of general relativity [8–12]. This is because the f(R) gravity
theories are known to produce an accelerated expansion of
the universe [13–15]. Furthermore, if a cosmological con-
stant exists, it will not have any measurable effect for most
astrophysical phenomena [16,17]. However, the f(R) gravity
theories can have astrophysical consequences. In fact, astro-
physical consequences have also been used to constrain a
certain type of f(R) gravity models [18,19]. So, it becomes
both interesting and important to study astrophysical phe-
nomena using f(R) gravity. Several methods for the static
spherically symmetric solutions in f(R) gravity are studied
in Refs. [20,21]. Regular black holes in f(R) gravity are stud-
ied in Refs. [22–24]. Myung discussed the stability of f(R)

black holes [25]. Further, there are many applications of f(R)

gravity, e.g. gravity waves, brane models, effective equation
approach, LHC test etc., [26–28]
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An important astrophysical effect of black holes is that
they tend to accrete matter, and such accretion on a black
hole have been thoroughly studied [29–32]. The first stud-
ies of the accretion around a black hole were done by Bondi
in the Newtonian framework [33]; this effect is now known
by the name of Michel-type accretion. In his work, Bondi
studied the hydrodynamics of polytropic flow, and demon-
strated that settling and transonic solutions exist for the gas
accreting onto compact objects. The relativistic versions of
Michel-type accretion have also been studied using the steady
state spherically symmetric flow of a test gas around a black
hole [34,35]. It may be noted that the luminosity spectra and
the effect of an interstellar magnetic field in ionized gases
[36], the effect of radiative processes [36–38], and the effect
of rotation [39] on accreting processes have also been stud-
ied. Recently, the Michel-type accretion of perfect fluids for
a black hole in the presence of a cosmological constant has
also been studied [40–42]. Jamil and collaborators studied
the effects of phantom energy accretion onto static spheri-
cally symmetric black holes and the primordial black holes
and found the masses of black holes to decrease and vanish-
ing near the Big Rip [43–46]. The accretion on topologically
charged black holes of the f(R) theories and the Einstein–
Maxwell–Gauss–Bonnet black hole has also been investi-
gated by focusing on both inward and outward flows from
the accretion disk [47,48]. Using the fact that data from the
high-mass X-ray binary Cygnus X-1 has been used to con-
strain the values of the parameters for the f(R) gravity the-
ories [49], in this paper, we will rather analyze some other
aspects of the Michel-type accretion for a black hole in a
theory of f(R) gravity.

The order of the paper is as follows. In Sect. 2 we discuss
the general equations for spherical accretion including con-
servation laws for any static metric. We particularly show that
the pressure of the perfect fluid for such spherically symmet-
ric flows is, up to a sign, the Legendre transform of the energy
density. This leads to a nice differential equation allowing the
determination of the energy density, enthalpy, or pressure
knowing one of the equations of state. In Sect. 3, without
restricting ourselves to a specific static black hole, we study
the accretion phenomenon using the Hamiltonian dynamical
system in the plane (r, v) where r is the radial coordinate and
v is the three-dimensional speed of the fluid. We discuss sonic
and non-sonic critical points for ordinary fluids as well as for
non-ordinary matter. In Sect. 4 we write down the metric for
static spherically symmetric black hole in a particular model
of f(R) gravity [50] and discuss some of its properties. In
Sect. 5 we study the isothermal fluid and various subcases.
There we provide examples of new solutions among which
critical flows and purely subsonic flows with vanishing speed
and divergent pressure on the horizon as well as separatrix
heteroclinic orbits by restricting the analysis to an f(R) anti-
de Sitter-like black hole. We also determine solutions that

are purely supersonic and solution with transonic flows. We
discuss the stability of some of these flows. In Sect. 6 we
apply the results of our Hamiltonian dynamical analysis to
polytropic fluids. In Sect. 7 we again consider the accretion
of a polytropic fluid onto an f(R) black hole solution where
the function f(R) is modeled by (a) Hu–Sawicki [51] and
(b) Starobinsky [8] formulas. The last section contains the
conclusion and discussions of the above derivations.

Throughout the paper we have used the common relativis-
tic notation. The chosen metric signature is (−,+,+,+) and
we have the geometric units G = c = 1.

2 General equations for spherical accretion

In this section, in Sect. 3, and in the first part of each of
Sects. 5 and 6 we consider any static spherically symmetric
metric of the form

ds2 = − f dt2 + dr2

f
+ r2(dθ2 + sin2 θdφ2), (1)

without specifying the form of the metric coefficient f . Our
results will apply to any black hole of that form and to any
horizon in a neighborhood of which the time coordinate is
timelike. In the second part of each of Sects. 5 and 6 we
consider some applications to an f(R) anti-de Sitter-like, to
Schwarzschild, and to an f(R) de Sitter-like black hole.

In this section, we define the governing equations for
spherical accretion. Here, we are considering the gas as a
perfect fluid. We analyze the accretion rate and flow of a per-
fect fluid in f(R) gravity. For this purpose, we define the two
basic laws of accretion i.e. particle conservation and energy
conservation. We assume that the fluid is simple containing
a single particle species; the fluid could be made of different
particle species with low reactions rates or no reactions at all.
Let n be the baryon number density in the fluid rest frame
and

uμ = dxμ/dτ (2)

be the intrinsic four-velocity of the fluid where τ is the proper
time. We define the particle flux or current density by Jμ =
nuμ. From the law of particle conservation, there will be no
change in the number of particles i.e. particles neither are
created nor destroyed. In other words, we say that for this
system, the divergence of the current density is conserved,

∇μ J
μ = ∇μ(nuμ) = 0, (3)

where ∇μ is the covariant derivative. On the other hand, the
stress-energy tensor (SET) for a perfect fluid is given by

Tμν = (e + p)uμuν + pgμν, (4)
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where e denotes the energy density and p is the pressure. The
Michel-type accretion is steady state and spherically sym-
metric [40–42], so all the physical quantities (n, e, p, uμ)
and others that will be introduced later are functions of the
radial coordinate r only. Furthermore, we assume that the
fluid is radially flowing in the equatorial plane (θ = π/2);
therefore uθ = 0 and uφ = 0. For convenience of notation we
set ur = u. Using the normalization condition uμuμ = −1
and (1), we obtain

ut = ±
√

f + u2. (5)

On the equatorial plane (θ = π/2), the continuity equa-
tion (3) yields

∇μ(nuμ) = 1√−g
∂μ(

√−gnuμ) = 1

r2 ∂r (r
2nu) = 0, (6)

or, upon integrating,

r2nu = C1, (7)

where C1 is a constant of integration. This shows that, in the
units of proper time, the particle flux πr2nu through a sphere
with radius r remains constant for all r .

The thermodynamics of simple fluids is described by the
two equations [59]

dp = n(dh − T ds), de = hdn + nT ds, (8)

where T is the temperature, s is the specific entropy (entropy
per particle), and

h = e + p

n
, (9)

is the specific enthalpy (enthalpy per particle).1

A theorem in relativistic hydrodynamics [59,60] states
that the scalar huμξμ is conserved along the trajectories of
the fluid:

uν∇ν(huμξμ) = 0, (10)

where ξμ is a Killing vector of the spacetime generator of
the symmetry. In the special case we are considering in this
work ξμ = (1, 0, 0, 0) is timelike, yielding

∂r (hut ) = 0 or h
√

f + u2 = C2, (11)

1 If m is the baryonic mass, then ρ = mn is the mass density. Now, if
h = h/m and s = s/m denote the enthalpy and entropy per unit mass,
respectively, then ρh = nh and ρs = ns. In terms of (h, s, ρ), Eqs. (8)
and (9) take the forms dp = n(dh − Tds), de = hdρ + ρTds, and
h = (e + p)/ρ.

where C2 is a constant of integration. This equation can be
derived directly upon evaluating

∇μT
μ
t = nuμ∇μ(hut ) + ∇t (nh − e) = 0, (12)

where we have used Tμ
ν = nhuμuν +(nh−e)δμ

ν . Since the
flow is stationary, any time derivative vanishes (∇t (nh−e) ≡
0), hence the result.

If the fluid had a uniform pressure, that is, if the fluid were
not subject to acceleration, the specific enthalpy h reduces to
the particle mass m and Eq. (10) reduces to muμξμ = cst
along the fluid lines. This is the well-known energy conser-
vation law which stems from the fact that the fluid flow is
in this case geodesic. Now, if the pressure throughout the
fluid is not uniform, acceleration develops through the fluid
and the fluid flow becomes non-geodesic; the energy con-
servation equation muμξμ = cst , which is no longer valid,
generalizes to its inertial equivalent [59] huμξμ = cst as
expressed in Eqs. (10) and (11).

It is well known that a perfect fluid (4) is adiabatic; that
is, the specific entropy is conserved along the evolution lines
of the fluid (uμ∇μs = 0). This is easily established using the
conservation of the SET, Eq. (3), and the second equation
in (8). First, rewrite Tμν as nhuμuν + (nh − e)gμν , then
project the conservation formula of the SET onto uμ

uν∇μT
μν = uν∇μ

[
nhuμuν + (nh − e)gμν

]

= uμ
(
h∇μn − ∇μe

) = −nTuμ∇μs = 0. (13)

In the special case we are considering in this work where the
fluid motion is radial, stationary (no dependence on time),
and it conserves the spherical symmetry of the black hole,
the latter equation reduces to ∂r s = 0 everywhere, that is,
s ≡ const.. Thus, the motion of the fluid is isentropic and
Eq. (8) reduce to

dp = ndh, de = hdn. (14)

Equations (7) and (11) are the main equations that we will
use to analyze the flow of a perfect fluid in the background
of f(R) black hole.

Another formula that will turn out to be useful in the sub-
sequent sections is the barotropic equation. Notice that the
canonical form of the equation of state (EOS) of a simple
fluid is e = e(n, s) [60]. Since s is constant, this reduces to
the barotropic form

e = F(n). (15)

From the second of Eq. (14) we have h = de/dn, yielding

h = F ′(n), (16)
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where the prime denotes differentiation with respect to n.
Now, the first of Eq. (14) yields p′ = nh′; with h = F ′ we
obtain

p′ = nF ′′, (17)

which we integrate by parts to derive

p = nF ′ − F. (18)

Here we identify, up to a sign, the Legendre transform of the
energy density F . This conclusion is purely thermodynamic
and it does not depend on the symmetric properties of the flow
(presence of a timelike Killing vector and spherical symmet-
ric flow); rather, it is valid for any isentropic flow (s constant
everywhere). The conclusion states that the pressure is the
negative of the Legendre transform of the energy density and
that an EOS of the form p = G(n) is not independent of an
EOS e = F(n). The relationship between F and G can be
derived upon integrating the first differential equation,

nF ′(n) − F(n) = G(n). (19)

In a locally inertial frame, the three-dimensional speed of
sound a is given by a2 = (∂p/∂e)s [61]. Since the entropy
s is constant, this reduces to a2 = dp/de. Using (14), we
derive a useful formula needed for the remaining sections

a2 = dp

de
= ndh

hdn
⇒ dh

h
= a2 dn

n
. (20)

Using (16), this reduces to

a2 = ndh

hdn
= n

F ′ F
′′ = n(ln F ′)′. (21)

Another useful formula is the three-velocity of a fluid ele-
ment v as measured by a locally static observer. Since the
motion is radial in the plane θ = π/2, we have dθ = dφ = 0
and the metric (1) implies the decomposition

ds2 = −(
√

f dt)2 + (dr/
√

f )2

in the standard special relativistic way [62,63] as seen by a
locally static observer. The latter measures proper distances
and proper times by d� = dr/

√
f and dτ0 = √

f dt corre-
sponding to radial dr and time dt changes, respectively, and
measures the three-velocity v of the fluid element by

v ≡ d�

dτ0
= dr/

√
f√

f dt
. (22)

This yields

v2 =
(

u

f ut

)2

= u2

u2
t

= u2

f + u2 , (23)

where we have used ur = u = dr/dτ , ut = dt/dτ , ut =
− f ut , and (5). This implies

u2 = f v2

1 − v2 and u2
t = f

1 − v2 , (24)

and (7) becomes

r4n2 f v2

1 − v2 = C2
1 . (25)

In relativistic hydrodynamics one usually derives the
above formulas on considering the world lines of a fluid ele-
ment and that of a locally static observer. If u and u0 are the
respective four-velocities, we have [60,64]

u = �(u0 + U) (with u0 · U = 0), (26)

whereU is the relative four-velocity, that is, the velocity of the
observer attached to the fluid element relative to the locally
static observer with the property u0 · U = 0, where the dot
represents the scalar product with respect to the metric (1).
� is the Lorentz factor � ≡ −u0 · u = dτ0/dτ [60,64]. In
the case of radial motion in the θ = π/2 plane, we have

u = (ut , u, 0, 0) = ut∂t + u∂r ,

u0 = (1/
√

f , 0, 0, 0) = ∂t/
√

f , (27)

U = (0, V r , 0, 0) = Vr∂r .

Here ut and u = ur are as defined in (2) and V r = dr/dτ0 =√
f v. Since ∂r is not a unit four-vector, rather it is v, and not

Vr , the three-velocity that the locally static physical observer,
who uses the orthonormal basis (∂t/

√
f ,

√
f ∂r , ∂θ /r, ∂φ/r ),

measures. Squaring (26) we obtain

� = 1√
1 − U · U = 1√

1 − v2
, (28)

where we have usedU·U = grr V r V r = v2 in the last expres-
sion. Equations (24) are rederived from (26), (27), and (28).

All the above expressions remain valid for an observer
outside the horizon, more precisely, for an observer where
the time coordinate is timelike. We define the value vh of
v on the horizon(s) rh as the limit of the continuous three-
velocity field v(r) as r approaches rh from within the region
where the time coordinate is timelike ( f > 0):

vh = lim
r →
( f >0)

rh
v(r). (29)
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3 Hamiltonian systems

We have derived two integrals of motion (C1,C2) given in (7)
and (11). Either of these integrals, or any combination of
them, can be used as a Hamiltonian for the fluid flow. The
simplest Hamiltonian system has one degree of freedom, in
which case the Hamiltonian H is a two-variable function
(x, y). Let H be the square of the lhs of (11):

H = h2( f + u2). (30)

Now, we need to fix the two dynamical variables (x, y) on
which H depends and the time variable t̄ of the Hamilto-
nian dynamical system. There are different ways to fix the
dynamical variables; one may choose (x, y) to be (r, u) [42],
(r, v2) [42], (r, n) [65], (r, h), or even (r, p). The time variable
t̄ for the dynamical system is any variable on which H (30)
does not depend explicitly so that the dynamical system is
autonomous.

In Sect. 2 we have seen that, under the symmetry require-
ments of the problem, h is an explicit function of the baryon
number density n only; this applies to the pressure p too. So,
if (x, y) are chosen to be (r, h) (resp. (r, p)), the Hamilto-
nian (30) takes the form

H = h(n)2

[
f (r) + C2

1

r4n2

]
(C2

1 > 0), (31)

where we have used (7) (resp. H = h(p)2[ f (r) + C2
1

r4n(p)2 ]).
This conclusion does not extend to other dynamical vari-

ables, that is, if one chooses (x, y) to be, say, (r, v), it is not
correct to assume h = h(r) or h = h(v), for, by (7) and (24),
n is a function of (r, v), and so is h. With h = h(r, v), the
Hamiltonian (30) of the dynamical system reads

H(r, v) = h(r, v)2 f (r)

1 − v2 , (32)

where we have used (24) to eliminate u2 from (30). We have
thus fixed the dynamical variable to be (r, v). No use has
been made of (7) to derive (32); use of it will be made in
the derivation of the critical points (CPs), particularly, of the
sonic points.

From now on, partial derivatives will be denoted as
∂ f/∂x = f,x .

3.1 Sonic points

In the remaining part of this section, we assume that the
parametric Hamiltonian of the dynamical system is given
by (32). In this section we use (32) to derive the CPs of

the dynamical system and derive them in Appendix B VIIIC
using (31).

With H given by (32), the dynamical system reads

ṙ = H,v, v̇ = −H,r (33)

(here the dot denotes the t̄ derivative). In (33) it is understood
that r is kept constant when performing the partial differen-
tiation with respect to v in H,v and that v is kept constant
when performing the partial differentiation with respect to r
in H,r . We will keep using this simple notation in the subse-
quent steps of this section. The CPs of the dynamical system
are the points (rc, vc) where the rhs in (33) are zero. Evalu-
ating the rhs we find

H,v = 2 f h2v

(1 − v2)2

[
1 + 1 − v2

v
(ln h),v

]
, (34)

H,r = h2

1 − v2

[
f,r + 2 f (ln h),r

]
. (35)

The rightmost formula in (20) yields

(ln h),v = a2(ln n),v and (ln h),r = a2(ln n),r . (36)

Now, using (25) we see that if r is kept constant we have the
equation nv/

√
1 − v2 = const., by which upon differentiat-

ing with respect to v we obtain

(ln n),v = − 1

v(1 − v2)
⇒ (ln h),v = − a2

v(1 − v2)
; (37)

and if v is kept constant we have the equation r2n
√

f =
const., by which upon differentiating with respect to r we
obtain

(ln n),r = −4+r(ln f ),r
2r

⇒ (ln h),r = −a2[4+r(ln f ),r ]
2r

.

(38)

Finally, the system (33) reads

ṙ = 2 f h2

v(1 − v2)2

(
v2 − a2

)
, (39)

v̇ = − h2

r(1 − v2)

[
r f,r (1 − a2) − 4 f a2

]
. (40)

Let us assume that h is never zero and finite (the same applies
to n). The rhs vanish if

v2
c = a2

c and rc(1 − a2
c ) fc,rc = 4 fca

2
c , (41)

where fc = f (r)|r=c and fc,rc = f,r |r=c. The second equa-
tion expresses the speed of sound at the CP, a2

c , in terms of
rc
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a2
c = rc fc,rc

rc fc,rc + 4 fc
, (42)

which will allow one to determine rc once the EOS a2 =
dp/de [or e = F(n)] is known. The remaining needed ingre-
dient is a simplified expression for n/nc. If we write the con-
stant C2

1 in (25) as

C2
1 = r4

c n
2
cv

2
c

fc
1 − v2

c
= r4

c n
2
cv

2
c
rc fc,rc

4v2
c

= r5
c n

2
c fc,rc
4

, (43)

where we have used (41). Using this in (25) we obtain

(
n

nc

)2

= r5
c fc,rc

4

1 − v2

r4 f v2 . (44)

As we shall see in the subsequent sections, there will be
two types of fluid flow approaching the horizon, in the one
type the speed v vanishes and in the other one the speed
approaches that of light in such a way that the ratio (1 −
v2)/ f may remain finite. In the former type of motion, the
number density n diverges on the horizon independently of
the expression of f .

An expression for u2
c is derived upon substituting (41)

into (24), then making use of (42)

u2
c = f a2

c

1 − a2
c

= rc fc,rc
4

. (45)

Another sonic CP is the point corresponding to fc = 0 and
a2
c = 1. But the roots of fc = 0 may coincide with the hori-

zons rh of the black hole. This implies that the fluid becomes
ultra-stiff as it approaches the horizon where rc = rh (the
fluid is not necessarily ultra-stiff for all r ). This conclusion
does not apply to f(R) gravity only; rather, to any static spher-
ically symmetric metric of the form (1). To the best of our
knowledge, this result has not been announced elsewhere.
Now, by (25), since fc = 0 we must necessarily have v2

c = 1.
This point, however, may fail to behave as a CP in the math-
ematical sense, for the rhs of (39) and (40) may become
undetermined or may have nonzero values there. This point
(r = rh, v = 1) may behave as a focus point as we shall see
in the next section.

3.2 Non-sonic critical points

From (39), we see that fc = 0 and fc,rc = 0 may lead to a
non-sonic CP. However, this CP would be a double root of
f = 0, which is out of the scope of this paper where we only
consider non-extremal black holes.

Another obvious CP, which lies within the scope of f(R)

gravity, corresponds to h(rc) = 0 (39) and (40). This is

not possible for ordinary matter but is the case for non-
ordinary matter with negative pressure. When this is the
case, h may vanish at some point with no special con-
straint on v2 and a2. This means that for non-ordinary flu-
ids, the flow may not become transonic at all. We will
not pursue this discussion here, for it is out of the scope
of this work. In the next section, however, we will pur-
sue this discussion for ordinary matter where it is generally
admitted that “the flow must be supersonic at
the horizon, though it is necessarily
subsonic at a large distance” [66]. We will
explicitly show, through physical solutions, the existence of
subsonic flow for all values of the radial coordinate. More-
over, the speed of the flow vanishes as the fluid approaches
the horizon, so the flow does not necessary become super-
sonic nor transonic near the horizon [67,68]. Our conclu-
sion remains true even for the Schwarzschild black hole.
We believe that the use of standard methods for tackling the
accretion problems has masked many features of them.

The conclusions made in this section, concerning the sonic
CP [from (39) to (45)], do not apply to f(R) gravity only, for
we have not fixed the form of the metric coefficient f yet; they
apply to any static metric with gtt = −1/grr and gθθ = r2.

Applications are given in the following sections where we
consider three models of f(R) gravity.

4 Black hole in f(R) gravity

Recently, an interesting model of f(R) gravity has been pro-
posed [50], and the motion of test particles around a black
hole in this theory has been investigated. The Lagrangian for
this model of f(R) theory is given by [50]

f(R) = R +  + R + 

d2(6α2)−1R + 2α−1 ln
R + 

Rc
, (46)

where  is the cosmological constant, Rc is a constant of
integration,2 and α, d are free parameters of this theory. The
limit that is relevant for astrophysical scale corresponds to
R �  and d2(6α2)−1R � 2α. In this limit, we obtain
f(R) = R +  + d2(6α2)−1R ln R

Rc
. The limit that is rel-

evant to the cosmological scale is R ∼ Rd2(6α2)−1 ∼ 

yielding f(R) = R + . This limit constrains the acceler-
ating expansion [52]. It is useful to introduce a parameter
β = α/d in terms of which both limits of the theory can
be studied [50]. In this theory, the metric for a spherically
symmetric black hole with mass M takes the form

2 Rc is merely a constant of integration which is used to balance the
dimensions of R. Its value, which “is not sensitive to the
SNIa data” [52], is not known by any physical theory and can only
be determined using astronomical constraints as suggested by Safari
and Rahvar [52].
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ds2 = − f dt2 + dr2

f
+ r2

(
dθ2 + sin2 θdφ2

)

with f ≡ 1 − 2M

r
+ βr − r2

3
. (47)

If  = 0, (47) reduces to the special case of a Kiselev black
hole [55,56] and if β = 0, (47) reduces to a Schwarzschild–
de-Sitter or Schwarzschild–anti-de-Sitter black hole.

The present model of f(R) can explain the flat rotation
curve of galaxies, consistent with solar system tests and also
explains the pioneer anomaly/acceleration. For details con-
cerning the motivation for this particular model of f(R) the-
ory, we refer the reader to the original work by Saffari and
Rahvar [52]. Of course the present analysis can also be done
for other f(R) black holes such as (32) of Ref. [53] and will
be reported elsewhere. However, due to the generality of our
work, further analysis will be trivial as was the case with
f(T ) gravity black holes [54].

It is well known that f(R) theory has a representation
equivalent to a particular class of scalar-tensor (ST) theories
namely, the Brans–Dicke (BD) theory i.e. a scalar field being
non-minimally coupled to gravity or curvature with a vanish-
ing kinetic term of the scalar field. This description holds for
both metric and Palatini f(R) theories [69,70]. Furthermore,
the no-hair theorem for black holes in a general ST theory
suggests that the Schwarzschild solution is the only asymp-
totically flat, exterior, vacuum, static and spherically sym-
metric solution to ST theory [71]. However, it does not rule
out the existence of non-asymptotically flat ST black holes
without hair. For instance, the Reissner–Nordström anti-de
Sitter kind of topological black holes are derived in BD-
Maxwell ST theory [72]. In the same context, we study a
non-asymptotically flat f(R) black hole.

The roots of f = 0, or equivalently, the roots of P = 0,
where P ≡ 3r f = −r3 +3βr2 +3r −6M is a polynomial
of degree 3, determine all possible horizons of (47). If  > 0,
the equation P = 0 has always some negative root, which we
ignore because of the physical singularity at r = 0, and it may
have two positive roots or a double positive root depending
on the values of its coefficients. These two positive roots, if
any, determine the event and cosmological horizons. In this
case, the fluid flow would be confined in the space region
enclosed by the two horizons. If there are no positive roots,
the metric coefficient gtt is positive for all r > 0; this case is
not interesting.

We will be interested in the cases where the positive roots
of P = 0 are single. Assuming  < 0 (anti-de Sitter-like
black hole) and β ≥ 0, then if β2 > −, P = 0 has either
two negative roots and one positive root or one double nega-
tive root and one positive root; if 0 ≤ β2 ≤ −, P = 0 has
one single positive root. On converting the polynomial P(r)
into the Weierstrass polynomial w(z) ≡ 4z3 − g2z − g3 by
the transformation r = z + β/, we can parameterize the

roots of P = 0 based on the parametrization of the roots of
w(z) as given in the Appendix A VIII [58]. The horizon is
given by

rh = β


+

√
g2

3
cos

(η

3

)
, (48)

if P = 0 has at least two real roots;

rh = β


+ 1

2 · 91/3

[ (
9g3 + √

3
√−�

)1/3

+
(

9g3 − √
3
√−�

)1/3
]
, (49)

if P = 0 has only one real root. Here g2 and g3 are defined
by

g2 = 12(β2 + )

2 , g3 = 4(2β3 + 3β − 6M2)

3 , (50)

and � and the angle 0 ≤ η ≤ π are defined as in Eqs. (A.2)
and (A.4), respectively.

Now, assuming  > 0 (de Sitter-like black hole) and
β ≥ 0, P = 0 has always one negative root and will have
two positive roots, corresponding to an event horizon reh and
a cosmological horizon rch > reh if 2(β2+)r+ > 6M−β

where r+ is the positive root of P ′(r) = 0. When this is the
case, the roots are given

rch = β


+

√
g2

3
cos

(η

3

)
,

reh = β


−

√
g2

3
cos

(π + η

3

)
, (51)

where g2 and g3 are defined by (50). � and the angle 0 ≤
η ≤ π are defined as in Eqs. (A.2) and (A.4), respectively.
To have a common notation with the case  < 0, we will for
short denote reh and rch by rh .

The scalar invariants R, RμνRμν , and RμνσρRμνσρ are
given by

I1 = R = 6β

r
− 4, (52)

I2 = RμνRμν = 2
(
5β2 − 6rβ + 2r22

)

r2 , (53)

I3 = RμνσρRμνσρ = 48M2

r6 + 8β2

r2 − 8β

r
+ 82

3
, (54)

which reduce to the Schwarzschild values I1 = I2 = 0 and
I3 = 48M2/r6 if β =  = 0. Clearly r = 0 is the curvature
singularity, which is not removable.
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5 Isothermal test fluids

Isothermal flow is often referred to the fluid flowing at a con-
stant temperature. In other words, we can say that the sound
speed of the accretion flow remains constant throughout the
accretion process. This ensures that the sound speed of accre-
tion flow at any radii is always equivalent to the sound speed
at sonic point [73]. Here our system is adiabatic, so it is more
likely that the flow of our fluid is isothermal in nature. There-
fore, in this section we find the general solution to the isother-
mal equation of state of the form p = ke, which is of the form
p = kF(n), see (15), with G(n) = kF(n), see (19). Here k
is the state parameter constrained by (0 < k ≤ 1) [41]. Gen-
erally, the adiabatic sound speed is defined as a2 = dp/de.
So by comparing the adiabatic sound speed to the equation
of state, we find a2 = k.

The differential equation (19) reads

nF ′(n) − F(n) = kF(n), (55)

yielding

e = F = ec

nk+1
c

nk+1, (56)

where we have chosen the constant of integration3 so that (9)
and (16) lead to the same expression for h

h = (k + 1)ec

nk+1
c

nk = (k + 1)ec
nc

(
n

nc

)k

. (57)

Now, setting

K =
(
r5
c fc,rc

4

)k(
(k + 1)ec

nc

)2

= const.,

and using (44) we simplify h(r, v)2 by

h2 = K

(
1 − v2

v2r4 f

)k

. (58)

Upon performing the transformation t̄ → K t̄ and H →
H/K , the constant K gets absorbed in a re-definition of the
time t̄ . Using (58), the new HamiltonianH and the dynamical
system (39), (40) read

3 This constant, ec/nk+1
c , in (56) could have been chosen e∞/nk+1∞

or e0/n
k+1
0 where (e0, n0) are any reference (energy density, number

density).

H(r, v) = f

1 − v2

(
1 − v2

v2r4 f

)k

= f 1−k

(1 − v2)1−kv2kr4k ,

ṙ = 2(v2 − a2) f

v(1 − v2)2

(
1 − v2

v2r4 f

)k

,

v̇ = − 1

r(1−v2)

(
1−v2

v2r4 f

)k [
r f,r

(
1−a2

)
− 4 f a2

]
,

(59)

where the dot denotes differentiation with respect to the new
time t̄ .

For a subsequent physical discussion we need an expres-
sion for the pressure. With p = ke, we obtain upon substi-
tuting (44) into (56)

p ∝
(

1 − v2

v2r4 f

) k+1
2

. (60)

Since the Hamiltonian (59) remains constant on a solution
curve, if the latter approaches the horizon (any horizon) from
within the region where t is timelike, f approaches 0, and so
the speed v must either approach 1 or 0 so that the Hamilto-
nian retains the same constant value (otherwise, the Hamilto-
nian would always assume a 0 value on the horizon regardless
its constant value elsewhere). In former case (v → 1), the
pressure (60) may remain finite in a neighborhood of the
horizon. In the latter case (v → 0), the pressure diverges as
the solution curve approaches the horizon. This is a very gen-
eral conclusion which holds for any metric coefficient f and
any horizon of the black hole. If the latter is of de Sitter type
( > 0), a pressure-dominant region may form near both
the event and the cosmological horizons. This is in favor of
a proposal that a pressure-dominant region would form near
the horizon [74].

If f (r) = 0 has a single root as r approaches rh (cor-
responding to an event, a cosmological, or any horizon in a
neighborhood of which t is timelike), which is our case, then,
in the latter case (v → 0), as the curve approaches the hori-
zon f ∼ (r−rh) and v2k ∼ f 1−k , thus v2 ∼ (r−rh)(1−k)/k .
Using this in (60) we see that the pressure diverges, as the
curve approaches the horizon, as

p ∼ (r − rh)
− k+1

2k . (61)

If rh is a double root of f = 0, we obtain

p ∼ (r − rh)
− k+1

k .

Before we proceed, let us see what the constraints on k to
have a physical flow are. Along a solution curve, the Hamil-
tonian of the dynamical system (59) is constant [where the
constant is proportional to C2 (11)]. A global flow solution
that extends to spatial infinity corresponds to
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v � v1r
−α + v∞ as r → ∞, (62)

where (α > 0, v1, |v∞| ≤ 1) are constants. Inserting this in
the Hamiltonian (59) it reduces to

H �

⎧
⎪⎪⎨
⎪⎪⎩

(a): f 1−k

r4k , (if 0 < |v∞| < 1);
(b): f 1−k

r (4−2α)k , (if v∞ = 0);
(c): f 1−k

r (4+α)k−α , (if |v∞| = 1).

(63)

Using the metric (47), each case splits into two subcases as
follows.

(a) ⇒
{

(a1): H � r2−6k, (if  �= 0);
(a2): H � r1−5k, (if  = 0, β �= 0).

(64)

Since H is constant along a solution curve we must have
k = 1/3 ( �= 0) and k = 1/5 ( = 0, β �= 0), respectively.
These are the only possibilities allowing for a fluid flow with
a non-vanishing, non-relativistic three-dimensional speed.

(b) ⇒
{

(b1): H � r2−6k+2αk, (if  �= 0);
(b2): H � r1−5k+2αk, (if  = 0, β �= 0).

(65)

Thus, for ordinary fluids we deduce

(b1): 1
3 < k < 1 and 0 < α ≤ 2, (66)

(b2): 1
5 < k < 1 and 0 < α ≤ 2, (67)

and for non-ordinary fluids (−1 ≤ k < 0) we deduce

(b1): − 1 ≤ k < 0 and α ≥ 4, (68)

(b2): − 1 ≤ k < 0 and α ≥ 3. (69)

On comparing the leading terms in the expansion (62), we
see that the fluid flow for ordinary matter is faster at spatial
infinity than it is for non-ordinary matter,

(c) ⇒
{

(c1): H � r2−6k+α−αk, (if  �= 0);
(c2): H � r1−5k+α−αk, (if  = 0, β �= 0).

(70)

Thus, for ordinary fluids we deduce

(c1): 1
3 < k < 1 and α = 2(3k−1)

1−k > 0, (71)

(c2): 1
5 < k < 1 and α = 5k−1

1−k > 0, (72)

while for non-ordinary matter (−1 ≤ k < 0) the subcases
(c1, c2) are impossible to hold. Thus, non-ordinary fluids
cannot have a relativistic flow at spatial infinity.

In the following we will analyze the behavior of the
fluid by taking different cases for the state parameter k. For

instance, we have k = 1 (ultra-stiff fluid), k = 1/2 (ultra-
relativistic fluid), k = 1/3 (radiation fluid), and k = 1/4
(sub-relativistic fluid). For the case of the metric (47), Eq.
(42) reduces to

k = (3β − 2rc)r2
c + 6M

3[(4 + 5βrc − 2r2
c )rc − 6M] , (73)

and we keep in mind that a2 = k in (59). The system (59)
and (73) form our basic equations for the remaining part of
this section, which is devoted to applications. We mainly
focus on anti-de Sitter-like f(R) black holes with an appli-
cation to Schwarzschild black hole. Further applications to
anti-de Sitter-like and de Sitter-like f(R) black holes with
polytropic EOS for the test fluids are given in Sect. 6.

5.1 Solution for ultra-stiff fluid (kkk = 1)

Ultra-stiff fluids are those fluids in which isotropic pressure
and energy density are equal. For instance, the usual equation
of state for the ultra-stiff fluids is p = ke i.e. the value of state
parameter is defined as k = 1. This reduces (42) or (73) to
fc = 0, thus rc = rh (48, 49). The Hamiltonian (59) reduces
to

H = 1

v2r4 . (74)

Since the Hamiltonian in Eq. (74) is a constant, one imme-
diately obtains4

v ∼ 1/r2. (75)

It is clear from (74) that the point (r, v2) = (rh, 1) is not
a CP of the dynamical system, as was noticed in the previous
section. Notice that H no longer depends on f ; thus, this
expression and the following conclusions are valid for any
metric of the form (1).

From (74) we see that, for physical flows (|v| < 1), the
lower value of H is Hmin = 1/r4

h : H > Hmin. As shown
in Fig. 1, physical flows are represented by the curves sand-
wiched by the two black curves, which are contour plots of
H(r, v) = Hmin. The upper curves where v > 0 correspond
to fluid outflow or particle emission and the lower curves
where v < 0 correspond to fluid accretion.

If H0 > Hmin is the value of the Hamiltonian on a
solution curve, then in the (r, v) plane the curve is the plot

4 For the cases k = 1 and k = 1/2 we have expressed explicitly v as a
function of r as in Eqs. (75) and (83); it is possible to do the same for
the other cases k = 1/3 and k = 1/4 [see Eqs. (89) and (92)] but the
expressions of v(r) would be cumbersome. That is why we preferred a
numerical analysis in this section. It is worth mentioning that Eqs. (75)
and (83) may be derived from the metric and the conservation laws
using the classical approach for accretion [34].
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rh 1.5 2
r

0.4

0.4

1

1

v

Fig. 1 Contour plot of H (74), which is the simplified expression of
H (59), for an anti-de Sitter-like f(R) black hole k = 1, M = 1, β =
0.85,  = −0.075. The parameters are rh � 1.04439. Black plot the
solution curve through the CP for which H = Hmin = r−4

h � 0.84053.
Magenta plot the solution curve for which H = Hmin + 0.4. Blue plot
the solution curve for which H = Hmin + 0.9

Table 1 Types of flow on a solution curve for k = 1 (Fig. 1)

Types Flow behavior

I H > Hmin = r−4
h : Subsonic flow for v < 0 and v > 0

II H < Hmin = r−4
h : Unphysical flow

v = ±1/(
√H0r2). Using this we can evaluate all the other

quantities, for instance (44) becomes

(
n

nc

)2

= r5
h f,r |r=rh

4

H0r4 − 1

r4 f
, (76)

for any solution curve H0 > Hmin = r−4
h , and

( n

nc

)2 = rc fc,rc
4

1 − v2

f
= rh f,r |r=rh

4

r4 − r4
h

r4 f
, (77)

for the solution curve through (r, v2) = (rh, 1) (H0 = Hmin),
which all depend on f .

A contour plot of H (74), depicted in Fig. 1, shows
two type of motion: (a) purely subsonic accretion (black,
magenta, or blue curves where v < 0) or subsonic flow-
out (black, magenta, or blue curves where v > 0) for H >

Hmin = r−4
h , and (b) purely supersonic accretion or flow-

out (along the red and green curves) for H < Hmin = r−4
h .

The flow in (b), along the green and red curves, however, is
unphysical, for the speed of the flow exceeds that of light on
some portions of the curves. A brief elaboration is given in
Table 1.

5.2 Solution for ultra-relativistic fluid (kkk = 1/2)

Ultra-relativistic fluids are those fluids whose isotropic pres-
sure is less than the energy density. In this case, the equation
of state is defined as p = e

2 yielding k = 1/2. Using this
expression in (73) reduces to

Q(rc) = 

6
r3
c − 3β

4
r2
c − rc + 5

2
M = 0. (78)

This polynomial has always one and only one positive root if
 < 0 and β ≥ 0. Converting this polynomial into the Weier-
strass one w(z) by the transformation rc = z+3β/(2), the
CP rc is given either by (see Appendix A)

rc = 3β

2
+

√
g2

3
cos

(η

3

)
, (79)

if Q = 0 has at least two real roots, or by

rc = 3β

2
+ 1

2 · 91/3

[ (
9g3 + √

3
√−�

)1/3

+
(

9g3 − √
3
√−�

)1/3
]
, (80)

if Q = 0 has only one real root. Here g2 and g3 are defined
by

g2 = 3(9β2 + 8)

2 , g3 = 27β3 + 36β − 60M2

3 ,

and � and the angle 0 ≤ η ≤ π are defined as in Eqs. (A.2)
and (A.4), respectively.

In the limit β → 0, we recover the Schwarzschild anti-de
Sitter spacetime and Eq. (79) reduces to

rc =
√
g2

3
cos

(η

3

)
. (81)

The Hamiltonian (59) takes the simple form

H =
√

f

r2|v|√1 − v2
. (82)

It is clear from this expression that the point (r, v2) = (rh, 1)

is not a CP of the dynamical system. For some given value
of H = H0, Eq. (82) can be solved for v2. We find

v2 = 1 ± √
1 − 4g(r)

2
, (83)

where g(r) ≡ f/(H0r4). The plot in Fig. 2 depicts, instead, v
versus r for M = 1, β = 0.85, and  = −0.075 resulting in
rc � 1.33467 and Hc � 0.926185. The five solution curves,
shown in Fig. 2, correspond to H0 = {Hc,Hc ± 0.04,Hc ±
0.09}. The upper plot for v > 0 corresponds to fluid out-
flow or particle emission and that for v > 0 corresponds to
fluid accretion. The plot shows four types of fluid motion. (1)
We have purely supersonic accretion (v < −vc), which ends
inside the horizon, or purely supersonic outflow (v > vc);
(2) we have purely subsonic accretion followed by subsonic
flow-out, this is the case of the branches of the blue and
magenta solution curves corresponding to −vc < v < vc.
Notice that for this motion the fluid reaches the horizon,
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rh rc 1.5 2
r

0.9

0.4

0.4

vc

vc

0.9

v

Fig. 2 Contour plot of H (59) for an anti-de Sitter-like f(R) black
hole k = 1/2, M = 1, β = 0.85,  = −0.075. The parameters
are rh � 1.04439, rc � 1.33467, vc = 1/

√
2 � 0.707107. Black

plot the solution curve through the saddle CPs (rc, vc) and (rc,−vc)

for which H = Hc � 0.926185. Red plot the solution curve for which
H = Hc−0.04.Green plot the solution curve for whichH = Hc−0.09.
Magenta plot the solution curve for which H = Hc + 0.04. Blue plot:
the solution curve for which H = Hc + 0.09

Table 2 Different behaviors of the fluid flow for k = 1/2 (Fig. 2)

Types Flow behavior

I Supersonic for −1 < v < vc and 1 > v > vc

II Subsonic for −vc < v < vc

III Critical supersonic accretion until (rc,−vc), subsonic flow
from (rc,−vc) until (rc, vc), suppersonic flow-out

IV Subsonic accretion until (rc,−vc) then supersonic

V Supersonic flow-out until (rc, vc) then subsonic

f (rh) = 0, with vanishing speed ensuring that the Hamilto-
nian (82) remains constant. The critical black solution curve
reveals two types of motions: if we assume that dv/dr is
continuous at the CPs, then (3) we have a supersonic accre-
tion until (rc,−vc), followed by a subsonic accretion until
(rh, 0), where the speed vanishes, then a subsonic flow-out
until (rc, vc), followed by a supersonic flow-out, or (4) (lower
plot) a subsonic accretion followed by a supersonic accretion
which ends inside the horizon. In the upper plot, we have a
supersonic outflow followed by a subsonic motion. The sum-
mary of this is given in Table 2.

The fluid flow in Type (3) from (rc,−vc) to (rc, vc)
describes a heteroclinic orbit that passes through two differ-
ent saddle CPs: (rc,−vc) and (rc, vc). It is easy to show that
the solution curve from (rc,−vc) to (rc, vc) reaches (rc, vc)
as t̄ → −∞, and the curve from (rc, vc) to (rc,−vc) reaches
(rc,−vc) as t̄ → +∞; we can change the signs of these
two limits upon performing the transformation t̄ → −t̄ and
H → −H.

The flow-out of the fluid, which starts at the horizon,
is caused by the high pressure of the fluid, which diverges

there (61): The fluid under effects of its own pressure flows
back to spatial infinity.

It is clear from Fig. 2 that, after watching the subsonic
branches of the blue and magenta solution curves, there
is no way to support the claim, recalled at the end of
Sect. 3, that “the flow must be supersonic at
the horizon” [66]. For these new solutions the speed
of the fluid increases during the accretion from 0, according
to the analysis made from (62) to (72), to some value below
vc where dv/dr = 0, then decreases to 0 at the horizon,
and the process is reversed during the flow-out. It is easy to
show, using (83), that the point where the speed is maximum
is rc, as shown in Fig. 2. Thus, the flow does not necessary
become supersonic nor transonic near the horizon [67,68].
This conclusion does not depend on the presence of a negative
cosmological or a non-vanishing constant β: such solutions
exist even for a Schwarzschild black hole, as the subsonic
branches of the blue and magenta solution curves in Fig. 3
show.

Curiously enough, such solutions were never discussed in
the literature. This is probably due to the fact that the pio-
neering work on this subject did not employ the Hamiltonian
dynamical system approach to tackle the problem. These new
solutions are related to the instability and fine tuning prob-
lems in dynamical systems. To see that consider the asymp-
totic behavior of (82). Since f ∼ −(/3)r2 as r → ∞ and
since H remains constant on a solution curve, we must have
v ∼ v1r−1 (v1 < 0 during accretion), which agrees with (62)
and (66). Asymptotically, Eq. (82) reads

H ∼ H∞ ≡
√−/3

|v1| , (84)

which is used to determine the value of |v1| by

|v1| =
√−/3

H∞
. (85)

Notice that as |v1| increases, H∞ decreases. Now consider
the lower plot of Fig. 2 and the branch of the black critical
curve where first the speed is subsonic until the CP then
it becomes supersonic. On this curve H ∼ H∞ = Hc, it
follows that

|v1b| =
√−/3

Hc
, (86)

where the subscript “b” is for black. If one decreases the
value of the asymptotic speed, that is, the value of |v1| by ε:
|v1| → |v1b|−ε, as is the case of the subsonic magenta curve
of Fig. 2, then H∞ increases by a corresponding amount:
H∞ → Hc + ε

√−/3/|v1b|2. This small perturbation in
the value of |v1| leads the flow to completely change course,
by deviating from the black critical curve, and to undergo a
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Fig. 3 Contour plot of H (59) for a Schwarzschild black hole with
k = 1/2, M = 1, β = 0,  = 0. The parameters are rh � 2, rc � 2.5,
vc = 1/

√
2 � 0.707107. Black plot the solution curve through the

saddle CPs (rc, vc) and (rc,−vc) for which H = Hc � 0.143108.
Magenta plot the solution curve for which H = Hc + 0.03. Blue plot:
the solution curve for which H = Hc + 0.09

purely subsonic motion along the subsonic magenta curve.
Conversely, a small increase in the value of the asymptotic
speed (of the coefficient |v1|) would lead the flow to follow
the red curve adjacent to the black critical curve. Thus, the
black critical curve is certainly unstable and in practical sit-
uations it would not be easy to fix the value of |v1|, which is
an average value for the pressure is not zero, by fine tuning
it to have a critical motion, that is, a motion that becomes
supersonic beyond the CP and reaches the speed of light as
the fluid approaches the horizon.

This stability issue is related to the character of the
CPs (rc,−vc) and (rc, vc) that are saddle points of the
Hamiltonian function. As is well known, saddle points
of the Hamiltonian function are also saddle points of
the Hamiltonian dynamical system. Further analysis of
stability requires linearization of the dynamical system
and/or use of Lyapunov’s theorems [75–77] and their vari-
ants [78].

Another type of instability is the flow-out that starts in
the vicinity of the horizon (r = rh + 0+, v = 0+) under
the effect of a divergent pressure. This flow-out is unsta-
ble, for it may follow a subsonic path (the magenta or blue
curves) or a critical path (the black curve) through the CP
(rc, vc) and becomes supersonic with a speed approach-
ing that of light. From a cosmological point of view, this
point (r = rh, v = 0) looks like an attractor where solu-
tion curves converge and a repeller from where the curves
diverge [78].

The motion along the rightmost branches of the green
and red curves is unphysical. Along the leftmost branches
of these curves, we have an accretion starting from the left-
most point of the branch until the horizon where the speed
vanishes and the pressure diverges, followed by a flow-out
back to the same starting point. To realize such a flow one
needs to have a sink and source at the leftmost point of these
branches.

5.3 Solution for radiation fluid (kkk = 1/3)

A radiation fluid is the fluid which absorbs the radiation emit-
ted by the black hole. It is the most interesting case in astro-
physics. Here, the value of state parameter k = 1/3. Equa-
tion (73) leads to

βr2
c + 2r − 6M = 0, (87)

which is solved by

rc =
√

1 + 6βM − 1

β
. (88)

The Hamiltonian (59) takes the simple form

H = f 2/3

r4/3|v|2/3(1 − v2)2/3 . (89)

It is clear from this expression that the point (r, v2) = (rh, 1)

is not a CP of the dynamical system. Equation (89) can be
solved for v2, and a contour plot of it can be depicted, which
reveals the same characteristics of the plot shown in Fig. 2;
We observe the same types of motion as in the case k = 1/2.

5.4 Solution for sub-relativistic fluid (kkk = 1/4): Separatrix
heteroclinic flows

Sub-relativistic fluids are those fluids whose energy density
exceeds their isotropic pressure. Taking the value of the state
parameter k = 1/4, Eq. (73) leads to

N (rc) = r3
c + 3β

2
r2
c + 6rc − 21M = 0. (90)

This polynomial has either two distinct positive roots or a
double positive root if  < 0 and β ≥ 0. Converting this
polynomial into the Weierstrass one w(z) by the transforma-
tion rc = z − β/(2), the two CPs rc1 < rc2 are given by
(see Appendix A)

rc2 =
√
g2

3
cos

(
η

3

)
− β

2
,

rc1 = −
√
g2

3
cos

(
π + η

3

)
− β

2
, (91)

where g2 and g3 are defined by

g2 = 3(β2 − 8)

2 , g3 = −β3 + 12β + 84M2

3 ,

and � and the angle 0 ≤ η ≤ π are defined as in Eqs. (A.2)
and (A.4), respectively.
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Fig. 4 Contour plot of H (59) for an anti-de Sitter-like f(R) black
hole with k = 1/4, M = 1, β = 0.05,  = −0.04. The parameters are
rh � 1.76955, rc1 � 3.65928, rc2 � 11.119, vc = 1/2, rrm � 25.3831.
The plot shows the heteroclinic solution curve through the saddle CPs
(rc1, vc) and (rc1,−vc) for which H = H(rc1, vc) = H(rc1,−vc) �
0.411311. The two other CPs, (rc2, vc) and (rc2,−vc), are centers where
H = H(rc2, vc) = H(rc2,−vc) � 0.411311

The Hamiltonian (59) takes the simple for

H = f 3/4

r
√|v|(1 − v2)3/4

. (92)

It is clear from this expression that the point (r, v2) = (rh, 1)

is not a CP of the dynamical system. A contour plot ofH (92)
is depicted in Fig. 4 in the (r, v) plane. There are two sad-
dle points (rc1, vc) and (rc1,−vc) and two centers (rc2, vc)

and (rc2,−vc). Let (rrm, vc) and (rrm,−vc) be the rightmost
points of the upper and lower plots, respectively. If we assume
that dv/dr remains continuous as the fluid crosses the sad-
dle CPs, the accretion motion starts from the rightmost point
(rrm,−vc) on the black curve in the lower plot. If the motion
is subsonic it proceeds along the upper branch in the lower
plot, goes through the CP (rc1,−vc), then crosses the hori-
zon.

Otherwise, if the motion is supersonic it proceeds along
the lower branch in the lower plot, goes again through the
CP (rc1,−vc) until v vanishes as the fluid approaches the
horizon [this is obvious from (92) where v vanishes whenever
f does too], then the fluid goes again through the CP (rc1, vc)

and follows the upper branch of the upper plot undergoing a
supersonic motion until the rightmost point of the upper plot
(rrm, vc). First, by similar arguments as those given in the
case k = 1/2, it can be shown that such motion is unstable.
Second, the motion may become periodic but it is too hard
to achieve that by (a) fine tuning the speed of the fluid at
(rrm,−vc) and (b) realizing a source at (rrm,−vc) and a sink
at (rrm, vc).

The fluid flow along the branch of the curve from (rc,−vc)
to (rc, vc) describes a heteroclinic orbit that passes through
two different saddle CPs: (rc,−vc) and (rc, vc). It is easy to

show that as the flow approaches, from within the heteroclinic
orbit, one or the other saddle CP the dynamical-system’s time
t̄ goes to ±∞.

Here again the flow-out of the fluid, which starts at the
horizon, is caused by the high pressure of the fluid, which
diverges there (61).

As we have done in the case k = 1/2, we consider the fluid
flow where r decreases but v > 0 or r increases but v < 0 as
unphysical since the fluid is taken as a test matter and we have
neglected its backreaction on the metric of the black hole. As
far as a fluid element is taken as a test particle, such a motion is
not possible in the background of the black hole metric. This
is why a flow along a closed path in Fig. 4, or “homoclinic”
as some authors call it, is unphysical. We do not know if
homoclinic orbits exist in a more realistic model where the
backreaction of the fluid is taken into consideration.

For the clarity of the plot, Fig. 4 has been plotted for
unphysical parameters M = 1, β = 0.5, and  = −0.075;
for astrophysical values of the parameters ( → 0−), the
difference rc2 − rc1 becomes so large to be represented on a
sheet of paper. The constraint that two CPs exist is to have
two positive roots for the polynomial in (90): N (r) = r3 +
3β
2 r2 + 6r − 21M . With  < 0 and β > 0, the polynomial

has a local minimum (at some negative value of r ) and a local
maximum at

rs = −
√

β2 − 8 + β

2
. (93)

The heteroclinic orbit exists if N (rc) = 0 has two positive
CPs; that is, if N (rs) > 0 yielding

M <
(β2 − 8)3/2 + β3 − 12β

842 , (94)

generalizing the expression derived in Ref. [79]. This should
be read as a constraint on β. In the limit  → 0−, this reduces
to

β3 > 42M2, (95)

and the expressions of the two positive CPs and the horizon
read

rc1 �
√

4 + 14Mβ − 2

β
, rc2 � − 3β

2
,

rh �
√

1 + 8Mβ − 1

2β
. (96)

It is easy to show that rc1 > rh .
In the astrophysical limit  → 0− we find, for general

values of k, the following constraints on β:
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⎧
⎨
⎩

β >
42M2(1−3k)3

(1−5k)2(5−19k)
1
5 < k < 5

19 ;
β > 2

√−
3 (21M

√− − 5) k = 1
5 .

(97)

In this limit, the CPs are expressed as

rc1 �
⎧
⎨
⎩

√
k2(4+30Mβ)+4kMβ−2Mβ−2k

(5k−1)β
1
5 < k < 5

19 ;
4M(1 − 16M2/3) k = 1

5 ,

(98)

rc2 �
⎧
⎨
⎩

3(1−5k)β
2(1−3k)

1
5 < k < 5

19 ;
√

3√−
k = 1

5 ,
(99)

while the expression of rh (96) is independent of k.

6 Polytropic test fluids

A very interesting approach to describe the motion of the fluid
is by constructing its models. The prototype of such model
is Chaplygin gas. The Chaplygin gas model leads to very
interesting results. Some of them are discussed in Ref [80–
84]. There are many variations of the Chaplygin gas model
that have been proposed in the literature. One of them is the
modified Chaplygin gas model [85,86]. In astrophysics, the
modified Chaplygin gas is the most general exotic fluid. Its
equation of state is

p = An − B

nα
, (100)

where A and B are constants and (0 < α < 1). If we put
A = 0, B = −k and α = −γ , we get the polytropic equation
of state i.e. p = G(n) = Knγ , where K and γ are constants.
For ordinary matter, one generally works with the constraint
γ > 1. In this work, we only observe the constraint γ �= 1.

Inserting p = G(n) = Knγ in the differential equa-
tion (19) yields

nF ′ − F = Knγ .

The solution provides the energy density e = F by

e = F(n) = mn + Knγ

γ − 1
, (101)

where a constant of integration has been identified with the
baryonic mass m. This yields, see (16),

h = m + Kγ nγ−1

γ − 1
. (102)

The three-dimensional speed of sound is found from (21) by

a2 = (γ − 1)X

m(γ − 1) + X
(X ≡ Kγ nγ−1). (103)

On comparing (102) and (103) we see that

h = m
γ − 1

γ − 1 − a2 , (104)

similar to the expression for h derived for the accretion onto
a black hole in a string cloud background [57].

Using (44) in (102), we obtain

h = m

[
1 + Y

(
1 − v2

r4 f v2

)(γ−1)/2
]

, (105)

where

Y ≡ Kγ nγ−1
c

m(γ − 1)

(
r5
c fc,rc

4

)(γ−1)/2

= const. (106)

Inserting (105) into (32) we evaluate the Hamiltonian by

H = f

1 − v2

[
1 + Y

(
1 − v2

r4 f v2

)(γ−1)/2
]2

, (107)

where m2 has been absorbed into a re-definition of (t̄,H).
A couple of remarks concerning the fluid flow onto an

anti-de Sitter-like f(R) black hole are in order. For ordinary
matter K > 0 and fc,rc > 0 (since we are interested in the
cases where rc > rh), this implies (a) ϒ > 0 if γ > 1 or (b)
ϒ < 0 if γ < 1 (γ �= 0).

For the case (a) the sum of the terms inside the square
parentheses in (107) is positive, while the coefficient f/(1 −
v2) diverges as r → ∞ (0 ≤ 1 − v2 < 1). So, the Hamilto-
nian too diverges. Since the latter has to remain constant on
a solution curve, we conclude that there are no global solu-
tions in this case (solutions that extend to spatial infinity).
This conclusion remains true even if  = 0 provided β �= 0.
If  = 0 and β = 0 (the Schwarzschild metric), the global
solutions do not exist if |v∞| = 1 (62) and exist otherwise
provided 0 < α ≤ 2 if |v∞| = 0 or 0 < α if 0 < |v∞| < 1.

For the case (b), since ϒ < 0, we can make it such that

1 + Y
(1 − v2

r4 f v2

)(γ−1)/2 ∝ r−1 as r → ∞, (108)

in order to have global solutions. For instance, if we restrict
ourselves to v having an expansion in powers of 1/r with a
vanishing three-dimensional speed at spatial infinity (62)

v � v1r
−α + v2r

−δ as r → ∞ (δ > α > 0), (109)

then, on observing (108), we find α = 3, δ ≥ 4, and

v2
1 = (−3/)(Y 2)1/(γ−1). (110)
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Fig. 5 Left panel is a contour plot of H (107) for an anti-de Sitter-
like f(R) black hole with M = 1, β = 0.05,  = −0.04, γ = 1/2,
Y = −1/8, nc = 0.1. The parameters are rh � 1.76955, rc � 5.37849,
vc � 0.464567. Black plot the solution curve through the CPs (rc, vc)
and (rc,−vc) for which H = Hc � 0.379668. Red plot the solution
curve for which H = Hc − 0.09. Magenta plot the solution curve for
whichH = Hc+0.09. The right panel is a contour plot ofH (107) for an
anti-de Sitter-like f(R) black hole with M = 1, β = 0.05,  = −0.04,

γ = 5.5/3, Y = 1/8, nc = 0.001. The parameters are rh � 1.76955,
rc1 � 1.87377, vc1 � 0.900512, rc2 � 6.19113, vc2 � 0.465236.
Continuous black plot the solution curve through the CPs (rc2, vc2)

and (rc2,−vc2) for which H = Hc2 � 1.94447. Dashed black plot
the solution curve through the CPs (rc1, vc1) and (rc1,−vc1) for which
H = Hc1 � 0.443809. For the clarity of the plot, we have partially
removed the branches v < 0

This is another, rather much harder, fine tuning problem. Here
Y depends on nc, so is v1: unless v2

1 is the rhs of (110), there
will be no global solutions to this case too.

For non-ordinary matter, sinceK < 0, the above two cases
are reversed, that is, for γ > 1 it is possible to have global
solutions, again with a fine tuning problem, while for γ < 1
(γ �= 0) there are non-global solutions.

In the following we provide two curve solutions for an
anti-de Sitter-like f(R) black hole in the cases γ > 1 (non-
global solution) and γ < 1 (global solution) and a curve
solution for a de Sitter-like f(R) black hole in the case γ > 1.
First, using (44) we rewrite (103) as
[
nc
Y

(
r5
c fc,rc

4

)1/2

+
(

1 − v2

r4 f v2

)(γ−1)/2]
a2

= (γ − 1)

(
1 − v2

r4 f v2

)(γ−1)/2

. (111)

Since at the CPs we have a2
c = v2

c (41), we replace a2

in (111) and in (42) by v2
c and solve the system (111) and (42)

to find the CPs (rc, vc). We rewrite the latter equations after
making the substitution a2

c = v2
c as

(
γ − 1 − v2

c

) (
1 − v2

c

r4
c fcv2

c

)(γ−1)/2

= nc
Y

(
r5
c fc,rc

4

)1/2

v2
c ,

(112)

v2
c = rc fc,rc

rc fc,rc + 4 fc
= (3β − 2rc)r2

c + 6M

3
[(

4 + 5βrc − 2r2
c

)
rc − 6M

] .

(113)

Here we keep using f to show the general character of these
equations. Inserting (113) into (112) we can first solve numer-
ically for rc; then we get vc from (113). Since the signs of
both sides of (112) must be the same, we conclude that, for
γ < 1, v2

c > γ − 1 (which is always satisfied) and that, for
γ > 1, v2

c < γ − 1.
Notice that the solution curves do not cross the r axis at

points where v = 0 and r �= rh , for otherwise the Hamil-
tonian (107) would diverge there. We recall that rh is the
unique horizon of an anti-de Sitter-like f(R) black hole or it
represents either the event horizon reh or the cosmological
horizon rch of a de Sitter-like f(R) black hole. The curves
may cross the r axis at the unique point r = rh in the vicinity
of which v behaves as

|v| � |v0||r − rh |
2−γ

2(γ−1)

with v
2(γ−1)
0 = Y 2 f ′(rh)2−γ

r4(γ−1)

h H(rh, 0)
, (114)

if f = 0 has a single root at rh . We see that only solutions
with 1 < γ < 2 may cross the r axis. Here H(rh, 0) is the
value of the Hamiltonian on the solution curve, which is the
limit of H(r, v) as (r, v) → (rh, 0). This can be evaluated at
any other point on the curve. The pressure p = Knγ diverges
at the horizon as

p ∝ |r − rh |
−γ

2(γ−1) (1 < γ < 2). (115)

For both plots of Fig. 5 we took M = 1, β = 0.05, and
 = −0.04.
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Table 3 Behavior of flow for the polytropic equation of state in Fig. 5

Types Flow behavior

I Leftmost branches: Unphysical

II Left panel: Critical transonic accretion and flow-out

III Left panel: Non-critical sub-super sonic accretion
and flow-out

IV Right panel: Non-relativistic subsonic accretion and
flow-out

(with source-sink at the rightmost point of the graph)

V Right panel: Critical transonic accretion and flow-out

(with source-sink at the rightmost point of the graph)

In the left panel of Fig. 5, we took γ = 1/2, Y = −1/8,
and nc = 0.1, yielding one CP (rc � 5.37849, vc �
0.464567). We see from the graph that there are two types of
fluid flow, an accretion which starts subsonic at spatial infin-
ity and ends supersonic into the horizon (passing through
the non-saddle CP or avoiding it), and a supersonic flow-out
from a neighborhood of the horizon which ends subsonic
with gradually vanishing speed at spatial infinity according
to (109,110) (passing through the non-saddle CP or avoiding
it). Along the leftmost branches we have an accretion start-
ing from the leftmost point of the branch until the horizon
where the speed vanishes and the pressure diverges, followed
by a flow-out back to the same starting point. Had we taken
a lower number density nc = 0.001 we would still get the
same types of flow, but the uppermost, lowermost, and left-
most branches of the plot would disappear.

In the right panel of Fig. 5, we took γ = 5.5/3, Y = 1/8,
and nc = 0.001, yielding four CPs, but none of them is a
saddle point: (rc1 � 1.87377, vc1 � 0.900512), (rc1,−vc1),
(rc2 � 6.19113, vc2 � 0.465236), and (rc2,−vc2). The right
panel of Fig. 5 shows a typical flow for this range of param-
eters (γ = 5.5/3, Y = 1/8). There are three types of flow:
subsonic non-global, non-relativistic (resp. more or less rel-
ativistic), and non-heteroclinic (for it does not pass through
the CPs) accretion starting from the leftmost point of the
continuous (resp. dashed) branch until the horizon where
the speed vanishes and the pressure diverges, followed by
a non-relativistic (resp. more or less relativistic) flow-out.
This flow could be made periodic by realizing a source-sink
at the rightmost point of the graph, as we have seen earlier.
There are two other types of flow: partly subsonic and partly
supersonic accretion and flow-out along the continuous and
dashed branches. The summary of this is given in Table 3.
We emphasize that, since the fluid is seen as a test matter in
the geometry of the black hole, there is no homoclinic flow,
that is, a flow following a closed curve in the right panel of
Fig. 5.

In our next application we rather consider a de Sitter-
like f(R) black hole taking M = 1, β = 0.05,  = 0.04,

γ = 1.7, Y = 1/8, nc = 0.001 as in Fig. 6. For these values
of the parameters, the dynamical system has two non-saddle
CPs: (rc � 2.13406, vc � 0.824282) and (rc,−vc). The
flow for H ≤ Hc � 0.390248 shows no difference than that
of the right panel of Fig. 5 corresponding to an anti-de Sitter-
like f(R) black hole. For H > Hc, we observe two types of
flow connecting the two horizons, one of which is supersonic,
relativistic, near the horizons and becomes subsonic midway
of the horizons (uppermost and lowermost branches of the
magenta curve). The other flow connecting the two horizons
is, rather, cyclic physical flow with vanishing speed at both
the event reh � 1.91048 and the cosmological rch � 9.8282
horizons, as shown in the right plot of Fig. 6. There is no need
to realize a source at one horizon and a sink at the other; this
subsonic, non-relativistic, cyclic (non-homoclinic, for it does
not pass through the CP) flow is maintained by the high, rather
divergent (115), pressure at both horizons. If the fluid is hot,
a two-temperature ion (plasma) would form and the cyclic
flow becomes the source of energy radiation [87]. If the fluid
is multi-specie, each component would radiate at different
frequency, resulting in a spectrum characteristic of the fluid
composition. The higher the value of the Hamiltonian the
lower is the speed of flow along the closed branch.

From our above formulas we can make a good estimate
of the proper period and frequency of such a cyclic flow.
Assuming v2 � 1, that is, a relatively higher value of the
Hamiltonian, then (107) reduces to

(v
√

f )γ−1 � Y

r2(γ−1)(
√Hcyc/ f − 1)

, (116)

where Hcyc is the value of the Hamiltonian that generates
the cyclic flow between the event and cosmological horizons.
The first equation in (24) leads to

Y
1

γ−1 dτ � r2
(√

Hcyc/ f − 1
) 1

γ−1
dr. (117)

The integral of the rhs of (117), with the limits being
(reh, rch), converges if γ > 3/2 (recall that we are assuming
that each horizon (reh, rch), being a single root of f = 0, is
non-extremal) and diverges as ln |r − rh | if γ = 3/2. For the
values of Fig. 6, Hcyc = Hc + 0.29 � 0.680248, we find the
proper period to be

τ � 2Y
1

1−γ

∫ rch

reh

r2
(√

Hcyc/ f − 1
) 1

γ−1
dr � 26761.9.

7 Hu–Sawicki and Starobinsky models of f(R) gravity

Two more solution curves are provided in this section and
concern two of the most popular models of f(R) gravity: the
Hu–Sawicki and Starobinsky models [8,51].
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Fig. 6 Left plot is a contour plot of H (107) for a de Sitter-like f(R)

black hole with M = 1, β = 0.05,  = 0.04, γ = 1.7, Y = 1/8,
nc = 0.001. The parameters are reh � 1.91048, rch � 9.8282,
rc � 2.13406, vc � 0.824282. Black plot the solution curve through

the CPs (rc, vc) and (rc,−vc) for which H = Hc � 0.390248. Red
plot the solution curve corresponding to H = Hc − 0.1. Magenta plot
the solution curve corresponding to H = Hc + 0.29. Right plot is a
zoomed in plot of the cyclic flow corresponding to H = Hc + 0.29

There is a variety of black hole solutions of f(R) gravity
models, the most treated in the literature are constant curva-
ture, R = R0, solutions. If R is the constant R0, the field
equations take the form

Rμν[1 + f ′(R0)] − 1
2gμν[R0 + f (R0)] = −8πTμν. (118)

For an electromagnetic source,

Tμ
ν = − 1

4π

(
FμαFνα − 1

4δμ
νF

αβFαβ

)
,

(with Fμν = ∂μAν − ∂ν Aμ) we have Tμ
μ ≡ 0. The trace

of (118) yields

R0 + f (R0) = [1 + f ′(R0)]R0/2, (119)

reducing (118) to

Rμν − 1
2 R0gμν︸ ︷︷ ︸

Gμν

+ R0

4
gμν = −8π

Tμν

1 + f ′(R0)
, (120)

where Gμν is the Einstein tensor. On comparing (120) with
the field equations of general relativity, we see that R0/4
plays the role of an effective cosmological constant and
Tμν/[1 + f ′(R0)] is an effective SET. If the vector potential
Aμ = (−Q/r, 0, 0, 0), we obtain the spherically symmetric
solution given by (1) with5

f (r) = 1 − 2M

r
+ Q2

[1 + f ′(R0)]r2 − R0

12
r2. (121)

5 Equation (121) provides the correct expression of f (r) of the solution
given by Eq. (32) of Ref. [53].

7.1 Starobinsky model

This is the model with f(R) = R2/(6M2) where the con-
stant M has value corresponding to the mass scale for quan-
tum gravity. The only existing solution to (119) is R0 = 0,
reducing (121) to a Reissner–Nordström black hole the fluid
accretion onto which has already been investigated in the lit-
erature [89] and is similar to the Schwarzschild case [34];
therefore we shall not comment on this case.

7.2 Hu–Sawicki model

This corresponds to

f(R) = −M2 c1(R/M2)n

c2(R/M2)n + 1
, (122)

where n > 0, (c1, c2) are proportional constants [51]

c1

c2
≡ q2 ≈ 6

�

�m
= 6

0.76

0.24
= 19, (123)

and the mass scale

M2 = (8315Mpc)−2
(

�mh2

0.13

)
.

At the present epoch [51]

R0

M2 ≡ q1 ≈ 12

�m
− 9 = 41. (124)

For n > 0, Eq. (119) always has the root R0 = 0. Notice
that the model (122) has been introduced in order to keep
|f ′(R0)| � 1, which ensures stability. Hence, we rule out
the case 0 < n < 1, which would yield |f ′(R0)| → ∞
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Fig. 7 Contour plot of H (107) for a de Sitter-like f(R) black hole with
f(R) given by Hu–Sawicki formula (122). We took M = 1, Q = 0.01,
R0 = 0.16, γ = 1.7, Y = 1/8, nc = 0.001, q1 = 41, q2 = 19,
and c1 and c2 are given by (127). Left plot For c2 we took the upper
sign in (127), f ′(R0) � 1.96272, reh � 2.12857, rch � 7.39749,

rc � 2.37452, vc � 0.822763, and H = Hc � 0.291918. Right
plot For c2 we took the lower sign in (127), f ′(R0) � 0.0372803,
reh � 2.12854, rch � 7.3975, rc � 2.37448, vc � 0.822764, and
H = Hc � 0.291918

as R0 → 0. For n ≥ 1, the root R0 = 0 reduces (121) to
Reissner–Nordström black hole.

From now on we take n = 2. Since we want one of the
other roots of (119) to be R0 = q1M2, we substitute (123)
and (124) into (119) to obtain

q3
1 (q1 − 2q2)c

2
2 + 2q2

1c2 + 1 = 0, (125)

yielding

c1 = q2c2, c2 = − 1

q3/2
1 (

√
q1 ± √

2q2)
. (126)

With the numerical values in (123) and (124), the four values
of c1 and c2 are all negative and one should keep those values
that ensure |f ′(R0)| � 1

c1 = q2c2, c2 = − 1

q3/2
1 (

√
q1 ± √

2q2)
. (127)

With f (r) given by (121), the rhs of (113) reads

v2
c =

(
1 + f ′(R0)

) (
R0r3

c − 12M
)
rc + 12Q2

3
[
(1 + f ′(R0))

(
R0r3

c − 8rc + 12M
)
rc − 4Q2

] .

(128)

For the plots of Fig. 7, we used Eqs. (112) and (128) to
find the critical points. The graphs show that accretion is
insensitive to the values of the constants (c1, c2) and to the
value of f ′(R0) whose effect is to modify the value of the
charge in (121).

8 Conclusion

We have developed a Hamiltonian dynamic system for tack-
ling a variety of problems ranging from accretions, matter
jets, particle emissions to cosmological and astrophysical
applications whenever conservation laws apply. There are
several choices for the dynamical variables arguments of the
Hamiltonian. The advantage of using the three-velocity is
that this entity is bounded (by −1 and 1) and it does not
diverge, in contrast with the pressure and the baryon number
density, and other densities, which may diverge on the hori-
zons. Throughout the paper we kept using the metric coeffi-
cient f (r) to emphasize the general character of the derived
mathematical expressions. Since the scope of the model of
accretion is fairly wide and applies to all static spherically
symmetric solutions (asymptotically flat or else), the present
analysis can also be done for other f(R) black holes as well
as f(T ) black holes [54]. Due to the generality of our work,
further analysis will be trivial.

Our general results that applies to all metrics of the
form (1) and to all perfect fluids, independently of the form
of the EOS, are as follows. The Michel-type accretion of a
perfect fluid is characterized by:

• The thermodynamic state functions are determined upon
integrating a first order differential equation.

• If the three-velocity vanishes on the horizon(s), the parti-
cle number density n diverges there independently of the
expression of f and of that of the EOS. Since the specific
enthalpy h is never zero for ordinary matter, this implies
that the sum e + p diverges there at least as fast as n.

• The fluid may become ultra-stiff as it approaches the hori-
zon(s).

123



Eur. Phys. J. C (2016) 76 :280 Page 19 of 21 280

By applying the Hamiltonian dynamic system to f(R)

gravity we have performed a detailed analysis of the Michel-
type accretion onto a static spherically symmetric black hole
in f(R) gravity. Not every model of f(R) theory can predict
black holes unless the function f(R) satisfies certain viability
conditions such as f ′(R) > 0 and f ′′(R) > 0, and asymp-
totically de Sitter phase at present time (see further details
in [90]).

To understand the nature of the f(R) black hole and to
distinguish it from the known General Relativity black holes,
it is worthwhile to study their astrophysical features such as
the accretion of various kinds of fluids and their dynamics
near them. Using the isothermal and polytropic equations
of state, we showed that the standard method employed for
tackling the accretion problem has masked some important
properties of the fluid flow.

Accretion of isothermal perfect fluids is characterized by
the following:

• We have the existence of subsonic flows for all values of
the radial coordinate. These solutions represent neither
transonic nor supersonic flows as the fluid approaches
the horizon.

• We have the existence of solutions with vanishing three-
velocity as the fluid approaches the horizon. As v → 0,
the fluid cumulates near the horizon resulting in a diver-
gent pressure which pushes the fluid backward (flow-out
or a wind of the fluid under the effect of its own divergent
pressure). These solutions, as the one depicted in Fig. 3,
exist even in the case of a Schwarzschild black hole.

• If the CP is a saddle point, the critical solution curve
divides the (r, v) plane into regions where the flow is
physical in some of them (corresponding to higher values
of the Hamiltonian) and unphysical in the others (corre-
sponding to lower values of the Hamiltonian).

• The existence of separatrix heteroclinic orbits is subject
to no constraint. We have checked this conclusion for the
f(R) model of Ref. [50] and for Schwarzschild black hole
and this should apply to all black holes.

• For the f(R) model of Ref. [50], the existence of two CPs
(one saddle and one center), with a possibly periodic flow
inside a finite region of space, constrains the values of β

not to exceed some lower limit.
• We have instability of the critical flow.

The polytropic test fluid has nearly no global solutions
for the f(R) model of Ref. [50] unless one can deal with the
fine tuning problem consisting in fixing the speed at spatial
infinity in terms of the number density. Among the solu-
tions we derived for the polytropic test fluid no saddle CP
occurs. Moreover, the subsonic flow appears to be almost
non-relativistic. These features appear quite different from
the general relativity black holes [88].

De Sitter-like f(R) black holes are characterized by the
presence of closed, but non-homoclinic orbits, joining the
event horizon to the cosmological horizon. Such cyclic
curves are maintained by the high pressure present in the
vicinity of the two horizons and do not require the presence
of source-sink system for their realization. For γ > 3/2, the
proper period of the cyclic flow converges to a finite value
and has a logarithmically divergent limit for γ = 3/2. Com-
parison of the solutions (Figs. 6, 7) show that the accretion
is insensitive to the f(R) model.

Acknowledgments We thank both anonymous reviewers for their very
constructive comments and suggestions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Roots of the Weierstrass polynomial

The Weierstrass polynomial is defined by

w(z) ≡ 4z3 − g2z − g3 = 4(z − e1)(z − e2)(z − e3).

(A.1)

Let � be the parameter

� ≡ g3
2 − 27g2

3 > 0; (A.2)

the polynomial has the following properties [58].

Three distinct real roots

The Weierstrass polynomial w(z) will have three real roots
if

g2 > 0 and � > 0. (A.3)

We parameterize the (real) roots by the angle 0 ≤ η ≤ π as
follows [58]:

e3 = −
√
g2

3
cos

(π−η

3

)
< 0, e2 = −

√
g2

3
cos

(π+η

3

)
,

e1 =
√
g2

3
cos

(η

3

)
> 0,

cos η = 9g3√
3g3

2

, sin η =
√

�

g3
2

> 0. (A.4)
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With this parametrization it is obvious that e3 < e2 < e1.
The signs of e3 < 0, e1 > 0, and sin η > 0 are well defined,
and the sign of e2 depends on that of g3 (g3 = 4e1e2e3):

e2g3 < 0 (e2 = 0 ⇔ g3 = 0). (A.5)

Two distinct real roots

The w(z) will have two real roots if

g2 > 0 and � = 0. (A.6)

This happens when one of the local extreme values of w(z)
is zero.

One real root

The polynomial w(z) will have one real root with multiplicity
1 if

� < 0. (A.7)

The sign of the real root er

er = 1

2 · 91/3

[
(9g3+√

3
√−�)1/3 + (9g3−√

3
√−�)1/3

]

(A.8)

is related to that of g3 by

er g3 > 0 (er = 0 ⇔ g3 = 0). (A.9)

Appendix B: Re-derivation of the critical points
withH = H(r, n)H = H(r, n)H = H(r, n)

With H(r, n) given by (31), the dynamical system reads

ṙ = H,n, ṅ = −H,r . (B.1)

Evaluating the derivatives we obtain

H,v = 2h2

[(
f + C2

1

r4n2

)
(ln h),n − C2

1

r4n3

]
,

H,r = h2

(
f,r − 4C2

1

r5n2

)
. (B.2)

Using (ln h),n = a2/n (20), the system (B.2) reads

ṙ = 2h2

r4n3

[
a2r4n2 f + C2

1 (a2 − 1)
]
, (B.3)

ṅ = − h2

r5n2

[
r5n2 f,r − 4C2

1

]
. (B.4)

Setting the rhs to zero we obtain

a2
c = C2

1

r4
c n

2
c f + C2

1

, (B.5)

fc,rc = 4C2
1

rcr4
c n

2
c
. (B.6)

Now, using (25) in (B.5) and in (B.6) we obtain a2
c = v2

c
and rc(1 − v2

c ) fc,rc = 4 fcv2
c , respectively. Since a2

c = v2
c ,

the equation rc(1 − v2
c ) fc,rc = 4 fcv2

c is just the rightmost
formula in (41).

For the other sonic point, fc = 0 and a2
c = 1, the rhs

of (B.5) is manifestly zero. The rhs of (B.6) is also zero
by (25) and (41). The latter provides the value of fc,rc as the
limit rc → r f and a2

c → 1.
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