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1 Introduction

The T-duality symmetries, present in toroidal string compactifications, motivated various

attempts to construct duality invariant theories. In 1990 Tseytlin realized T-duality as

a world-sheet symmetry by treating left- and right-moving degrees of freedom on equal

footing [1, 2]: The bosonic field describing a two-dimensional string world-sheet embedded

into the target space-time splits into a left and a right moving component. Then, T-duality

acts as a reflection of the right-moving component [3], giving rise to a winding coordinate.

In a geometric target space approach to the problem pursued in [4–7], the usual and

the winding coordinates were considered as coordinates of a doubled manifold, termed

doubled geometry. Many quantum aspects of this theory were studied further in [8–10],

where in particular an O(d, d) invariant target space effective action was presented. Double

field theory (DFT) was developed in [11–14] as a covariant doubled target space approach

to duality symmetries (recent reviews can be found in [15–17]). Whereas in the doubled

geometry approach the compact part of space is doubled, in double field theory the whole

space-time manifold is doubled.

In order to reduce the doubled degrees of freedom to match with the physical ones,

common to all these approaches is the necessity of imposing constraints. Since in DFT one

treats the massless modes of the closed string, the level matching condition L0 − L0 = 0

must be satisfied. This leads to the so-called weak constraint

∂a∂̃
af = 0 (1.1)
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with ∂a and ∂̃a derivatives with respect to the standard coordinates xa and the winding

coordinates x̃a, respectively. However, for consistency of DFT, i.e. in particular for the

closure of the symmetry algebra of generalized diffeomorphisms, a stronger version of this

constraint is imposed [12, 14], namely

∂af ∂̃ag + ∂̃af ∂ag = 0 (1.2)

for all functions f, g depending on the doubled coordinates. However, it turned out that this

ad hoc introduced strong constraint (1.2) is merely a sufficient condition for consistency.

In the so-called flux formulation of the DFT [18–23], motivated by the tetrad formalism of

general relativity and the early work [11, 12], it was shown that a weaker constraint, namely

the so-called closure constraint, is also sufficient for consistency of DFT. This is supported

by the observation that Scherk-Schwarz reductions [24] of DFT lead to consistent gauged

supergravity theories in lower dimensions [22] without implementing the strong constraint

along the compact directions in an obvious way (see [25] for a recent discussion about

compactification of DFT on non-geometric backgrounds).

Following Tseytlin’s approach [1, 2], in this note a simple T-duality invariant CFT is

used to study the string theoretic origin of the strong constraint (1.2) for non-compact and

toroidally compactified spaces. We compute the 1-loop torus partition function as well as a

duality invariant version of the Virasoro-Shapiro amplitude for a general non-compact and

a Narain-compactified target space. For non-compact spaces, modular invariance of the

partition function leads to strong restrictions upon the space of physical states. We show

that, provided that the single poles of the generalized Virasoro-Shapiro correspond to the

mass spectrum of the theory, the strong constraint follows. Hence the strong constraint

is a consequence of the relative consistency of modular invariance of the vacuum one-loop

diagram and the pole structure of tree-level string scattering amplitudes.

Performing the same analysis for a toroidal compactification, no analogous restriction

can be derived. As we do not consider fluxes, this can be considered a special case of

the results in [22], whose consistency conditions are restrictions put upon possible fluxes.

Our findings are in favor of the conjecture that the strong constraint is necessary along

non-compact directions, whereas consistency (such as closure of the gauge algebra) only

requires weaker restrictions in the compact directions.

In order to provide confidence that the duality invariant CFT we are using is indeed

related to DFT, in an appendix, we review the match of the CFT tree-level scattering

amplitude of three massless states with the (effective) space-time action of DFT [13].

2 T-duality invariant CFT

Treating left- and right-movers on equal footing makes T-duality manifest. In the following

the necessary CFT-setup will be introduced briefly. The relation of this theory to DFT is

shown in the appendix. In particular, winding coordinates dual to the usual coordinates

will be introduced despite the absence of compact directions, which will be discussed in

section 5. Therefore momentum and winding modes are not quantized.
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The free boson and T-duality. The free boson on an Euclideanized world-sheet Σ

with ∂Σ = ∅ is considered. Fixing conformal gauge allows the world-sheet metric to be

h = diag(1, 1) and the metric G on the d-dimensional (non-compact) target space M is

assumed to be constant. In complex coordinates the sigma model reads

S =
1

2πα′

∫

Σ
dz dz̄ Gab ∂X

a ∂̄Xb . (2.1)

The equations of motion of this action imply conserved (anti-)holomorphic currents Ja(z) =

i∂Xa and J̄a(z̄) = i∂̄Xa. This allows for a splitting of the coordinates into a left- and

right-moving part: Xa(z, z̄) = Xa
L(z) + Xa

R(z̄). As for every CFT, the energy momen-

tum tensor also spits into a holomorphic T (z) = − 1
α′Gab∂X

a∂Xb and an anti-holomorphic

component T̄ (z̄) = − 1
α′Gab∂̄X

a∂̄Xb. The two-point function of the left and right moving

coordinates are

〈
Xa

L(z1)X
b
L(z2)

〉
= −α′

2
Gab ln z12

〈
Xa

R(z̄1)X
b
R(z̄2)

〉
= −α′

2
Gab ln z̄12

(2.2)

with zij = zi − zj .

For a toroidal target space, T-duality is a reflection of the right-moving coordinates [3],

i.e.

Xa(z, z̄) = Xa
L(z) +Xa

R(z̄)
T−duality←−−−−−→ X̃a(z, z̄) = Xa

L(z)−Xa
R(z̄) . (2.3)

In particular the energy momentum tensor and the propagator (2.2) are invariant under

T-duality. Compactifying the free bosons on a torus, due to the new boundary conditions

Xa(e−2πiz, e2πiz̄) = Xa(z, z̄)+2πwa, in addition to momentum pa winding wa is introduced.

These are related to the left- and right-moving momenta appearing in the mode expansion

Xa
L(z) = qaL −

iα′

2
kaL ln z + i

√
α′

2

∑

n 6=0

αa
n

nzn

Xa
R(z̄) = qaR −

iα′

2
kaR ln z̄ + i

√
α′

2

∑

n 6=0

ᾱa
n

nz̄n

(2.4)

as pa = 1
2(k

a
L+kaR) and wa = 1

2(k
a
L−kaR). For the zero modes usually describing the center of

mass position of the string we also split these into left and right moving components so that

xa = qaL + qaR and x̃a = qaL − qaR. Therefore T-duality exchanges momentum and winding.

As proposed in [1, 2], this suggests to consider Xa
L and Xa

R as well as momentum and

winding on equal footing generically, i.e. not only for a toroidal compactification. Note

that the resulting theory is not governed by the sigma model (2.1) anymore. To make

T-duality manifest, it is convenient to introduce the propagators for standard and winding
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coordinates

〈
Xa(z1, z̄1)X

b(z2, z̄2)
〉
= −α′

2
Gab ln |z12|2

〈
X̃a(z1, z̄1)X̃

b(z2, z̄2)
〉
= −α′

2
Gab ln |z12|2

〈
Xa(z1, z̄1)X̃

b(z2, z̄2)
〉
= −α′

2
Gab ln

z12
z̄12

.

(2.5)

In the following, we will determine elementary properties of this theory, at first, without

referring to any compactified directions. The presence of compact directions will be studied

in section 5.

Vertex operators and descendants. The manifest duality-invariant primary field

solely containing the coordinate fields is

Vp,w(z, z̄) =:eipaX
a(z,z̄) eiwaX̃a(z,z̄) : , (2.6)

which will be called tachyon in the following. It is a primary field of weight

(h, h̄) =

(
α′

4
(p+ w)2,

α′

4
(p− w)2

)
. (2.7)

The mass of such a state is

M2 = − 2

α′ (h+ h̄) = −(p2 + w2) . (2.8)

The OPE of two such fields is

Vp1,w1
(z1, z̄1)Vp2,w2

(z2, z̄2) =|z12|α
′(p1·p2+w1·w2)

(z12
z̄12

)α′

2
(p1·w2+w1·p2)

× Vp1+p2,w1+w2
(z2, z̄2) + . . . ,

(2.9)

and admits a logarithmic branch point whose absence (locality) requires the quantization

condition

α′(p1 · w2 + w1 · p2) ∈ Z . (2.10)

Let us also comment on the first descendant states of (2.6):

• At the first excited level one has a form field Ap,w and its complex conjugate Āp,w

Ap,w(z, z̄) = Aa :∂Xa(z)Vp,w(z, z̄) :

Āp,w(z, z̄) = Āa : ∂̄Xa(z̄)Vp,w(z, z̄) :
(2.11)

with A and Ā one-forms. For heterotic torus compactifications these states give rise

to the well-known enhancement of the gauge group. A is primary with conformal

weight (h, h̄) = (1+ α′

4 (p+w)2, α
′

4 (p−w)2) if it is transversely polarized in the sense

Aa(p
a + wa) = 0. Similarly, Ā is primary with (h, h̄) = (α

′

4 (p+ w)2, 1 + α′

4 (p− w)2)

for Āa(p
a − wa) = 0.
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state level-matching primary mass

Vp,w p · w = 0 — M2 = − 4
α′

Ap,w p · w = − 1
α′ Am(pm + wm) = 0 M2 = − 2

α′

Āp,w p · w = 1
α′ Ām(pm − wm) = 0 M2 = − 2

α′

Ep,w p · w = 0 Emn(p
m + wm) = 0 = Emn(p

n − wn) M2 = 0

Table 1. The physical state condition requires the operators to be level-matched primaries of

conformal weight (1, 1). This sets the mass of the states.

• At the next level one finds a (0, 2)-tensor field Ep,w

Ep,w(z, z̄) = Eab :∂X
a(z) ∂̄Xb(z̄)Vp,w(z, z̄) : (2.12)

with the polarization Eab. It is a primary field with (h, h̄) = (1 + α′

4 (p + w)2, 1 +
α′

4 (p−w)2) for transverse polarization in the sense Eab(p
a +wa) = 0 = Eab(p

b−wb).

In the appendix we show explicitly that string scattering amplitudes of three such

states (2.12) can be matched precisely with interactions in DFT. This gives credence to

our usage of this duality invariant CFT as a two-dimensional world-sheet model of DFT.

The quantum version of the classical vanishing of the energy momentum tensor is the

annihilation of a state by the generators of the conformal group (up to a normal-ordering

constant for the generator of rescalings). As a consequence, physical states have to be

primary fields of conformal weight (h, h̄) = (1, 1), i.e. in particular they are level-matched.

For the four states considered above the constraints are shown in table 1.

Clearly Vp,w corresponds to a negative mass2 state, i.e., as expected, it is a tachyon. More-

over, the two states Ap,w and Āp,w are tachyonic as well. Finally, Ep,w is massless and

therefore, depending on the polarization, gives the graviton, the B-field and the dilaton.

Next we will consider the one-loop partition function whose modular invariance imposes

additional constraints relating the holomorphic with the anti-holomorphic sector.

3 The one-loop partition function

In this section, we will compute the torus partition function for the CFT introduced above

and work out the modular properties in some detail. For a CFT defined on the world sheet

torus with modular parameter τ and Hilbert space H, the partition function is given by

Z(τ, τ̄) = trH
(
qL0− c

24 q̄L̄0− c
24

)
(3.1)

with q = e2πiτ . The trace is taken over the whole Hilbert space H which beyond the

oscillator modes also includes the continuous trace over momenta and windings. This can

be evaluated as

f(τ, τ̄) = 〈p, w|p, w〉 1
2

(∫
ddkL
(2π)d

ei
π
2
α′ k2L τ

)(∫
ddkR
(2π)d

e−iπ
2
α′ k2R τ̄

)
. (3.2)
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The evaluation of the trace over the oscillator part is as usual so that altogether we obtain

Z(τ, τ̄) =
f(τ, τ̄)

|η(τ)|2d , (3.3)

which has to be modular invariant. For Im(τ) > 0 the integral (3.2) can be evaluated to

be proportional to |τ |−d; this is not invariant under a modular T -transformation τ → τ +1

as |η(τ)| is invariant itself. T -invariance yields the level matching condition

α′ p · w ∈ Z ⇐⇒ α′

4
(k2L − k2R) ∈ Z , (3.4)

i.e. the two integrals are not independent. Writing k2R = k2L − 4
α′m for an integer m,

level matching can be imposed by including a factor δ(k2L − k2R − 4
α′m) in (3.2). Then, to

evaluate the remaining integral in (3.2) we introduce d-dimensional spherical coordinates

with radius |kR|; up to constant factors we are left with

f(τ, τ̄) ∼ e2πim τ

∫
ddkL
(2π)d

|kL|d−1 e−πα′ k2L Im(τ) ∼ Γ
(
d− 1

2

)

Im(τ)
d
2

e2πim τ

Im(τ)
d−1

2

(3.5)

for Im(τ) > 0, which is T -invariant. However, realizing that Im(τ)
d
2 |η(τ)|2d is already S-

invariant, invariance under a modular S-transformation τ → − 1
τ is spoiled by the second

factor e2πim τ Im(τ)
1−d
2 in (3.5).

For the unwanted factor in (3.5) to be absent and for obtaining a modular invariant

result, the second integral in (3.2) has to evaluate to

∫
ddkR
(2π)d

e−iπ
2
α′ k2R τ̄ δ(kL, kR) = g(τ̄) e−iπ

2
α′ k2L τ̄ . (3.6)

δ(kL, kR) implements relations between the momenta and g(τ̄) is a modular function inde-

pendent of the momenta. Thus the modular function is given by

g(τ̄) =

∫
ddkR
(2π)d

ei
π
2
α′(k2L−k2R)τ̄ δ(kL, kR) = e2πim τ̄

∫
ddkR
(2π)d

δ(kL, kR) , (3.7)

where we used level matching. In (3.7) g(τ̄) factorizes into a τ̄ -dependent factor and a

momentum dependent one. The former is not modular invariant unless m = 0. The

remaining integral over the momentum must be constant, i.e. δ(kL, kR) has to be of the

form δd(kR − F (kL)), with F a vector-valued function.

We can determine F as follows. Since m = 0, level-matching (3.4) can be written as

(
kL
kR

)t(
1 0

0 −1

)(
kL
kR

)
≡ 〈K,K〉d = 0 (3.8)

and is invariant under O(d, d)-transformations of the vector K = (kL, kR)
t. Hence, to

maintain level-matching while having a relation between the left- and right-moving mo-

mentum requires them to be related by an O(d, d)-transformation. Thus we can construct

– 6 –
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the general form of F by rotating the most simple solution kR = kL. An O(d, d) trans-

formation T ∈ O(d, d) satisfies T tdiag(1,−1)T = diag(1,−1) so that in particular the

transpose satisfies

T t =

(
at ct

bt dt

)
∈ O(d, d) ⇐⇒





aat − bbt = 1

cct − ddt = −1
act − bdt = 0

. (3.9)

Acting with T on (kL, kR)
t modifies the simple solution according to

{kR = kL} 7→ {ckL + dkR = akL + bkR} ⇐⇒ {kR = (d− b)−1(a− c)kL} . (3.10)

Using the conditions (3.9) for the matrix elements of T t we see that (d−b)−1(a−c) ∈ O(d).

Therefore, the conditions for modular T - and S-invariance imply that the right and left

momenta are related by an O(d) transformation as

kR =M kL with M∈ O(d) . (3.11)

Having showed that modular invariance requires the insertion of (2π)dδd(kR −MkL)

and denoting 〈p, w|p, w〉 = Vd, the final torus partition function reads

Z(τ, τ̄) =
Vd/2

(2π
√
α′)d Im(τ)

d
2 |η(τ)|2d

. (3.12)

Let us close this section with the following four remarks:

• In terms of momentum and winding, (3.11) enforces w = 0 forM = 1 and p = 0 for

M = −1.

• Invariance under a modular T -transformation implied α′p·w ∈ Z, while only the addi-

tional invariance under a modular S-transformation really led to the weak constraint

p · w = 0.

• The latter truncates the spectrum as only those states are allowed whose number of

left- and right- oscillator excitations match. Comparison with table 1 therefore shows

that in particular Ap,w and its complex conjugate are forbidden.

• Locality implied α′(pi · wj + wi · pj) ∈ Z but the necessity of the strong constraint

pi ·wj +wi · pj = 0 does not follow from modular invariance of the one-loop partition

function.

In string theory, the latter is related to the one-loop vacuum polarization diagram with

all string excitations running in the loop. From our analysis so far it is clear that, in order

to detect the origin of the strong constraint, one also needs to consider string diagrams

containing momenta and winding of many states. For this reason, in the next section we

consider the string scattering amplitude of four tachyons.
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4 Tachyons scattering and the strong constraint

In the T-duality invariant CFT the correlation function of N tachyon vertex operators

Vpi,wi
(zi, z̄i) ≡ Vi can be straightforwardly computed as

〈
V1 . . . VN

〉
=
∏

1≤i<j≤N

|zij |α
′(pi·pj+wi·wj)

(zij
z̄ij

)α′

2
(pi·wj+wi·pj)

δ
(∑

pi

)
δ
(∑

wi

)
. (4.1)

The difference to the standard tachyon correlator is the
zij
z̄ij

-factor.1 In the following, we

will compute the duality invariant Virasoro-Shapiro amplitude and study its pole structure.

The duality invariant Virasoro-Shapiro amplitude. The full string scattering am-

plitude of N tachyons is given by

AN (pi, wi) = gNs CS2

∫ N∏

i=1

d2zi
∏3

j=1 δ(zj − z0j ) |z12z13z23|2

×
〈
V1 . . . VN

〉
(z1, . . . zN )

(4.2)

Here the conformal group PSL(2,C) has been used to fix three of the N insertion points

on the sphere. The standard choice is z1 = 0, z2 = 1 and z3 → ∞. Moreover, (4.2)

includes the three c-ghost correlator
∣∣〈c(z1) c(z2) c(z3)

〉∣∣2 = |z12 z23 z13|2. The prefactors

are a factor of the closed string coupling constant gc for every closed string vertex operator

and CS2 accounting for various normalizations (see e.g. [26]).

Three-point amplitude

The three-tachyon amplitude is given by

A3(pi, wi) = g3c CS2

〈
(c c̄ V1)(c c̄ V2)(c c̄ V3)

〉
= g3c CS2 , (4.3)

where the δ-distributions implementing momentum and winding conservation have to be

understood as implicit. The three-point amplitude is therefore identical to the standard

one for three tachyons without a winding dependence.

Four-point amplitude

Using (4.1) and reordering the monomials, the four-point amplitude reads

A4(pi, wj) = g4c CS2

∫
d2z

〈
(c c̄ V1) (c c̄ V2) (c c̄ V3)V4

〉

= g4c CS2

∫
d2z
{
zα

′(p1·w4+w1·p4)(1− z)α
′(p2·w4+w2·p4)

× |z|α′(p1−w1)·(p4−w4) |1− z|α′(p2−w2)·(p4−w4)
}
.

(4.4)

It is convenient to introduce two sets of Mandelstam variables

s = −(kL3 + kL4)
2 , s = −(kR3 + kR4)

2

t = −(kL2 + kL4)
2 , t = −(kR2 + kR4)

2

u = −(kL1 + kL4)
2 , u = −(kR2 + kR4)

2

(4.5)

1SL(2,C)-invariance can be checked explicitly.

– 8 –
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with s + t + u = s + t + u = −16
α′ by level matching and the mass-shell condition. The

relation between the two sets is given by

(kLi + kLj)
2 − (kRi + kRj)

2 = 4(pi · wj + wi · pj) ∈
4

α′ Z . (4.6)

Defining the function α(s) = −1− α′

4 s the amplitude integrates to

A4(pi, wj) = 2π g4c CS2

Γ
(
α(s)

)
Γ
(
α(t)

)
Γ
(
α(u)

)

Γ
(
α(t) + α(u)

)
Γ
(
α(s) + α(u)

)
Γ
(
α(s) + α(t)

) . (4.7)

Using (4.6), the α’s can be related as α(s) = α(s)− n34, where

nij = α′(pi · wj + wi · pj) with n14 + n24 + n34 = 0 . (4.8)

Then, in terms of the left-moving variables the amplitude becomes

A4(pi, wj) =
2π g4c CS2 Γ

(
α(s)

)
Γ
(
α(t)

)
Γ
(
α(u)

)

Γ
(
α(t)+α(u)+n34

)
Γ
(
α(s)+α(u)+n24

)
Γ
(
α(s)+α(t)+n14

) . (4.9)

A similar expression can be found in terms of right-moving variables.

In contrast to the standard form of the Virasoro-Shapiro amplitude, (4.9) is not

symmetric in the s-, t- and u-channel. Channel duality can be retained by requiring

n14 = n24 = n34, which due to (4.8) implies nij = 0. In the following, we will argue for

this constraint in a more rigorous fashion.

Pole structure and the strong constraint. In string theory the poles of the 4-tachyon

amplitude appear where physical states become on-shell. Thus, they encode the mass

spectrum of the theory. Now, Γ(x) has no zeros but single poles at x = −n for n ∈ N with

residue (−1)n

n! . Therefore the nth pole in the s-channel is located at

s =
4

α′ (n− 1) ⇐⇒ s =
4

α′ (n+ n34 − 1) . (4.10)

Hence, we can consider s = −(kL3 + kL4)
2 ≡ −(kintL )2 with kintL/R = pint±wint as describing

a physical intermediate state with mass and level-matching condition given by

(M int)2 = −
(
(pint)2 + (wint)2

)
=

4

α′
(
n+

n34

2
− 1
)

and pint · wint =
n34

α′ , (4.11)

respectively. This corresponds to an asymmetrically excited state with the difference be-

tween the number of right- and left-excitations being n34. However, the condition (3.11)

for modular invariance forbids asymmetrically excited states. Since the same argument

holds for the t- and u-channel, consistency of the poles with the physical spectrum requires

nij = 0. This is nothing else than the strong constraint (in momentum space)

pi · wj + pj · wi = 0 ∀i, j . (4.12)

Indeed, defining the functions as fi(x, x̃) = exp(ipi · x+ iwi · x̃), the relation (4.12) trans-

lates into

∂afi ∂̃
afj + ∂̃afi ∂afj = 0 (4.13)
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which is the strong constraint (1.2) of DFT [12, 14, 27].

To summarize, while modular invariance of the partition function determined the phys-

ical spectrum, consistency with the pole structure of the Virasoro-Shapiro amplitude al-

lowed to derive the strong constraint. Let us now combine the condition (3.11) with the

constraint (4.12). In terms of left- and right-moving momenta Ki = (kLi, kRi)
t the strong

constraint reads 〈Ki,Kj〉d = 0 ∀i, j. Combining it with kRi
= MikLi, we obtain the

joint condition

kLi
t
(
1−Mt

iMj

)
kLj = 0 (4.14)

which for fixed i, j must hold for all left-moving momenta. This impliesMi =Mj for all

i, j so that both constraints can be summarized by the consistency condition

kRi =M kLi withM∈ O(d) ∀i . (4.15)

This means that the solution to the strong constraint is chosen independently of the con-

crete functions f, g in (1.2).

5 Constraints from torus compactifications

In the previous discussion momentum and winding were continuous as we have not assumed

any compact directions. Scherk-Schwarz reductions of DFT are examples of configurations

relaxing the strong constraint in compact directions [22]. The major difference is the

quantization of momentum and winding. It is interesting to see what changes if one repeats

our analysis from the previous two sections for the case of k < d compact directions.

Torus compactification. We consider general compactifications on a k-dimensional

torus T k = R
k/2πΛk with Λk a k-dimensional lattice. Since the coordinates Xa and

X̃a are independent, they can be compactified on different tori T k and T̃ k. With indices

I, J, . . . indicating the internal directions, the coordinates XI and X̃I acquire new bound-

ary conditions

XI(e−2πiz, e2πiz̄) = XI(z, z̄) + 2π
√
α′ tI

X̃I(e−2πiz, e2πiz̄) = X̃I(z, z̄) + 2π
√
α′ t̃I

(5.1)

with tI and t̃I vector fields on the internal tori, i.e. t ∈ Λk and t̃ ∈ Λ̃k lattice vectors. The

factors
√
α′ are introduced for convenience.2 Using the mode expansion (2.4), in order to

satisfy the boundary conditions, the internal winding and momentum are wI = 1√
α′ t

I and

pI = 1√
α′ t̃

I . Then the basic vertex operator (2.6) is of the form

V c
p,w(z, z̄) =:eipµX

µ

e
i√
α′ t̃IX

I

eiwµX̃µ

e
i√
α′ tIX̃

I

: . (5.2)

2To make the conventions clear, we point out that for a circle they are such that the radius comes with

a factor
√
α′. Then the internal momentum comes with

√
α′ and internal winding with the inverse.
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Small Greek indices µ, ν, . . . now denote the external coordinates. The physical state

condition for (5.2) can be deduced from the conformal weight (2.7) as before; it reads

pµwµ = − 1
α′ tI t̃

I . For the V c
p,wV

c
p′,w′-OPE to be single-valued we need tI t̃′I+ t̃It′I ∈ Z. Hence

the tori are not independent but their lattices are contained in each others dual lattices.

It is convenient to introduce the lattice vectors tIL = 1√
2
(t̃I+tI) and tIR = 1√

2
(t̃I−tI) as

well as the bilinear form 〈·, ·〉k defined by diag(1k,−1k). With the 2k-dimensional vector

L = (tL, tR)
t the above condition for single-valuedness becomes 〈L,L′〉k ∈ Z. Denoting the

lattice spanned by the L’s Γ2k this means Γ2k ⊂ Γ∗
2k, i.e. the lattice is integral. Further

restrictions on the lattice Γ2k will arise from the partition function.

The one-loop partition function. The partition function can be evaluated as before.

The only difference is the zero-mode contribution from the internal momenta and windings.

Using (3.12) and (3.2) for the internal part we obtain

Zc(τ, τ̄) =
Vd−k/2(

2π
√
α′)d−k

1

Im(τ)
d−k
2 |η(τ)|2d

∑

(tL,tR)∈Γ2k

eiπ t2L τ e−iπ t2R τ̄ . (5.3)

Under a modular T -transformation, all but the last term is invariant, the lattice vectors

have to satisfy 〈L,L〉k ∈ 2Z. This means that T -invariance implies that Γ2k has to be an

even lattice. Moreover, using Poisson resummation twice, the partition function is shown

to be invariant under a modular S-transformations if Γ2k = Γ∗
2k. Hence we have rederived

the well known result [28] that modular invariance requires the lattice Γ2k to be even and

self-dual.

Moreover, the external momenta still have to satisfy the condition (3.11), i.e. kµR =

Mµ
ν k

ν
L forM ∈ O(d− k). Note that, the physical spectrum in the internal sector is less

constrained compared to the non-compact case.

Pole structure. Again we consider the scattering of four vertex operators (5.2). The

only difference to the analysis in section 4 is that the contractions of momenta and windings

split into separate contractions of external and internal momenta and windings. The nth

pole in the s-channel seen from the external point of view is

se =
4

α′

[
n+

1

2
(tL3 + tL4)

2 − 1

]
(5.4)

and the difference between the external left- and right-movers is se− se = 4
α′ (n34− 1

2〈L3 +

L4, L3 + L4〉k). Splitting n34 and using level matching allows to write this difference as

s
e − se = 〈Ke

3 +Ke
4 ,K

e
3 +Ke

4〉d−k (5.5)

with Ke
i = ((kµL), (k

µ
R))

t collecting the external momenta. As before, the pole corresponds

to an asymmetrically excited state. However, the external part still has to satisfy the

condition (3.11) for modular invariance, i.e. (5.5) has to vanish. This implies 〈Ke
i ,K

e
j 〉d−k =

0, which is equivalent to (4.12). Then the difference between left- and right-excitations of

the intermediate states is 〈L3, L4〉k. As asymmetric excitations are valid, this describes

a physical state. Therefore, the strong constraint still applies to the external directions

whereas no further constraint arises for the internal momenta and windings.

– 11 –
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6 Conclusion

In this note we have analyzed a T-duality symmetric CFT, whose tree-level string scatter-

ing amplitudes at the two-derivative level are described by DFT. From analyzing one-loop

modular invariance and the pole structure of the four tachyon amplitude we could de-

duce that the strong constraint (4.12) must be imposed in all the non-compact directions,

whereas compact toroidal directions are not subject to any further constraint beyond those

following from modular invariance.

These observations are in agreement with the possibility of relaxing the strong con-

straint on the internal space in Scherk-Schwarz compactifications [22], in light of which the

torus is a special case. The additional constraints found there apply to the possible fluxes,

saying that they are constant and subject to quadratic constraints. Since fluxes are absent

in the torus compactifications studied here, no constraints are expected.

It would be interesting to use this CFT approach to study higher order correction to

the DFT action.
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A Graviton scattering and the DFT action

In the first part of this appendix we rederive the on-shell three graviton scattering amplitude

for vertex operators which do explicitly depend on winding modes in addition to momenta,

given in [2]. In the second part we are going to expand the DFT action into third order

in fluctuations and show that these interactions precisely match with the above string

scattering amplitude. This computation is meant to provide evidence for the relevance of

this T-duality invariant CFT for DFT.

A.1 3-Graviton scattering from CFT

Calculating an N -point function of insertions of graviton vertex operators (2.12) Ep,w(z, z̄)
is combinatorially more involved than a tachyon amplitude. For taking care of that one

conveniently defines

Vi(zi, z̄i) = :eκi·∂X(zi)−λi·∂̄X̃(z̄i)eipi·X(zi,z̄i) eiwi·X̃(zi,z̄i) : (A.1)

with I labeling the winding and momenta and κi, λi auxiliary parameters. One can derive

the vertex operators corresponding to the first excited states simply by acting on (A.1)

with derivatives with respect to both κi and λi. This operator is related to a massless

graviton vertex operator Epi,wi
by

Epi,wi
(zi, z̄i) = Eiab

∂

∂κia

∂

∂λib
Vi
∣∣∣
κi=λi=0

. (A.2)
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The N point correlation function can be written as

〈 N∏

i=1

Vi(zi, z̄i)
〉
=

∏

1≤i<j≤N

|zi − zj |α
′(pi·pj+wi·wj)

(zi − zj
z̄i − z̄j

)α′

2
(pi·wj+wi·pj)

× Fij(zij , z̄ij) δ
(∑

pi

)
δ
(∑

wi

)
(A.3)

with

Fij(zij , z̄ij) = exp

(
−α′

2

[ κi ·κj
(zi − zj)2

+ 2i
(p[i + w[i)·κj]

zi − zj

+
λi ·λj

(z̄i − z̄j)2
+ 2i

(p[i − w[i)·λj]

z̄i − z̄j

])
.

(A.4)

The full 3-graviton amplitude is then given by

A3(pi, wi,Ei) = g3c CS2

〈 3∏

i=1

(c c Epi,wi
)
〉

=g3c CS2 A(~z, ~̄z)

3∏

k=1

Ekab
∂

∂κka

∂

∂λkb

∏

1≤i<j≤3

Fij(zij , z̄ij)|κi=λi=0 ,

(A.5)

where A(~z, ~̄z) collects the contractions of the remaining exponentials (4.1). Notice that

we can treat the derivatives with respect to κ and the ones with respect to λ separately.

Denoting F (~z, ~̄z) :=
∏

1≤i<j≤3 Fij(zij , z̄ij) and taking three derivatives with respect to κ,

we find
3∏

k=1

∂

∂κka
F |κi=λi=0 =

α
′2

4

ηackb1L + ηbcka3L + ηabkc2L
z12z13z23

+
α

′

2

(
ka1L
z12
− ka3L

z23

)(
kb2L
z12

+
kb3L
z13

)(
kc1L
z13

+
kc2L
z23

)
,

(A.6)

where we made use of momentum and winding conservation as well as the transverse po-

larization of Emn. The λ-derivatives can be worked out analogously. We can now contract

the two parts with the corresponding polarization tensors of the massless vertex operators

to get the full 3-point amplitude. We restrict ourselves to second order in momentum

and winding and we consider the correct normalization of the graviton vertex operator

which makes it necessary to include a factor of 2
α
′ in each E . Then we find the 3-graviton

scattering amplitude to be

A3(pi, wi, Ei) = 4πgcE1adE2beE3cf t
abct̃def +O(p4, p3w, . . . , w4) , (A.7)

with

tabc = ηcakb1L + ηbakc2L + ηcbka3L

t̃abc = ηcakb1R + ηbakc2R + ηcbka3R .
(A.8)

Here we used CS2 = 8π
α′g2c

which can be determined from unitarity by factorizing the 4-

point amplitude (4.9) over the tachyonic pole. This result was first presented in [2] and

consistently reduces to the well-known 3-graviton scattering amplitude [24] for vanishing

B-field and zero winding.
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A.2 3-point interaction from DFT

For our purposes, it is convenient to consider DFT theory formulated in terms of the field

Eij = Gij +Bij and the dilaton field d [14]:

S =

∫
dx dx̃ e−2d

[
−1

4
gikgjlDpEklDpEij +

1

4
gkl(DjEikDiEjl + D̄jEkiD̄iElj)

+(DidD̄jEij + D̄idDjEij) + 4DidDid
]
.

(A.9)

Despite the fact that T-duality is no longer a manifest symmetry, this description nicely

covers momenta and winding modes in the derivatives Di = ∂i−Eik∂̃k and D̄i = ∂i+Eki∂̃k.

The inverse metric gij is used to raise indices and we set 2κ2d = 1. The construction of

this action from string field theory made use of a field redefinition establishing the link to

the low-energy effective field theories [29]. As given in [27], at zeroth order in α
′
this field

redefinition is

Eij = Eij + fij(e, d) , fij(e, d) = eij +
1

2
ei

kekj +O(e3) . (A.10)

Using (A.10), we now expanding the action (A.9) around Minkowski space to cubic order

in the fluctuation eij (see [14]). Here Eij denotes the constant background, which for

vanishing B-field reduces to the Minkowski metric ηij . It is important to take the higher

order fluctuation into account in the expansion of the different objects. The metric gij is

simply given by gij = 1
2(Eij + Eji) and hence, for example, the expansion of the inverse

metric takes the following form

gij = ηij − e(ij) +
1

4
eikejk +

1

4
ekiek

j +O(e3) . (A.11)

Then, up to a total derivative, the action to cubic order in the fluctuation reads

S =

∫
dx dx̃

[
1

4
eij�eij +

1

4
(Dieij)

2 +
1

4
(D̄jeij)

2 − 2dDiD̄jeij − 4d�d

+
1

4
eij

(
(Diekl(D̄

jekl)− (Diekl)(D̄
lekj)− (Dkeil)(D̄jekl)

)

+
1

2
d
(
(Dieij)

2 + (D̄jeij)
2 +

1

2
(Dkeij)

2 +
1

2
(D̄keij)

2

+2eij(DiD
kekj + D̄jD̄

keik)
)
+ 4eijdD

iD̄jd+ 4d2�d
]
,

(A.12)

which was first derived in [27]. The derivatives are given by

Di = ∂i − Eik∂̃
k ,

D̄i = ∂i + Eki∂̃
k ,

� =
1

2
(DiDi + D̄jD̄j) . (A.13)

In order to compare with the 3-point amplitude from the CFT side, we introduce κd by

modifying the fluctuation to 2κdeij . In this way we get a match with the expansion of the

standard Einstein-Hilbert action to third order in the metric fluctuation hij . Then, from
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the second line in (A.12) and after a partial integration, we identify the interaction term

for three eij ’s to be

κdeij

(
(Diekl(D̄

jekl)− (Diekl)(D̄
lekj)− (Dkeil)(D̄jekl)

)

= −κdeij
(
eklDiD̄jekl + (Diekl)(D̄

lekj) + (Dkeil)(D̄jekl)
)
+ (tot. der.) .

(A.14)

The missing term from the partial integration vanishes because of Dieij = 0, following

from the polarization constraint as listed in table 1. Next we can read off the value of the

3-graviton vertex in momentum space by using ∂i → ipi and ∂̃i → iwi, which translates

derivatives to momenta and winding modes. Moreover we have to keep track of possible

permutations and obtain

Aeee = 4πgc

(
ki3Re1ijk

j
3Le

kl
2 e3kl + ki3Re1ije

kj
2 e3klk

l
2L + kk3Re1kle

il
3 e2ijk

j
1L

+ (cyclic permutations)
)
,

(A.15)

where gc =
κd

2π . This result nicely matches with the string scattering amplitude (A.7).The

slight difference in the left- and right-moving momenta can be cured by switching the sign

of the B-field.

Open Access. This article is distributed under the terms of the Creative Commons
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