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Abstract

Background: Dynamic modelling provides a systematic framework to understand function in biological systems.
Parameter estimation in nonlinear dynamic models remains a very challenging inverse problem due to its
nonconvexity and ill-conditioning. Associated issues like overfitting and local solutions are usually not properly
addressed in the systems biology literature despite their importance.
Here we present a method for robust and efficient parameter estimation which uses two main strategies to surmount
the aforementioned difficulties: (i) efficient global optimization to deal with nonconvexity, and (ii) proper
regularization methods to handle ill-conditioning. In the case of regularization, we present a detailed critical
comparison of methods and guidelines for properly tuning them. Further, we show how regularized estimations
ensure the best trade-offs between bias and variance, reducing overfitting, and allowing the incorporation of prior
knowledge in a systematic way.

Results: We illustrate the performance of the presented method with seven case studies of different nature and
increasing complexity, considering several scenarios of data availability, measurement noise and prior knowledge. We
show how our method ensures improved estimations with faster and more stable convergence. We also show how
the calibrated models are more generalizable. Finally, we give a set of simple guidelines to apply this strategy to a
wide variety of calibration problems.

Conclusions: Here we provide a parameter estimation strategy which combines efficient global optimization with a
regularization scheme. This method is able to calibrate dynamic models in an efficient and robust way, effectively
fighting overfitting and allowing the incorporation of prior information.

Keywords: Parameter estimation, Dynamic models, Regularization, Global optimization, Overfitting

Background
Mathematical modelling is the central element in quan-
titative approaches to molecular and cell biology. The
possible uses of quantitative modelling of cellular pro-
cesses go far beyond explanatory and predictive studies
[1, 2]. They provide a way to understand complex bio-
systems [3, 4] and have given rise to systems biology as
a new way of thinking in biological research [5]. Mod-
els in systems biology vary in their degree of network
complexity and accuracy of representation [6]. Dynamic
(i.e. kinetic) models offer the greatest degree of flexibility
and accuracy to explain how physiological properties arise
from the underlying complex biochemical phenomena. In
fact, it has been argued that the central dogma of systems
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biology is that it is system dynamics that gives rise to the
functioning and function of cells [7].
The use of kinetic models to understand the function

of biological systems has already been successfully illus-
trated in many biological systems, including signalling,
metabolic and genetic regulatory networks [8–16].
Further, dynamic model-based approaches have also
been used to identify possible ways of intervention
or (re-)design, such as in optimal experimental design
[17–21], metabolic engineering [22] and synthetic biology
[23, 24]. Other recent efforts have been focused on
scaling-up, i.e. on the development and exploitation of
large-scale (genome-scale) kinetic models [25], and ulti-
mately, whole-cell models [26, 27].
Although nonlinear dynamical models have become the

most common approach in systems biology, they have
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received relatively little attention in the statistical litera-
ture, especially when compared with other model types
[28]. As a consequence, the area can be regarded as
one of the most fertile fields for modern statistics [29]:
it offers many opportunities, but also many important
challenges [30].
One of the main challenges is the calibration of these

dynamic models, also known as the parameter estima-
tion problem. Parameter estimation aims to find the
unknown parameters of the model which give the best
fit to a set of experimental data. Parameter estima-
tion belongs to the class of so called inverse problems
[31, 32], where it is important to include both a priori
(i.e. structural) and a posteriori (i.e. practical) parame-
ter identifiability studies. In this way, parameters which
cannot be measured directly will be determined in order
to ensure the best fit of the model with the experi-
mental results. This will be done by globally minimizing
an objective function which measures the quality of the
fit. This problem has received considerable attention, as
reviewed in [19, 33–37]. It is also frequently described
as the inverse problem, i.e., the inverse of model sim-
ulation from known parameters, considered the direct
problem.
This inverse problem usually considers a cost function

to be optimized (such as maximum likelihood), which in
the case of nonlinear dynamic models must be solved
numerically. Numerical data fitting in dynamical systems
is a non-trivial endeavour, full of pitfalls (see, e.g. Chapter
4 in [38]). The inverse problem is certainly not exclusive
of systems biology: it has been extensively studied in other
areas, as reviewed in [39], each one contributing with
somewhat different perspectives regarding the difficulties
encountered and how to surmount them.
Here we would like to address two key pathological

characteristics of the inverse problem which make it very
hard: ill-conditioning and nonconvexity [19, 40, 41]. These
concepts are intimately related with other similar notions
developed independently in different communities [39].
For example, ill-conditioning can be related to the lack
of identifiability arising from the model structure, and/or
from information-poor data. Nonconvexity and multi-
modality usually cause convergence to local solutions
(local minima), which are estimation artefacts. Both are
significant sources of concern that need to be properly
addressed.
Due to the nonconvexity of the parameter estimation

problem, there is a need for suitable global optimiza-
tion methods [19, 36, 42–45]. Relying on standard local
optimization methods can lead to local solutions, pro-
ducing wrong conclusions: for example, one can incor-
rectly conclude that a novel kinetic mechanism is wrong
because we are not able to obtain a good fit to the
data, but the real reason might be that the method

used simply converged to a local minima [46]. Indeed, a
number of studies have described the landscape of the
cost functions being minimized as rugged, with multi-
ple minima [41, 44, 47]. It has been argued [48, 49]
that local methods or multi-start local methods can be
effective if properly used, but in our experience (and as
we will show below) this only holds for relatively well-
behaved problems, i.e. those with good initial guesses
and tight bounds on the parameters. Therefore, in gen-
eral, global optimization methods should be used in
order to minimize the possibility of convergence to local
solutions [19, 36, 42, 47].
The ill-conditioning of these problems typically arise

from (i) models with large number of parameters (over-
parametrization), (ii) experimental data scarcity and (iii)
significant measurement errors [19, 40]. As a conse-
quence, we often obtain overfitting of such kineticmodels,
i.e. calibrated models with reasonable fits to the available
data but poor capability for generalization (low predictive
value). In this situation, we are over-training the model
such as we fit the noise instead of the signal. Therefore,
overfitting damages the predictive value of the calibrated
model since it will not be able to generalize well in situ-
ations different from those considered in the calibration
data set. Overfitting might be behind most failures in
model-based prediction and forecasting methods in many
fields of science and engineering, and it has probably
not received as much attention as it deserves (“the most
important scientific problem you have never heard of”, in
the words of Silver [50]).
Most mechanistic dynamic models in systems biol-

ogy are, in principle, prone to overfitting: either
they are severely over-parametrized, or calibrated with
information-poor data, or both. However it is quite rare
to find studies where a calibrated model is tested with a
new data set for cross-validation (an example of excep-
tion would be the study of Zi and Klipp [51]). Further,
as we will show below, over-parametrization and lack of
information are not the only factors to induce overfitting:
model flexibility plays an equally important role.
The paper is structured as follows. First, we consider

the statement of the inverse problem associated to kinetic
models of biological systems, and we focus on its ill-
conditioning and nonconvexity, reviewing the state of
the art. We then present a strategy to analyse and sur-
mount these difficulties. In the case of nonconvexity, we
present a suitable global optimization method. In the case
of ill-conditioning and overfitting, we consider the use
of regularization techniques. Our strategy is then illus-
trated with a set of seven case studies of increasing com-
plexity, followed by a detailed discussion of the results.
Finally, we present practical guidelines for applying
this strategy considering several scenarios of increasing
difficulty.
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Methods
Parameter estimation in dynamic models
Mathematical model
Here we will consider dynamic models of biological sys-
temsdescribed by general nonlinear differential equations.
A common case is that of kinetic models. For the case of
biochemical reaction networks, and under the assumption
of well-mixed compartments and large enough concen-
tration of molecules (so stochastic effects are negligible),
kinetic models describe the concentration dynamics using
nonlinear deterministic ordinary differential equations.
One of the most general form of these equations is given
by the deterministic state-space model:

dx(t, θ)

dt
= f (t, x(t, θ),u(t), θ), (1)

y(x, θ) = g(x(t, θ), θ), (2)
x(t0) = x0(θ), t ∈[ t0, tf ] , (3)

where x ∈ RNx is the state vector (often concentra-
tions), the f (·) : R1×Nx×Nu×Nθ �→ RNx vector function
is constructed from the reaction rate functions and stim-
uli u(t). The Nθ dimensional parameter vector θ contains
the positive parameters of the reaction rate functions–for
example the reaction rate coefficients, Hill exponents, dis-
sociation constants, etc.–, but can also include the initial
conditions. The observation function g(·) : RNx×Nθ �→
RNy maps the state variables to the vector of observable
quantities y ∈ RNy , these are the signals that can be mea-
sured in the experiments. The observation functions may
also directly depend on estimated parameters for exam-
ple on scaling parameters. When multiple experiments
in different experimental conditions are considered, typi-
cally the same model structure is assumed, but the initial
conditions and stimuli are adapted to the new conditions.

Calibration data, errormodels and cost functions
We assume, that the data is collected in multiple experi-
ments at discrete time points ti ∈[ t0, tf ], thus the model
outputs must be discretized accordingly. Let us denote the
model prediction at time ti, of the j-th observed quantity
in the k-th experiment by yijk . Due to measurement errors
the true signal value is unknown and a noise model is used
to express the connection between the true value yijk and
measured data ỹijk .
In general, the type and magnitude of the measure-

ment error depend on both the experimental techniques
and the post-processing of the data. For example, blotting
techniques are generally used to obtain quantitative data
for gene expression levels or protein abundance. These
data is assumed to contaminated by either additive, nor-
mally distributed random error (noise) or by multiplica-
tive, log-normally distributed noise. Rocke and Durbin
[52] concluded that the gene expression data measured
by DNA micro-arrays or oligonucleotic arrays contains

both additive and multiplicative error components. Sim-
ilar conclusions were reported by Kreutz and co-authors
[53] for protein measurements using immunoblotting
techniques. In this context, there are both experimenta-
tion techniques (for example gel randomisation [54]) and
mathematical procedures (general logarithmic transfor-
mation [55, 56]) to ensure proper data pre-processing for
model calibration.

Maximum likelihood and cost function Assuming that
the transformed measurements (which is still denoted by
ỹ for consistency) are contaminated by additive normally
distributed uncorrelated random measurement errors –
i.e. ỹijk = yijk(x(ti), θ) + εijk where εijk ∼ N

(
0, σ 2

ijk

)
is the

random error with standard deviation σijk and ỹijk is the
measured value–, the estimation of the model parameters
is formulated as the maximization of the likelihood of the
data [57, 58]

L( ỹ | θ) =
Ne∏
k=1

Ny,k∏
j=1

Nt,k,j∏
i=1

1√
2πσ 2

ijk

× exp
(

−1
2

( yijk(x(ti, θ), θ) − ỹijk)2

σ 2
ijk

)
,

(4)
where Ne is the number of experiments, Ny,k is the num-
ber of observed compounds in the k-th experiment, and
Nt,k,j is the number of measurement time points of the
j-th observed quantity in the k-th experiment. The total
number of data points is ND = ∑Ne

k=1
∑Ny,k

j=1
∑Nt,k,j

i=1 1. The
maximization of the likelihood function (4) is equivalent
to the minimization of the weighted least squares cost
function [58]

QLS(θ) =
Ne∑
k=1

Ny,k∑
j=1

Nt,k,j∑
i=1

(yijk(x(ti, θ), θ) − ỹijk
σijk

)2
= R(θ)TR(θ) ,

(5)
where the residual vector R(·) : RNθ → RND is con-
structed from the squared terms by arranging them to a
vector. With this, the model calibration problem can be
stated as the well-known nonlinear least-squares (NLS)
optimization problem:

minimize
θ

QLS(θ) = R(θ)TR(θ)

subject to θmin ≤θ ≤ θmax ,
dx(t, θ)

dt
= f (u(t), x(t, θ), θ) ,

y(x, θ) = g(x(t, θ), θ) ,
x(t0) = x0(θ), t ∈[ t0, tf ] .

(6)

A θ̂ vector that solves this optimization problem is
called the optimal parameter vector, or the maximum



Gábor and Banga BMC Systems Biology  (2015) 9:74 Page 4 of 25

likelihood estimate of the model parameters. However,
note that the uniqueness of the solution is not guaran-
teed, which results in the ill-posedness of the calibration
problem, as discussed later.

Post-analysis Post-analysis of calibrated models is an
important step of the model calibration procedure. Clas-
sical methods to diagnose the identifiability and validity
of models, and the significance and determinability of
their parameters are described in e.g. [34]. Most of these
methods, such as the χ2 goodness of fit test, or the dis-
tribution and correlation analysis of the residuals by, for
example, the Shapiro-Wilk test of normality, assume that
the errors follow a normal distribution, so they should be
used carefully (i.e. in many real problems such assump-
tion might not hold). Similarly, the computation of the
covariance and correlation of the parameters ([59, 60])
and the computation of confidence regions of the model
predictions [48] are usually performed based on the Fisher
information matrix (FIM). But the FIM has important
limitations, especially for nonlinear models: it will only
give a lower bound for the variance, and symmetric con-
fidence intervals. Nonparametric methods such as the
bootstrap [61] are much better alternatives. Here, rather
than focusing our post-analysis using these metrics, we
will focus on examining the generalizability of the fitted
model. In particular, below we will make extensive use
of cross-validation methods, which are rather well-known
in system identification to avoid overfitting [62, 63], but
which have been very rarely used in the systems biology
field.

Global optimization method
It is well-known that the cost function (5) can be highly
nonlinear and nonconvex in the model parameters (see
e.g. [38, 41, 44, 47]. Many efficient local optimization
algorithms have been developed to find the solution
of nonlinear least squares problems, including Gauss-
Newton, Levenberg-Marquardt and trust-region methods
[38]. These local methods, (and others like truncated and
quasi-Newton) are especially efficient when provided with
high quality first (gradient, Jacobian) and second order
(Hessian) information via parametric sensitivities [64, 65].
However, in this type of problems they will likely con-
verge to local solutions close to the initial guess of the
parameters.
Multi-start local methods (i.e. performing multiple

runs initiating local optimizers from a set of initial
guesses distributed in the search domain) have been
suggested as more robust alternatives. Typically the
set of initial guesses is generated inside the parameter
bounds either randomly or by a more sophisticated sam-
pling scheme, such as Latin hypercube sampling [66].
Multi-start methods have shown good performance in

certain cases, especially when high-quality first order
information are used and the parameter search space
is restricted to a relatively small domain [48, 49].
However, other studies [44, 67, 68] have shown that
multi-start methods become inefficient as the size of
the search space increases, and/or when the prob-
lem is highly multimodal, since many of the local
searches will explore the same local basins of attraction
repeatedly.
Therefore, a number of researches have supported the

use of global optimization as a better alternative. However,
the current state of the art in global optimization for this
class of problems is still somewhat unsatisfactory. Deter-
ministic global optimization methods [43, 46, 69–71]
can guarantee global optimality but their computationally
cost increases exponentially with the number of esti-
mated parameters. Alternatively, stochastic and meta-
heuristic methods [19, 36, 44, 47, 72, 73] can be
used as more practical alternatives, usually obtaining
adequate solutions in reasonable computation times,
although at the price of no guarantees. In the context of
metaheuristics, hybrids (i.e. combinations) with efficient
local search methods have been particularly successful
[67, 68, 72, 74–77].
Here we have extended the enhanced scatter search

(eSS) metaheuristic presented by Egea et al. [75]. Our
extension of this method, which we will call eSS2, makes
use of elements of the scatter search and path re-linking
metaheuristics, incorporating several innovative mecha-
nisms for initial sampling (including Latin hypercube),
an update method which improves the balance between
intensification (local search) and diversification (global
search), and new strategies to avoid suboptimal solutions.
In eSS2 we have also incorporated several methodological
and numerical improvements with the double aim of (i)
increasing its overall robustness and efficiency, (ii) avoid-
ing the need of tuning of search parameters by the user (a
drawback of many metaheuristics). These improvements
can be summarized as follows:

• Efficient local search exploiting the structure of the
nonlinear least squares problem: after extensive
comparisons of local solvers, we selected the adaptive
algorithm NL2SOL [78]. This is a variant of the
Gauss-Newton method that utilizes the Jacobian of
the residual vector (see Additional file 1) to
approximate and iteratively upgrade the parameter
vector. In order to increase its efficiency, we also
provide it with high quality gradient information (see
below), resulting in speed-ups of up to 20 times.

• Efficient integration of the initial value problem and
its extension with parametric forward sensitivity
equations using the CVODES solver [79], providing it
with the Jacobian of the dynamics.
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• Fast computation: although the global solver eSS is
implemented in Matlab, the integration of the initial
value problem is done in C in order to speed-up the
computations up to 2 orders of magnitude.

• Robust default tuning: metaheuristics require the
user to set a number of search parameter values
which usually require a number of time-consuming
initial trial runs. In the method proposed here, we
have made sure that the default search parameters
work well without the need of any tuning, which is an
additional important advantage. These settings are
given in Table S.6.1 in Additional file 1.

Regularization
Regularization methods have a rather long history in
inverse problems [80] as a way to surmount ill-posedness
and ill-conditioning. The regularization process intro-
duces additional information in the estimation, usually
by penalizing model complexity and/or wild behaviour.
Regularization is related to the parsimony principle
(Ockham’s razor), i.e. models should be as simple as possi-
ble, but not simpler [81, 82]. It also has links with Bayesian
estimation in the sense that it can be regarded as a way of
introducing prior knowledge about the parameters [83].
Regularization aims to make the problem less complex
(more regular), i.e. to ensure the uniqueness of the solu-
tion [84], to reduce the ill-conditioning and to avoidmodel
overfitting. However, one crucial step is the proper bal-
ancing of prior knowledge and information in the data,
also known as the tuning of the regularization [85].
Regularization has been mainly used in fields dealing

with estimation in distributed parameter systems, such
as tomography (with applications in e.g. geophysics and
medicine) and other image reconstruction techniques.
Recently, it has enjoyed wide success in machine learning
[86], gaining attention from the systems identification area
[87]. However, the use of regularization in systems biology
has been marginal [88], especially regarding mechanistic
(kinetic) nonlinear models. Bansal et al. [89] compared
Tikhonov and truncated singular value decomposition
regularization for the linear regression model of green
fluorescent protein reporter system to recover transcrip-
tion signals from noisy intensity measurements. Kravaris
et al. [40] compared the theoretical aspects of param-
eter subset estimation, Tikhonov and principal compo-
nent analysis based regularization, also in a linear model
framework. Wang and Wang [90] presented a two stage
Bregman regularization method for parameter estima-
tions in metabolic networks. A clear conclusion from
these studies is that, for nonlinear inverse problems, there
is no general recipe for the selection of regularization
method and its tuning. Further, it is known that even for
linear systems, choosing a method from the plethora of
existing techniques is non-trivial [85].

Here we want to investigate the role that regulariza-
tion can play regarding the calibration of nonlinear kinetic
models. First of all, we need to address to question of
which type of regularization should we use, and how to
tune its parameters. Second, since kinetic models often
have a fixed and rather stiff nature (as opposed to the
flexibility of e.g. neural networks, as used in machine
learning), it is a priori unclear if regularization can really
help to avoid overfitting and enhance the predictive value
of the calibrated model. Third, since most dynamic mod-
els in systems biology are severely over-parametrized, we
want to explore its capabilities for systematic balancing
the effective number of fitted parameters based on the
available calibration data. Fourth, we want to evaluate the
impact of regularization on the convergence properties of
the global optimization solvers.
In order to answer these questions, here we present

a critical comparison of a wide range of regulariza-
tion methods applicable to nonlinear kinetic models. We
then detail a procedure with guidelines for regularization
method selection and tuning. Finally, we use numeri-
cal experiments with challenging problems of increasing
complexity to illustrate the usage and benefits of regular-
ization, addressing the questions above.

Statement of the regularized estimation
We consider penalty type regularization techniques [80],
which include a penalty �(θ) in the original objective
function (5), which results in the following regularized
optimization problem:

θ̂α ← minimize
θ

QR(θ) = QLS(θ) + α�(θ)

subject to θmin ≤θ ≤ θmax ,
dx(t, θ)

dt
= f (u(t), x(t, θ), θ) ,

y(x, θ) = g(x(t, θ), θ) ,
x(t0) = x0(θ), t ∈[ t0, tf ] .

(7)

Here α ∈ R+ is the non-negative regularization param-
eter and �(·) : RNθ → R is the regularization penalty
function. When the solution of the original problem (α =
0) is ill-posed, one has to incorporate some a priori
assumption, which makes the estimation well posed. It
is assumed that the penalty function �(θ) is well con-
ditioned and has a unique minimum in the parameters.
Thus, as the regularization parameter α → ∞ the opti-
mization (7) is well-posed but highly biased by the a priori
assumption, and when α = 0 one obtains the origi-
nal, ill-posed estimation problem. Therefore the role of
the regularization parameter α is to properly balance the
information of the data and the prior knowledge. How-
ever, this is a non-trivial task even for linear problems, as
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we will discuss below. Besides, there are many approaches
to formulate the penalty function, among which the
Tikhonov regularization [80], Least Absolute Shrinkage
and Selection Operator (LASSO) regularization [91], the
elastic net [92] and the entropy basedmethods [90, 93] are
the most frequently used.
Determining the proper regularization parameter

requires multiple solutions of the regularized optimiza-
tion problem (7), therefore the computational efficiency
is also crucial. Here we chose the Tikhonov regularization
framework in order to match the form of the penalty to
the least squares formalism of the objective function. In
this case the least squares cost function can be simply
augmented by the quadratic penalty function

�(θ) =
(
θ − θ ref

)T
WTW

(
θ − θ ref

)
, (8)

whereW ∈ RNθ×Nθ is a diagonal scalingmatrix and θ ref ∈
RNθ is a reference parameter vector. In the special case,
when W is the identity matrix, we call the scheme as the
non-weighted Tikhonov regularization scheme (or shortly
as Tikhonov regularization). If the θ ref is the null-vector,
the corresponding regularization scheme is often referred
as ridge regularization.

Scenarios based on prior information
Kinetic models can overfit the data leading to poor gen-
eralizability. Here we propose using prior knowledge to
select the most appropriate regularization method to
avoid such overfit. Based on the level of confidence in this
prior knowledge, we can consider three possible scenar-
ios:

• Worst case scenario, where we have absolutely no
prior information about the parameter values,
typically resulting in very ample bounds and random
initial guesses for the parameters.

• Medium case scenario, where there is some
information about the parameters and their bounds.

• Best case scenario: the situation where a good guess
of the parameters is at hand.

Below we will provide, for each scenario, robust recom-
mendations regarding the regularization method to use
and its tuning.

Prediction error
In order to evaluate the performance of the calibrated
model, we will use cross-validation [63, 94, 95], where the
calibratedmodel is used to predict a yet unseen set of data,
computing the prediction error. A good model should not
only fit well the calibration data, but it also should pre-
dict well cross-validation data (without re-calibrating the
model), i.e. it should be generalizable.

In this section we utilize the bias-variance decompo-
sition of the prediction error and show when and how
regularization can lead to smaller prediction error. First,
let us introduce the subscript C for the calibration data
and the subscript V for the validation data. For notational
simplicity we consider only one experiment and only one
observable for both of the calibration and validation sce-
nario, but it is straightforward to generalize for multiple
experiments and observables by the notion of normalized
mean squared error (see Additional file 1). The expected
prediction error (PE) for the validation data can be written
as

PE = EV ,C
[
(ỹV − ŷV(θ̂C))2

]
(9)

where ỹV is the validation data, θ̂C is the estimated param-
eter vector based on the calibration data and ŷV(θ̂C) is the
model predictions for the validation data. The prediction
error depends on the calibration data –different calibra-
tion data would result in different estimated parameters
θ̂C– and also depends on the validation data. Thus the
expectation is taken over the distribution of the calibra-
tion and the validation data. The measurement error in
the calibration data and in the validation data is often
independent, leading to the well-known (see for exam-
ple [62, 87, 96]) bias-variance decomposition of expected
prediction error as

PE = EV

[(
yV − EC

[
ŷV

(
θ̂C

)])2]
︸ ︷︷ ︸

Bias2

+ EV

[(
ŷV(θ̂C) − EC

[
ŷV

(
θ̂C

)])2]
︸ ︷︷ ︸

Variance

+EV
[
ε2

]
.

(10)

Here, the first term corresponds to the squared bias of
the calibrated model predictions from the true validation
data yV , the second term is the variance of the model
prediction, and the third term is the contribution of the
measurement error EV

[
ε2

] = σ 2.

The variance term The variance of the prediction is due
to the uncertainty in the parameter estimates. This uncer-
tainty can be especially large if the calibration data is
scarce and the number of data points is close to the num-
ber of parameters. The variance term can be expressed for
unbiased estimates [97] as

Variance = Nθ

ND
σ 2, (11)

where Nθ is the number of estimated parameters and ND
is the number of calibration data. Each estimated parame-
ter contributes by σ 2

ND
to the prediction error, thus a model

with fewer calibrated parameters would result smaller
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variance. For biased estimates the prediction variance
becomes

Variance = Neff
θ (α)

ND
σ 2, (12)

where Neff
θ is the effective number of parameters, which

depends on the regularization penalty and regularization
parameter α. In general, the effective number of param-
eters can be expressed by the second order derivatives of
the objective function [96] with respect to the parameters
as

Neff
θ = trace

(
HLS(HLS + αH�)−1HLS(HLS + αH�)−1) ,

(13)

where

HLS = E

[
∂R(θ)

∂θ

T ∂R(θ)

∂θ
|θ=θt

]
(14)

is known as the Gauss-Newton approximate of the Hes-
sian and H� is the Hessian of the regularization penalty
function. Note that (14) is also related to the Fisher Infor-
mation matrix (FIM), which is often used in the practical
identifiability and uncertainty analysis of the estimated
parameters [57]. For example, the eigenvalue decom-
position of the FIM can identify correlated estimated
parameters and parameters with high uncertainty [60].
Small or zero eigenvalues (high condition number) indi-
cates ill-posedness, i.e. the parameter estimation problem
does not have a unique solution. This eigenvalue decom-
position has been widely used in the estimation literature
[72, 98–102].
In the special case of ridge regularization [97], i.e.

�(θ) = θTθ , the Hessian of the penalty is the identity
matrix and Eq. (13) simplifies to

Neff
θ =

Nθ∑
i=1

σ 2
i

(σi + α)2
, (15)

where σi (i = 1 . . .Nθ ) are the eigenvalues of HLS. Note
that for α = 0 –the non-regularized case– the effective
number of parameters equals to the number of model
parameters and for α > 0 –the regularized case– the
effective number of parameters is less than the number of
model parameters Nθ . Thus, as the regularization param-
eter increases, the effective number of parameters decreases
and therefore the variance term of the prediction error (10)
decreases.

The bias term We saw above that regularization reduces
the effective number of parameters, and therefore the
variance of the prediction error. The cost to pay is the bias.
Sjöberg and Ljung [97] derived an upper bound on the
prediction bias for the non-weighted Tikhonov regular-
ization, i.e. when the penalty � = (

θ − θ ref
)T (

θ − θ ref
)
,

where θ ref is a reference parameter vector. It was shown
that in this particular case the bias is

Bias2 <
α

8
||θt − θ ref||2 (16)

where θt is the true model parameters. Thus, the smaller
the regularization parameter and the better our a priori
knowledge is (expressed by the reference parameter vec-
tor), the smaller the bias that will be introduced in the
estimation.

The minimal prediction error There is a trade-off
between bias and variance. From Eqs. (10), (11) (12) and
(16) one obtains that the reduced variance due to the regu-
larization is larger than the introduced bias if the following
inequality holds:

σ 2Nθ − Neff
θ (α)

ND
>

α

8
||θt − θ ref||2. (17)

Therefore, regularization generally increases the perfor-
mance of the calibrated model when

1. the calibration data is noisy (σ is large) and the
amount of data is limited (ND is small),

2. there are a large number of correlated parameters,
and therefore the Hessian of the original problem has
very small eigenvalues. In this case even a small
regularization parameter can largely reduce the
effective number of parameters, i.e. Nθ 	 Neff

θ (α).
3. One has a good guess of the true parameters

(||θt − θ ref||2 is small), for example from other
independent experiments, previous studies or based
on the biological or physico-chemical meaning of the
parameters.

However, note that regularization may damage the pre-
diction (the reduced variance is smaller than the intro-
duced biased) if the original problem is not ill-posed, i.e.
Nθ ≈ Neff

θ (α), α is set to a large value and the provided
reference parameters are far from the true parameters.

Connection with Bayesian parameter estimation
The considered parameter estimation problem (6) fol-
lows the so-called frequentist approach. In contrast to the
Bayesian approach, where the model parameters are con-
sidered random variables, in the frequentist approach the
model parameters are assumed to be constants, i.e. we
assume the existence of a true parameter vector θt which
would predict the measurement error-free data. Yet, the
parameter estimates are uncertain quantities following
well defined distributions (depending on the measure-
ment error and cost function), which can be calculated
based on the available data.
Despite of the above fundamental difference, the for-

mulation of the Bayesian approach can coincide with the
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regularized parameter estimation if some further assump-
tions hold. Both the considered regularization method
and the Bayesian estimation approach use a priori knowl-
edge in the parameter estimation. By noticing the sim-
ilarities and differences of the two approaches we can
gain further insight on how to choose the regularization
parameter [87].
From the Bayesian perspective, when the estimated

parameters have the prior distribution θprior ∼ N (θm, η),
i.e. the parameters are normally distributed with mean
value θm ∈ R

Nθ and covariance matrix η ∈ R
Nθ×Nθ ,

then the maximum likelihood posteriori estimate of the
parameters is obtained by solving

θ̂Bayes ← minimize
θ

1
2
R(θ)TR(θ) + 1

2
(θ − θm)Tη−1(θ − θm)

subject to θmin ≤θ ≤ θmax

dx(t, θ)

dt
= f (u(t), x(t, θ), θ),

y(x, θ) = g(x(t, θ), θ),
x(t0) = x0(θ), t ∈[ t0, tf ] .

(18)

Note the similarities between Eqs. (18) and (7)–(8). The
regularized cost function is equivalent to the Bayesian
cost function if the regularization parameters are fixed as
αWTW = η−1, further, the reference parameter vector in
the regularized estimation plays the role of the mean value
of the prior distribution of the parameters in the Bayesian
formalism (θ ref = θm). Thus, the Bayesian maximum like-
lihood posteriori estimate can be seen as a special case of
the regularization.

Tuning the regularization
The regularization parameter balances the a priori knowl-
edge and the information of the data, therefore plays a
vital role in the regularization. When α = 0, the regu-
larized optimization (7) becomes the original problem (6)
and the variance of the estimated parameters dominates
the prediction error (10). While as α → ∞ the problem
is well posed, but biased towards the reference parame-
ter set. The goal of a tuning method is to find an optimal
value for α, which minimizes the prediction (or parameter
estimation) error (10).
The exact computation of the optimal regularization

parameter is not possible, since the computation of
the prediction bias-variance trade-off would require the
knowledge of the true parameters. Many tuning meth-
ods (see [80, 85, 103, 104] and the references therein)
have been developed based on different assumptions and
approximations to compute an approximate regulariza-
tion parameter value.
In general, in order to find the optimal regularization

parameter, α is discretized as α1 > α2 > · · · > αI and

then the search for optimal regularization parameter is
reduced to choose the best regularization parameter in
this set (called the tuning of the regularization parame-
ter). The optimization problem (7) has to be solved for
each candidate, which results in the regularization candi-
dates: θ̂α1 , θ̂α2 ,. . . θ̂αI . This is a computationally expensive
task, although in an iterative framework the previously
obtained solutions can be utilized to reduce the computa-
tional cost of the remaining candidates.
Regularization tuning methods can be classified based

on the type of information they require (error level in the
data, limits for the regularization parameter, further tun-
ing parameters) and in the way the optimal regularization
parameter is selected among the candidates. In Table 1 we
shortly summarize the regularization tuning methods that
we have considered and compared. Further details about
each tuning method can be found in Additional file 2. The
methods considered can be classified into the following
five groups:

• Discrepancy principle (DP) is based on the idea that
the regularization parameter should be chosen such
that the sum of residuals should be equal to the error
level of the data. For that, a good estimate of the
measurement error is needed, which is often not
known. Other versions of the discrepancy principle,
such as the modified discrepancy principle (MDP)
and the transformed discrepancy principle (TDP) are
known to be less sensitive to the accuracy of a priori
error level.

• Monotone error rule (MER) and quasi optimality
criteria (QO): they use the observation that the
differences between successive candidates, i.e.
||θ̂αi − θ̂αi+1 ||, are large due to either large
regularization or large propagated error and the
difference becomes small for the optimal
regularization parameter.

• Balancing (BP) and hardened balancing principle
(HBP): they use all the candidates to estimate the
regularization error, which is compared then to the
so called approximated propagated error bound. The
optimal regularization parameter is for which the two
types of estimated error is minimal.

• L-curve method: as proposed by Hansen et al. [105]
to display information about the candidates θ̂αi ,
i = 1 . . . I. By plotting the two parts of the objective
function (7): the model fit QLS(θ̂αi) and the
regularization penalty �(θ̂αi) for {α1, . . . αI} one
obtains a discrete Pareto optimal front, which usually
has an L-shape (see for example in Fig. 5a). The
horizontal part is formed by the solutions
corresponding to large regularization parameters,
where the regularization bias is dominating. As the
regularization parameter decreases the least squares
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Table 1 Overview of the regularization tuning methods considered. We have indicated with a�sign for each method, (i) which data/information is required (residual vector,
estimated kinetic model parameters or the Jacobian of the residual vector), and (ii) whether the regularization method utilizes further tuning parameters, an estimate of the
measurement noise level or a limit for the maximal/minimal regularization parameter. Finally, the last three columns indicate if a computationally expensive procedure is involved,
which can be an issue for large scale problems. SVD denotes singular value decomposition

Regularization method Computation involves Further required inputs Involved computation

Method Short ID Refs Residuals
Estimated

Jacobian
Tuning Meas. error

αmax/αmin
Matrix

SVD Traceparameters parameter estimate inverse

Discrepancy principle DP [113] � - - � � - - - -

Modified DP MDP [114] � - � � � - � - -

Transformed DP TDP [115] � - � � � - � - -

Monotone Error Rule MER [116] � � � � � - � - -

Balancing Principle BP [117] - � � � � - - � -

Hardened Balancing HBP [118] - � � - - - - � -

Quasi optimality QO [80] - � - - - � - - -

L–curve method (curvature) LCC [105] � � - - - � - - -

L–curve method (Reginska) LCR [119] � � - - - � - - -

Extrapolated Error Rule EER [120] � - � - - - - - -

Residual Method RM [121] � - � - - � � - �
Generalized Cross-validation GCV [122] � - � - - - � - �
GCV (Golub) GCVG [107] � - � - - - � - �
Robust GCV RGCV [108] � - � � - - � - �
Strong RGCV SRGCV [109] � - � � - - � - �
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error reaches a limit that is determined by the
measurement noise and the model flexibility. On the
vertical part of the L-curve a small reduction in the
least squares model fit error usually cause a large
increase in the penalty. Intuitively, the optimal
regularization parameter that balances the two types
of error is located near the corner of the L-shaped
curve. In [106] the corner point is defined as being
the point that has the largest curvature on the
L-curve (LCC).

• Generalized cross validation (GCV): an approach by
Golub [107] that aims to find the regularization
parameter that minimizes the leave one out (LOO)
prediction error [63]. It does not require any estimate
of the measurement error, but it can be sensitive if a
small number of measurement data is at hand. For
this reason, other variants, such as the robust (RGCV)
and the strong robust generalized cross validation
methods [108, 109] (SRGCV) have been developed.

As we will see from the results in Section “Tuning the reg-
ularization and prior knowledge”, the generalized cross-
validation method was found to be the best for the
presented regularization procedures.

Implementation details
In Fig. 1 we outline the architecture of the resulting
method and its implementation. The pre-processing step
makes use of symbolic manipulation to derive the sen-
sitivity equations and Jacobians (both of residuals and
dynamics), and automatically generates C code to be com-
piled and linked with the CVODES solver. This proce-
dure ensures the highest numerical efficiency and stability
during the solution of the initial value problem. This is
especially useful in stiff nonlinear dynamic systems, where
wild dynamic behaviour can occur during the exploration
of the parameter space.
The regularization scheme is selected according to

the quality of the prior knowledge (as described in
Section “Regularization schemes based on available infor-
mation” and illustrated in Fig. S.2.1 in Additional file 1),
and the cost function is formulated. The regulariza-
tion is then tuned following the procedure described in
Section “Tuning the regularization and prior knowledge”.
Finally, global optimization with eSS2 is used to find
the regularized estimate of the parameters. The result-
ing calibrated model can then be further evaluated using
cross-validation, followed by additional post-regression
and goodness-of-fit analysis.

Results and discussion
Numerical case studies
We have considered a set of seven parameter estima-
tion problems, which are used as numerical case studies.

These case studies have been chosen as representatives
of the typical problems arising in computational systems
biology, i.e. partially observed nonlinear dynamic models
and sparse noisy measurements. These examples include
signalling and metabolic pathway models of increasing
complexity. Table 2 contains a short summary of these
case studies, with the original references and an overall
view of number of estimated parameters, dynamic state
variables, observables, and data. Further details, including
model equations and the data sets used for model cal-
ibration and cross-validation are reported in Additional
files 3 and 4, respectively. It should be noted that in several
of these examples the original references only describe
the model dynamics, not the full parameter estimation
problems.
In the following sections, we use these examples to illus-

trate the issues and pitfalls arising from the nonconvexity
and ill-conditioning of the estimation problems. Next, we
use them to illustrate the key ideas behind the methods
presented above, including the bias-variance trade-off, the
tuning of the regularization, the effect of the quality of the
prior knowledge on the regularization, and their impact
on cross-validation results. For the sake of brevity, we
include summarized or selected results in the main text,
but detailed results for all the case studies can be found in
Additional file 5.

Multi-modality of the optimization problem
Since the estimation problem stated above is noncon-
vex, multi-modality (existence of multiple local solutions)
will be a key possible pitfall. As already discussed, local
nonlinear least squares (NLS) algorithms will find the
local minima of the objective function in the vicinity of
the initial point. A characterization of the set of possi-
ble local optima can be obtained by the frequency dis-
tributions of the solutions found by a multi-start local
procedure, i.e. starting local optimizations from different
initial points, selected randomly in the parameter space.
If the initial points cover the parameter space adequately
well, the observed distribution of the local optima can be
used to quantify the difficulty of the parameter estima-
tion problem arising from multi-modality. For example,
Fig. 2a shows the distribution of these local minima for
the Goodwin’s oscillator (GOsc) case study. The distribu-
tion was obtained by solving 10,000 optimization prob-
lem (of which approximately 97% converged) with the
NL2SOL NLS algorithm started from randomly chosen
initial guesses. These initial points were selected based on
the logarithmic Latin hypercube sampling (LHS) method
(see Additional file 1). The distribution of the obtained
local optima is spread along several magnitudes (note the
logarithmic scaling on the x-axis), with the best (lowest)
objective function value of 9.8903, which is very close to
the best known solution for this problem and therefore
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Fig. 1 Architecture of the method: in the pre-processing phase, sensitivity equations and Jacobians (both of the residuals and of the differential
equations) are derived via symbolic manipulation, generating C code which is then linked to the initial value problem (IVP) solver, CVODES. The
regularization scheme is selected according to the quality of the prior knowledge, and tuned following the procedure described in section “Tuning
the regularization and prior knowledge”. Finally, global optimization with eSS2 is used to find the regularized estimate of the parameters. The
resulting calibrated model can then be further evaluated using cross-validation, followed by additional post-regression and goodness-of-fit analysis

can be considered as global minimum of the objective
function. Although the local optimization was enhanced
by high quality Jacobian information based on the sen-
sitivity calculations, only 5% of the runs achieved the
vicinity of the global optima.
The calibration data and the simulation results of the

most frequently occurring local optima (marked as LS in
the histogram; objective function value: 148.25) is shown
in Fig. 2c. This is certainly a potential pitfall of using
local optimization, which can lead to wrong conclusions
about the model predictive capability. In contrast, the fit
of the global solution (marked as GS in the histogram) is
depicted in Fig. 2b, showing a good agreement between
the model and the data.
We applied the same procedure to the other case stud-

ies, with the corresponding histograms shown in Fig. 3.
These histograms show that all these case studies exhibit
multi-modality, but in different degree. We can see that
oscillators tend to exhibit more local minima than the
other types. However, case study TSMP, which does not
exhibit oscillations, presents a particularly challenging
histogram: none of the local searches was able to locate
the vicinity of the global solution. In summary, some of
these problems could in principle be solved by a multi-
start local method, especially if using high quality gradi-
ents. But this approach would fail in other cases, and we
have no a priori way of distinguishing between these two
groups. Therefore, we conclude that an efficient global

optimization approach should be used in all cases to avoid
artifices (local solutions) and ensure the best possible fit.

Convergence of the optimization algorithms
Once we have characterized the multi-modality of the
case studies, we now illustrate the advantages of using the
eSS2 global optimization method presented previously.
First we consider the solutions of the non-regularized cali-
bration problems (6), and then in the following subsection
we will discuss the regularized estimations (7). The met-
ric to be used will be based on the convergence curves,
i.e. cost function values versus computation time. In order
to evaluate the improvements in efficiency and robust-
ness, we will compare the following methods for all the
case studies, using a fair stopping criteria based on when
a predefined computational time budget is reached:

SMS: simple multi-start (SMS) of NL2SOL with finite
difference Jacobian computation.

AMS: advanced multi-start (AMS), similar to SMS, but
the bounds of the feasible range of the parameters
are transformed by the logarithmic function and
then the Latin hypercube sampling method is
utilized to sample initial points (see Additional
file 1). This way the parameter space is better
sampled, especially if the upper and lower bounds
of some parameters have very different
magnitudes (which is the case for all case studies).
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Table 2 Summary of the case studies. Each column describes a calibration problem. Further details can be found in Additional file 3 (numerical data) and Additional file 4 (detailed
descriptions including the model differential equations)

Short name BBG FHN MAPK GOsc TGFB TSMP CHM

Description

Biomass FitzHugh- MAPK Goodwin’s TGF-β 3-Step Chemotaxis

Batch Nagumo Signalling Oscillator Signalling Metabolic Signalling

Growth Oscillator Pathway Pathway Pathway Pathway

Reference [123] [124, 125] [126] [127] [48] [44] [128]

Implementation of dynamics [123] BIOMD00000000010∗ BIOMD00000000346∗ , [129] [130] [48] [44] BIOMD00000000404∗

Total parameters 4 3 22 8 21 36 60

Estimated parameters 4 3 6 8 18 36 38

States 2 2 8 3 18 8 26

Observed states 2 1 2 3 16 8 7(+1)

Experiments 1 1 1 1 1 8 2

Data points 22 6 20 20 240 1344 160

*The dynamic model can be found in the Biomodels Database (http://www.ebi.ac.uk/biomodels-main)

http://www.ebi.ac.uk/biomodels-main
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Fig. 2 Local optima of the objective function corresponding to the Goodwin’s oscillator case study (GOsc). Figure a shows the distribution of the
final objective function values of 10,000 runs of local solver NL2SOL from randomly chosen initial points based on Latin hypercube sampling. The
distribution of the local optima shows that only 6% of the runs finished in the close vicinity of the global optima (minimum objective function
value: 9.8903). Figure b shows the fit corresponding to the global optima (global solution – GS). Figure c depicts the fit corresponding to the most
frequently achieved local minima (local solution – LS, objective function value: 148.25). Note the qualitatively wrong behaviour of this fit, i.e. the lack
of oscillations in the predictions

Further, NL2SOL is provided with high quality
Jacobian of the residual vector.

eSS2a : the new enhanced scatter search described
above, making use of NL2SOL and high quality
Jacobian.

eSS2b : like eSS2a but initialized by the log Latin
hypercube sampling as in AMS.

The above methods are compared based on their con-
vergence curves (see for example Fig. 4) and the distri-
bution of the final cost function values reached (reported
in Additional file 5). The empirical convergence curve
depicts the current best objective function value as
the optimization algorithm proceeds. An optimization
method performs better than another method if a lower
objective function value is reached in the same amount of
computation time. Since both the multi-start and the eSS2
approaches use random numbers, the convergence curves
will be different for each run. Thus we need to compare
the convergence curves for several runs of each method.

Figure 4 shows the convergence curves for the Good-
wins’ oscillator case study (GOsc) and for the 3-step
metabolic pathway problem (TSMP). For each method
the optimization was carried out 20 times using differ-
ent seeds for the random number generator, but here only
the best convergence curve is shown, i.e. the run in which
the best solution was reached in the shortest time by each
method. Detailed results of the 20 runs can be found
in Additional file 5 for all case studies. Clearly, the sim-
ple multi-start (SMS) approach performed poorly in both
cases: in GOsc, SMS needed 50 times more computation
time than eSS2 to achieve the vicinity of global minimum,
while in TSMP it could not find it in the given compu-
tation time budget. The advanced multi-start (AMS) pre-
sented a performance similar to eSS2a and eSS2b for the
GOsc case study, but in TSMP it was clearly outperformed
by eSS2b.
Considering the results for all the case studies (see

detailed convergence curves in Additional file 5), we can
conclude that the more refined version of multi-start
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Fig. 3 Distributions of local optima for all case studies. Each case study was solved by the AMS method and the observed frequency of the local
minima is reported here. Note that the objective function values (QLS) are scaled by the global optimum QGO

LS for each case study, and the resulting
ratio is reported in logarithmic scale. The height of the first bin at 0 represents the frequency of finding the vicinity of the global solution

can solve problems of small size (number of parameters)
and with relatively tight bounds and good initial guesses
for the parameters, but it is not reliable in more diffi-
cult situations. In contrast, the eSS2b method performed
consistently well, solving all the problems in reasonable
computation time using its default options (i.e. without
the need of tweaking the method’s search options with
preliminary runs). In the remaining text we will refer to
eSS2b as eSS2.

The effect of regularization on the convergence We
now consider how the penalty regularization (7), which
changes the topology of the objective function, affects the
convergence of the optimizer. We used eSS2 to solve the
regularized problem for each case study, finding a nar-
rower spread of the convergence curves. We also found

improvements in the average time to reach the global
solution. This benefit was especially clear in the TSMP
case study, where the robustness was greatly improved
(all the 20 runs of the optimization with regulariza-
tion reached the global optima in 200 seconds of com-
putation time, while only 3 runs converged using the
same algorithm with the non-regularized objective func-
tion). Detailed results for all case studies are reported in
Additional file 5.
This additional beneficial effect of regularization on

the convergence can be explained as follows: while
the original cost function is multi-modal, the penalty
term in Tikhonov regularization (8) is a quadratic
(convex) function. Thus, in the limit α → ∞
the regularized objective function becomes a convex
function.
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Fig. 4 Comparison of convergence curves of selected optimization methods. The convergence curve shows the value of the objective function
versus the computation time during the minimization (model calibration). Results are given for simple multi- start (SMS), advanced multi-start (AMS)
and enhanced scatter search methods (eSS2a and eSS2b; see description in main text). Results are shown for two case studies: (a) GOsc and (b) TSMP

Note that, the global minimum of the objective function
is always larger for the regularized problem (QR(θ̂α) in (7))
than the value for the non-regularized problem (QLS(θ̂) in
(6)). This is because the penalty term (α�(θ̂α)) contributes
only to the objective function in (7). Further, the regular-
ization avoids overfitting the data, thus the sum of squared
residuals part of the objective function (QLS(θ̂α)), is also
larger than the minimum of the non-regularized solution
(QLS(θ̂)).

Tuning the regularization and prior knowledge
Kinetic parameters of bio-models are generally unknown
and vary for different cells. Thus, even if we have some
prior knowledge about the parameters, it should be tested
against the data. As shown later in section “Ill-conditioning,
cross-validation and overfitting”, the predictions of the
calibrated models using good prior knowledge in the

regularization agree with the cross-validation data and
thus generalize better.
In order to adjust the right level of the regularization,

the regularization parameter (α) has to be tuned. The
tuning includes three steps (TS):

TS1: a set of regularization parameter candidates are
determined : α1, α2, . . . αI . To cover large range
with few elements, typically the candidates are
determined as the elements of a geometric series,
i.e. αn = α0 · qn for n = 1 . . . I, where α0 > 0 and
0 < q < 1.

TS2: the regularized calibration problem (7)-(8) is
solved for each regularization parameter. This
results in a set of calibrated models (candidate
models), with estimated parameters denoted by
θ̂α1 , θ̂α2 . . . , θ̂αI .
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TS3: the best candidate is selected based on a tuning
method:
{θ̂α1 , θ̂α2 , . . . , θ̂αI } → θ̂αopt

In TS1, the range (10−3 − 103) with I = 11 candidates
was found to be a good balance between accuracy and
computational cost for all the case studies considered. In
TS2, the calibration problems with different candidates
can be solved parallel, since they are essentially inde-
pendent optimization problems. However, when solved
sequentially, the previously obtained solutions can be used
to start the next optimization problem from a good initial
point, and thus reduce its computational cost. We report
further practical considerations in Additional file 1.
Figure 5a depicts trade-off between the model fit and

regularization penalty for the candidates in the biomass
batch growth (BBG) case study. Each cross in the figure
corresponds to a calibrated model with the regulariza-
tion parameter denoted by the labels next to the crosses.
Larger regularization parameter results in an estimated
parameter vector closer to the reference parameter vec-
tor and therefore smaller penalty, but worse fit to the
calibration data.
The best way to select the optimal candidate in TS3

is cross-validation [110], but it requires an independent
set of data at the time of calibration. However, in gen-
eral it is unclear how the total amount of data should be
divided [111] into a calibration and validation set for reg-
ularization. In case of scarce data, where the splitting is
undesirable, tuning methods must be used.
We have tested 15 tuningmethods on the case studies by

comparing the regularization parameter selected by each
tuning method with the optimal regularization param-
eter which minimizes the prediction error (i.e. the one
with the best bias-variance trade-off ). The optimal reg-
ularization parameter and the regularization parameters
selected by the tuning methods are reported in Additional
file 2 for each case study. We found the (robust) gener-
alized cross validation method as the most reliable, since
it identified the optimal regularization parameter reliably,
outperforming the other methods.
The generalized cross-validation method does not use

any further cross-validation data, but estimates the leave-
one-out cross validation error of the candidate models
based on the calibration data. The criteria is computed as

GCV(αi) = RSS(αi)

ND − Neff
θ (αi)

, for i = 1, . . . I (19)

where RSS(αi) is the sum of squared normalized resid-
uals for the candidate (RSS(αi) = R(θ̂αi)

TR(θ̂αi)), ND is
the number of calibration data and Neff

θ (α) is the effec-
tive number of fitted parameters in the model calibration
(15). The RSS(α) grows with α since larger regularization
results in a worse fit to the data (see Fig. 5a). The larger

the α is, the more the fitted parameters are constrained by
the reference parameter vector, thus the effective number
of fitted parameters decreases with α (see Eq. (15)). The
generalized cross validation error is small if the model fits
the data well, while it also has a low number of effective
parameters. Figure 5b shows the computed GCV value for
the candidates in the BBG case study. It shows a mini-
mum for the regularization parameter 1.58. Note that in
cases where the amount calibration data is small, the GCV
method tends to under-regularize the calibration [108], so
the robust GCV (RGCV) method was found to be a better
alternative.
The quality of the regularized calibration depends not

only on the regularization parameter, but also on the
prior knowledge of the modeller encoded by the refer-
ence parameter vector θ ref and scaling matrix W. To test
the robustness of the method with respect to these input
information, we chose a range of reference parameter
vectors and scaling matrices and solved the regularized
optimization problem for each case study. In each case
the generalized cross-validation score was used to select
the regularization parameter. Then, the calibrated models
were tested by computing predictions for cross-validation
data sets. Figure 5c depicts the results for the BBG case
study using box-plots. The first two columns show the dis-
tribution of the prediction error (normalized root mean
square error) for the nominal model (known only in syn-
thetic problems and used only for reference) and for
the model calibrated without regularization. The next 9
columns in the plot show the prediction error with dif-
ferent quality of prior knowledge. We can see that the
regularization method gives better predictions than the
non-regularized for a wide range of prior quality.

Prediction and parameter bias-variance trade-off
Here we consider the stability of the solution of the opti-
mization problem with respect to small perturbation in
the data. Note that this numerical analysis is partially
based on the bias-variance decomposition of the esti-
mated model predictions and estimated parameters, thus
it requires the knowledge of the nominal (true) parameter
vector. Obviously the true model is known only for syn-
thetic problems, but it can be used as a way to analyse the
reliability of computational methods.
The experimental data is always measured with some

uncertainty, which also influences the model calibra-
tion. If we could repeat the experiments, for example 10
times, taking measurements in the same conditions, we
could collect 10 different datasets with slightly varying
measurements –due to the random measurement error.
Then each of the 10 datasets could be used to calibrate
a model with and without regularization, which would
result 10 slightly different calibrated models for both the
non-regularized and regularized calibration procedure.
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parameter results in worse fit to the calibration data, small regularization parameter results in a larger penalty. Figure b compares the candidates
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Analysing the consistency of these models can reveal the
sensitivity of the calibration procedure to the measure-
ment error.
The results of this procedure for the BBG numerical

case study can be seen in Fig. 6a and 6b, where the nom-
inal model predictions are shown by dashed line together
with the range of the measured data depicted by error
bars. In Fig. 6a the predictions of the models, calibrated
in the traditional way –without the regularization– is also
shown, in contrast, the models shown in Fig. 6b were
calibrated using regularization. We can observe that the
model predictions are less sensitive to the error in the

data when regularization is applied, i.e. the variance of the
model predictions are smaller. However, we also observe
larger bias from the nominal trajectory for the regularized
models, since no prior knowledge was used in this case
(worst case scenario).
Figure 6c shows the prediction bias-variance trade-off

for a range of the regularization parameter (see com-
putational details in Additional file 1). The results are
in agreement with the intuition that a lower regulariza-
tion results in larger prediction variance and less bias.
The mean squared error curve (the red dashed line), i.e.
the sum of squared bias and variance, has the minimum
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for the regularization parameter αPred
opt ≈ 0.04, which is

therefore the optimal regularization with respect to the
prediction error.
Similar trends and results were obtained regarding the

estimated parameters, shown in Fig. 6d and 6e. Here, the
distribution of the parameter estimates in the 10 regu-
larized and 10 non-regularized calibrations are depicted
by box-plots and the grey boxes show the feasible range
of the parameters. The regularized calibration results in
much narrower distribution for the estimates (note the
logarithmic scaling of the y-axis). The bias-variance trade-
off in the estimated parameters is shown in Fig. 6f. The
optimal regularization parameter for the minimum mean
squared parameter estimation error (αParam.

opt ≈ 0.04) coin-
cides with the previously obtained value for theminimum
mean square prediction error in this case study. Although
for all case studies we found that αPred

opt and αParam.
opt are

close to each other, they do not necessarily coincide.

Ill-conditioning, cross-validation and overfitting
It is a common problem that due to the largemeasurement
error (large noise to signal ratio) and due to data scarcity, a
model with different numerical parameter values might fit
the data almost equally well, which indicates identifiability
problems.
A posteriori to the calibration, local analyses of the

topology of the objective function can provide valu-
able information about the uncertainty in the esti-
mated parameters. Particularly, the ill-conditioning of the
approximated Hessian of the objective function (Eq. (14))
evaluated at the global optima can indicate high uncer-
tainty in the estimated parameters [60]. Figure 7 shows
the eigenvalues of this matrix for each case study. We
can see that larger models with more parameters tend to
have larger a spread in the eigenvalues, and thus larger
condition number, indicating the lack of identifiability

of its parameters. However, this is only a local mea-
sure of the ill-conditioning of the problem near the
optima.
Amore sound way to measure the predictive value (gen-

eralizability) of the calibrated model is cross-validation,
where a different set of data is used to asses the calibrated
model. Over-fitted models will show a bad fit to cross-
validation data since they fitted the noise, rather than the
signal, and therefore are less generalizable. If the experi-
mental conditions for collecting the cross-validation data
are different from the calibration conditions –e.g. differ-
ent stimuli levels, time-horizon etc.–, this effect will be
more prominent.
Figure 8 shows the calibration fit (on the left) and the

cross-validation (on the right) for the BBG case study
(substrate measurements are not shown). The predictions
of two models, one that was calibrated in the traditional
way and one that was calibrated with regularization are
also presented. Although there is almost no difference
between the model predictions for the calibration data,
the predictions for cross-validation data are rather differ-
ent. The model that was calibrated without regularization
predicts a slower decrease in the biomass concentration
and shows large discrepancy from the cross validation
data. If we compare the least-squares cost function for
the two models, we find that the non-regularized model
fits better the calibration data, but the regularized model
generalizes better for the cross-validation data. In other
words, the traditional model calibration results in overfit-
ting, while the regularized calibration gives a more gener-
alizable model at the expense of a slightly worse fit to the
calibration data. Ideally, the cross-validation experimen-
tal scenario should be different from the calibration one in
order to better assess generalizability of a model. Typically
this can be achieved generating cross-validation data with
experiments where the initial and boundary conditions
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Fig. 8 Calibration and cross-validation results for the BBG case study.
Left figure shows calibration data fitted with non-regularized and
regularized estimations (non-regularized, QLS(θ̂) = 3.68 and
regularized QLS(θ̂α) = 4.09). Right figure shows cross-validation data
with the predictions from the non-regularized and regularized
estimations. The regularized model shows a slightly worse fit to the
calibration data but much better agreement with the cross-validation
data. I.e. regularization results in a more generalizable model

(e.g. stimuli) of the experiments are as different as possible
from those used to obtain the calibration data.
In Fig. 9 we present similar results for the Goodwin’s

oscillator case study (GOsc). Here, we already see larger
differences between the model predictions in the cali-
bration data, but note that the predictions are almost
identical at the time of themeasurements. Thus, for exam-
ple, based on the calibration data it would be impossible
to decide whether the protein concentration decreases
or increases right after the beginning of the experiment.
When the two models are cross-validated on an indepen-
dent set of data (lower plot in Fig. 9) we see that the
regularizedmodel is in good agreement with the new data,
while the non-regularized model heavily overshoots the
data in the first period of the oscillation.
Figure 10 summarizes our findings for all case stud-

ies regarding the generalizability of the calibrated models.
Each case study was solved in the traditional, non-
regularized way and with regularization assuming differ-
ent level of prior knowledge (worst, medium and best case
scenarios). Due to the low number of calibration data and
large measurement noise, we found large variability of the
predictions depending on the exact noise realization in
the calibration data. Thus we repeated the calibrations
with 10 calibration datasets to obtain robust results. Then,
each calibrated model was cross-validated in 10 indepen-
dent cross-validation data sets and the prediction error
was computed. Figure 10 shows the distribution of these
prediction errors for each case study by box-plots.

The distributions can be compared by the observed
medians, which are denoted by the black dots in the
box-plot. In order to check if the observed differences
in the medians are significant we utilized the Wilcoxon
non-parametric statistical test [112] (also known as the
Mann-Whitney U test). The test results show that in the
majority of the scenarios the differences in the medians
are statistically significant at the 0.05 level. The excep-
tion is the FHN case study where the differences turned
out to be not significant for the three scenarios. Further
details of this statistical test are reported in Table S4.9.1 in
Additional file 5.
By comparing the medians of the distributions we see

that in almost all cases the non-regularized models over-
fit the calibration data, i.e. the non-regularized models
fit well the calibration data, but do not predict cross-
validation data as well as the regularized models. In each
case, the medium and the best case regularization sce-
narios clearly outperformed the non-regularized estima-
tion, leading to better generalizable calibrated models.
However, in two cases we observe that the worst case
regularization scenario performed worse than the non-
regularized case. Also note, that in case of the TGF-
β pathway problem (TGFB) all scenarios gave almost
identical results, meaning that the original problem is a
well-posed calibration problem. However, this is generally
unknown before the calibration.
In this context, it is worth mentioning that the regu-

larization of non-mechanistic (e.g. data-driven) models
–like those used in machine learning and system iden-
tification, such as e.g. neural networks– usually exhibits
more dramatic benefits. The reason is that these data-
driven models are by definition extremely flexible and
therefore very prone to overfitting. In the case of the
mechanistic kinetic models used in systems biology, in
many cases they will have a rather rigid structure despite
being over-parametrized. Therefore, they might be less
prone to overfitting. However, a clear exception are mod-
els exhibiting oscillatory behaviour, or models with many
non-observable states.

Regularization schemes based on available information
Based on the above results, we recommend the following
regularization procedures for the three scenarios defined
previously (in Section “Scenarios based on prior informat-
ion”):

I Best case: a good guess of the parameter values
(θguess) is available. In this case a first order weighted
Tikhonov regularization is recommended, i.e.
θ ref := θguess and the weighting matrix should be
initialized by the parameters too, i.e.
W = diag(1./θ ref), where ./ is the element-wise
division. In this way, parameters with different
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Fig. 9 Calibration and cross-validation results for the GOsc case study. Left figure shows fits to calibration data, right figure shows agreement of
predictions for cross-validation data. The non-regularized and the regularized fits show some differences in the first two oscillations, although at the
measurement times the predictions are almost identical. In cross-validation, the non-regularized model shows a heavy overshoot at early times

magnitudes will contribute similarly to the penalty.
In section “Connection with Bayesian parameter
estimation” a similar concept about the weighting
matrix was shown from the Bayesian perspective.

II Medium case: a situation where a less reliable initial
guess –but within one order of magnitude of the true
values– is available. As in the best case scenario, the
parameter guess should be used as the reference
vector in the regularization penalty: θ ref := θguess.
However, we found, that including these values also
in the weighting matrix amplified the error in the
parameter estimate. Therefore, the non-weighted
Tikhonov regularization is recommended.

III Worst case: no prior knowledge and therefore only a
random guess of parameters is available. Here a two-
step regularization procedure is proposed. In the first
step ridge regularization is applied which results in a
ridge estimate, denoted by θ̂R1α . In the second step this
parameter vector is used as the reference parameter

vector for Tikhonov regularization, i.e. (θ ref := θ̂R1α ).
This procedure could be repeated n-times –using the
obtained regularized solution as reference parameter
vector in the next step–, resulting in the n-th order
Tikhonov regularization [80], but we found no
practical difference after the second step.

The regularized optimization is solved for a set of reg-
ularization parameters in each scenario and depending
on the amount of data at hand the generalized cross
validation method (GCV) – for larger dataset– or the
robust generalized cross-validation method (RGCV) – for
smaller dataset– is recommended to choose the optimal
candidate. A summary of this regularization scheme is
illustrated in Fig. S.2.1 in Additional file 1.
Based on the results presented previously, we sug-

gest that tuning of the regularization can be avoided
in certain situations, saving considerable computation
time. For scaled models where the number of data
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Fig. 10 Prediction errors distribution for each case study. Prediction errors (box-plots of normalized root mean square error in log-scale) of the
calibrated models with and without regularization are shown for each case study. These distributions were obtained by calibrating the models to
multiple sets of calibration data (as explained in section “Ill-conditioning, cross-validation and overfitting”) and cross-validating them on multiple
cross-validation data sets. Most cases show the trend that better prior knowledge results in smaller cross-validation errors, i.e. regularized models are
more generalizable

points and parameters are similar and the data has
5–10 % measurement error, our study indicates that the
optimal regularization parameter will lie in the range
[ 0.1 − 10]. For the worst case scenario, rather common
in systems biology, we found that the above procedure
gave smaller mean square parameter estimation error
than the traditional, non-regularized estimation. Further,
the optimization algorithm exhibited better convergence
properties with regularization, although no significant
improvements in the model predictions was observed. In
the case of medium and best scenarios regularized esti-
mation led to both better parameter estimates and smaller
cross-validation prediction error in shorter computation
times.

Conclusions
In this study we propose a new parameter estimation
strategy for nonlinear dynamical models of biological sys-
tems. This strategy is especially designed to surmount
the challenges arising from the non-convexity and ill-
conditioning that most of these problems exhibit. The
difficulties of parameter estimation problems in systems
biology do not only depend on the number of parameters,
but also on the structure (flexibility and nonlinearity)
of the dynamic model, and the amount of information

provided by the (usually scarce and noisy) available
data.
Our strategy combines an efficient global optimization

method with three different schemes of Tikhonov regu-
larization, selected depending on the quality of the prior
knowledge. We tested this strategy with a set of case
studies of increasing complexity. The results clearly indi-
cate that an efficient global optimization approach should
always be used, even for small models, to avoid con-
vergence to local minima. Similarly, our study illustrates
how ill-conditioning and overfitting issues can damage
the generalizability of the calibrated models. Overfitting
was found to be especially important when models are
flexible (e.g. oscillatory models), even if the number of
parameters is small. Our results show how regulariza-
tion can be used to avoid overfitting, leading to calibrated
models with better generalizability. Finally, the use of reg-
ularization significantly improved the performance of the
optimization method, resulting in faster and more stable
convergence.
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