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Abstract In the present work, climate change impacts on

three spring (March–June) flood characteristics, i.e. peak,

volume and duration, for 21 northeast Canadian basins are

evaluated, based on Canadian regional climate model

(CRCM) simulations. Conventional univariate frequency

analysis for each flood characteristic and copula based

bivariate frequency analysis for mutually correlated pairs

of flood characteristics (i.e. peak–volume, peak–duration

and volume–duration) are carried out. While univariate

analysis is focused on return levels of selected return

periods (5-, 20- and 50-year), the bivariate analysis is

focused on the joint occurrence probabilities P1 and P2 of

the three pairs of flood characteristics, where P1 is the

probability of any one characteristic in a pair exceeding its

threshold and P2 is the probability of both characteristics in

a pair exceeding their respective thresholds at the same

time. The performance of CRCM is assessed by comparing

ERA40 (the European Centre for Medium-Range Weather

Forecasts 40-year reanalysis) driven CRCM simulated

flood statistics and univariate and bivariate frequency

analysis results for the current 1970–1999 period with

those observed at selected 16 gauging stations for the same

time period. The Generalized Extreme Value distribution is

selected as the marginal distribution for flood characteris-

tics and the Clayton copula for developing bivariate dis-

tribution functions. The CRCM performs well in

simulating mean, standard deviation, and 5-, 20- and

50-year return levels of flood characteristics. The joint

occurrence probabilities are also simulated well by the

CRCM. A five-member ensemble of the CRCM simulated

streamflow for the current (1970–1999) and future

(2041–2070) periods, driven by five different members of a

Canadian Global Climate Model ensemble, are used in the

assessment of projected changes, where future simulations

correspond to A2 scenario. The results of projected chan-

ges, in general, indicate increases in the marginal values,

i.e. return levels of flood characteristics, and the joint

occurrence probabilities P1 and P2. It is found that the

future marginal values of flood characteristics and P1 and

P2 values corresponding to longer return periods will be

affected more by anthropogenic climate change than those

corresponding to shorter return periods but the former ones

are subjected to higher uncertainties.

Keywords Climate change � Copula function �
Floods � Frequency analysis � Northeastern Canada �
Regional climate modeling

1 Introduction

According to the Fourth Assessment Report (AR4) of the

Intergovernmental Panel on Climate Change (IPCC 2007),

spatial patterns of projected 2-m temperature show large
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increases over land, particularly over high-latitude regions

of the Northern hemisphere. This increase in temperature is

expected to accelerate spring snowmelt, and shorten the

overall snowfall season, leading to earlier and larger spring

runoff (Barnett et al. 2005). As for precipitation, the global

average is projected to increase with increasing water

holding capacity of the atmosphere in a warmer climate

(Meehl et al. 2007). For North America, Christensen et al.

(2007) reported projected decreases in future snow season

length and snow depth, but increases in future precipitation

in winter and spring for southern Canada. Increase in

temperature and precipitation can significantly affect flood

dynamics in Canadian river basins where high flows are

primarily generated due to spring snowmelt (Mareuil et al.

2007). Changes to flood characteristics can impact various

sectors including water resources management, agriculture,

ecosystem and health and society at large; it is hence of

high importance to assess characteristics of extreme events

such as floods in the context of a changing climate to

enable appropriate adaptation strategies.

Coupled Global Climate Models (CGCMs) are the most

comprehensive tools used to generate information about

present and future climate for various greenhouse gases and

aerosols (GHGA) concentration scenarios. However,

because of their high complexity, CGCM simulations are

very demanding in computational resources and are per-

formed at relatively coarse horizontal resolution. Therefore,

regional and site-specific climate change scenarios are gen-

erally produced by means of downscaling methods, i.e. sta-

tistical downscaling (e.g. Wilby et al. 2002) and/or

dynamical downscaling (e.g. Laprise 2008; Rummukainen

2010). Compared to statistical downscaling approaches,

dynamical downscaling using regional climate models

(RCMs) provide physically based finer-scale regional cli-

mate information when driven by outputs from CGCMs. Due

to their reasonable skill in simulating regional-scale climate

and hydrology, many studies (e.g. Jha et al. 2004; Wood et al.

2004; Sushama et al. 2006; Kay et al. 2006a, b; Graham et al.

2007a, b; Dadson et al. 2011; Poitras et al. 2011) have used

RCM outputs directly to evaluate climate change impacts on

regional/basin-scale hydrologic variables including mean,

seasonal and extreme flows in their target regions.

Projected changes to flood characteristics have been

generally studied so far within a univaiate flood frequency

analysis framework (e.g. Menzel and Bürger 2002; Prud-

homme et al. 2002; Booij 2005; Huziy et al. 2012). The

results of such analyses can only provide limited assess-

ment of the probability of flood occurrence as floods gen-

erally are multivariate events, characterized by its peak,

volume and duration (e.g. Shiau 2003; De Michele et al.

2005; Zhang and Singh 2006; Chebana and Ouarda 2009).

Therefore, better understanding of changes to flood char-

acteristics is essential from a multivariate viewpoint.

Some techniques have been developed to model multi-

variate flood characteristics as a generalization of the uni-

variate distribution. For example, bivariate normal (Goel

et al. 1998), bivariate lognormal (Yue 2000), bivariate

exponential (Favre et al. 2004), bivariate gamma (Yue 2001),

and bivariate extreme value (Adamson et al. 1999) distri-

butions have been used to model flood characteristics.

Compared to this, copula based multivariate framework is a

more versatile approach for modeling joint distribution

functions from univariate marginal distributions as it allows

modeling the dependence structure among random variables

independently of the marginal distributions (Favre et al.

2004). Because of this flexibility, copulas are becoming

increasingly popular to investigate multivariate distributions

of various hydrometeorological variables (e.g. Favre et al.

2004; De Michele et al. 2005; Grimaldi and Serinaldi 2006;

Zhang and Singh 2006; Renard and Lang 2007; Karmakar

and Simonovic 2009; Aissia et al. 2011; Lee and Salas 2011).

A comprehensive list of references on the copula topic

applied in the field of hydrology is available on the website of

the International Commission of Statistical Hydrology of the

International Association of Hydrological Sciences—ICSH-

IAHS (www.stahy.org).

Northeastern Canada, the region considered in this

study, plays an important role in the economy of the area

with its large number of hydroelectric power generating

stations. Based on projections from 21 global climate

models that participated in the AR4 (IPCC 2007), Chris-

tensen et al. (2007) predicted that the annual mean tem-

perature will increase by 3.6 �C (with a range of

2.3–5.6 �C) and precipitation by 7 % (with a range of -3

to 15 %), over eastern North America including middle and

southern parts of Québec, for the 2080–2099 period with

respect to the 1980–1999 period; these results consider the

IPCC’s (2001) Special Report on Emissions Scenarios

(SRES) AlB scenario. The largest increase in mean tem-

perature (3.8 �C) and precipitation (11 %) is expected in

winter, while the smallest increase in mean temperature

(3.3 �C) and precipitation (1 %) is expected in summer.

The projected increase in winter temperature and precipi-

tation can impact spring flood characteristics. Because of

the importance of streamflow in northeastern Canadian

basins, previously some investigators have studied pro-

jected changes to streamflow characteristics in few indi-

vidual river basins (e.g. Dibike and Coulibaly 2007; Quilbé

et al. 2008; Minville et al. 2008), while the study by Huziy

et al. (2012) concentrated on the entire northeast Canadian

region, which is the same region as considered in this

study. It should be noted that Huziy et al. (2012) studied

projected changes to various streamflow characteristics

including flood peaks in a univariate setting.

The main objective of this study is to evaluate climate

change impacts on three spring flood characteristics, i.e.
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flood peak, volume and duration, within a multivariate

framework, for 21 northeast Canadian basins covering

Québec and some parts of the adjoining Ontario and New-

foundland provinces of Canada. A five member ensemble of

the fourth generation Canadian RCM (CRCM) current

(1970–1999) and future (2041–2070) climate simulations,

driven by five different members of a Canadian GCM initial

condition ensemble, is used to assess projected changes,

while an ERA40 (the European Centre for Medium-Range

Weather Forecasts 40-year reanalysis; Uppala et al. 2005)

driven CRCM simulation is compared to observations for

validating model simulated flood characteristics. Conven-

tional univariate frequency analysis is applied to individual

flood characteristics and copula based bivariate frequency

analysis to three pairs of flood characteristics (i.e. peak–

volume, peak–duration and volume–duration). Marginal and

bivariate distributions of flood characteristics and marginal

and joint return period-magnitude relationships are evalu-

ated for selected return periods in various forms.

The paper is organized as follows. Section 2 describes the

CRCM and its simulations used in the study. A detailed

methodology for determining joint distribution functions for

different combinations of flood characteristics using the

copula approach is described in Sect. 3. Section 4 presents

results of the selection of best fitting marginal distributions

and copula function, performance and boundary forcing

errors and projected changes to joint occurrence probabilities

of flood characteristics. Main conclusions of the study are

given in Sect. 5.

2 Model, data and study area

2.1 CRCM

The streamflows and therefore the flood characteristics

analyzed in this study are derived from the transient climate

change simulations performed with the CRCM, which is a

fully elastic non-hydrostatic limited-area nested regional

model (de Elı́a and Côté 2010). It uses a semi-implicit and

semi-Lagrangian numerical scheme to solve the basic non-

hydrostatic Euler equations (Caya and Laprise 1999). The

CRCM’s lateral boundary conditions are provided through

one-way nesting method over a regional domain inspired by

Davies (1976) and redefined by Yakimiw and Robert

(1990). Therefore, the CRCM receives atmospheric nesting

information from its driving data, but does not influence the

driving data in return. The CRCM is driven by time

dependent vertical profiles from the driving data’s wind, air

temperature, humidity and pressure imposed at the lateral

boundaries exactly, as interpolated onto the CRCM’s

atmospheric levels. The simulated horizontal winds are

relaxed toward values of the driving data over the sponge

zone. In addition, spectral large-scale nudging is imposed to

force coherence of the CRCM large-scale winds with the

driving data (Biner et al. 2000).

The CRCM generally uses most of the sub-grid scale

physical parameterization packages of the Canadian GCM

(CGCM3.1; Flato and Boer 2001), except for moist con-

vection. Cloud cover is parameterized in terms of local

relative humidity assuming maximum (random) overlap,

depending on presence (or absence) of clouds in adjacent

layers as in CGCM3.1 and precipitation is parameterized in

terms of a simple super saturation based condensation

scheme as in CGCM3.1 (Laprise et al. 2003). Mesoscale

convection follows the parameterization scheme of Kain

and Fritsch (1990) and Bechtold et al. (2001). Though the

study focuses on northeast Canadian basins, all CRCM

simulations were computed on a 200 9 192 points grid

(see inset of Fig. 1a), covering whole of North America

and adjoining oceans, with a horizontal grid-point spacing

of 45 km and 29 levels in the vertical, ranging from the

surface to the model top near 29 km.

2.2 Streamflow simulations

Streamflows are derived from CRCM-simulated runoff

using a modified version of WATROUTE (Poitras et al.

2011), a cell-to-cell routing scheme based on the modified

routing algorithm of the distributed hydrological model

WATFLOOD (Kouwen et al. 1993). Detailed description

on streamflow calculation from CRCM-simulated runoff

can be found in Poitras et al. (2011). An ensemble of five

30-year simulations are analyzed for current (1970–1999)

and future (2041–2070) climates; these five pairs of current

and future climate CRCM simulations were driven by

different members of a CGCM3.1 initial condition

ensemble. Future simulations are affected by changes in

GHGA, following IPCC’s (2001) SRES A2 scenario. In

addition to the above simulations, a 30-year (1970–1999)

CRCM simulation driven by ERA40 is used for validating

the regional model. As already mentioned, though the

CRCM simulations were performed over a domain cover-

ing whole of North America, the present work focuses

mainly on Québec and adjoining parts of Newfoundland

and Ontario provinces of Canada. Hereafter, the CRCM

simulation driven by ERA40 will be denoted by CRCM–

ERA40 and those simulations driven by different

CGCM3.1 members for current and future climate by

CRCM–CGCMc and CRCM–CGCMf, respectively.

2.3 Observed data and study area

CRCM–ERA40 simulated flood characteristics (i.e. flood

peak, volume and duration) are compared to those derived

from observed data for the 1970–1999 period to assess

Canadian RCM projected 2047
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model performance. Observed daily streamflow data for 16

gauging stations falling in the Québec region (Fig. 1) were

obtained from CEHQ (Centre d’expertise hydrique du

Québec; http://www.cehq.gouv.qc.ca/) dataset. Additional

information about the gauging stations (i.e. location, rep-

resentative drainage area, and annual mean flow) is pro-

vided in Table 1. These gauging stations represent various

hydrological conditions ranging from small mountainous

basin outlets to large basin main stream outlets, with

drainage area ranging from 1,110 to 40,900 km2 and

annual mean flow from 6.8 to 846.1 m3/s. The represen-

tative CRCM grid points corresponding to 16 gauging

stations, shown in Table 1, are selected on the basis of their

proximity to the gauging stations and consistency with the

digital flow directions.

3 Methodology

The procedure to assess projected changes to spring flood

characteristics involves:

1. Identification of flood characteristics (peak, volume

and duration) from daily streamflow hydrographs for

current and future climate (see Sect. 3.1).

2. Determination of appropriate marginal distributions

for flood characteristics derived from CRCM–ERA40

and CRCM–CGCMc simulations for current and future

climate (see Sect. 3.2).

3. Determination of appropriate copula families for three

pairs of flood characteristics (peak–volume, peak–

duration and volume–duration) to develop joint distri-

bution functions (see Sect. 3.3).

4. Comparison of observed and CRCM–ERA40 simula-

tion based basic flood statistics (i.e. mean and standard

deviation) and results of marginal and bivariate

frequency analyses to evaluate CRCM performance

and comparison of CRCM–ERA40 and CRCM–

CGCMc simulated flood characteristics for current

climate to assess boundary forcing errors, i.e. the

impact of errors in the boundary forcing data (CGCM

in this study) (see Sect. 4.1).

5. Comparison of basic flood statistics and results of

marginal and bivariate frequency analyses for CRCM–

CGCMc and CRCM–CGCMf simulations to evaluate

climate change impacts on flood characteristics (see

Sect. 4.2).

3.1 Identification of flood characteristics

A flood hydrograph is generally characterized by its peak,

volume and duration as illustrated in Fig. 2. Base flow and

fixed threshold approaches are usually recommended to

Fig. 1 Study area with its 21 basins. The inset shows the CRCM

simulation domain. The location of 16 CEHQ gauging stations is also

shown. Additional information about the CEHQ station is provided in

Table 1. The basin names corresponding to three letter abbreviations

are ARN Arnaud, BOM Bersimis-Outrades-Manic-5, FEU Rivière aux

Feuilles, MEL Rivière aux Mélèzes, ROM Romaine, STM Saint-

Maurice, BAL Baleine, CAN Caniapiscau, GEO Georges, LGR La

Grande Rivière, MOI Moisie, PYR Pyrite, RUP Rupert, BEL bell,

CHU Churchill falls, GRB grand rivière de la Baleine, MAN

Manicouagan, MAN Natashquan, RDO Rivière de Outaouais, SAG

Saguenay, WAS Waswanipi

2048 D. I. Jeong et al.
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determine flood characteristics. Base flow approach iden-

tifies flood duration by manually determining time points

corresponding to rise in discharge from base flow (start

date) and return to base flow (end date) as shown by Dbase

in Fig. 2 (Yue 2000; Karmakar and Simonovic 2008). The

fixed threshold approach, on the other hand, identifies flood

duration (Dthre) by fixing a threshold discharge and con-

siders upper part of the hydrograph as a flood event

(Grimaldi and Serinaldi 2006; Karmakar and Simonovic

2008). In addition to the above two approaches, one can

also use a base flow separation function such as a recursive

digital filter used in the work of Serinaldi and Grimaldi

(2011). Flood volume is determined by removing the base

flow from the total volume of streamflow corresponding to

flood duration. For the present work, fixed threshold

approach is more appropriate than the base flow approach

because the current and future flood characteristics need to

be identified with respect to the same reference flow in

order to facilitate assessment of climate change impacts on

flood characteristics. One drawback of the fixed threshold

approach is that the correlations among flood characteris-

tics are sensitive to the choice of threshold. Figure 3 shows

variations of average values of Kendall’s coefficient of

correlation (KCC) for 16 gauging stations for peak–vol-

ume, peak–duration and volume–duration pairs as a func-

tion of threshold discharge. Thresholds ranging from 0.8 to

2.0 l are considered, where l represents mean annual

streamflow. The values of KCC for peak–volume and

peak–duration cases are somewhat sensitive, particularly

for thresholds below 1.3 l, while those for volume–dura-

tion case are relatively insensitive to threshold discharge.

Figure 3 also shows that the correlation of peak and

duration is lower than that of the other two pairs for all

values of threshold discharge. Consistent with the findings

of Grimaldi and Serinaldi (2006) and Karmakar and

Simonovic (2009), the pairs of flood characteristics in the

present study area are also positively correlated that sup-

ports the necessity of multivariate flood frequency analy-

ses. Concerning the selection of a threshold discharge,

there is a greater possibility for the base flow to be included

in the identified flood event if too small a threshold is used.

On the other hand, a too large threshold would result in

exclusion of large amounts of flood flow volumes. Also, it

is important to select a threshold that can be used satis-

factorily for a wide range of hydrological conditions across

the study area, including 16 observation stations and 547

grid points of CRCM. In view of these points, the selected

threshold of 1.3 l provides a reasonable compromise and it

is generally found to be suitable for all observation stations

and CRCM grid points.

3.2 Marginal distributions

Marginal and joint frequency analyses are developed on the

basis of seasonal maximum values of flood characteristics.

Two parameter exponential, lognormal, gamma, Gumbel

and Weibull distributions and three parameter Generalized

Extreme Value (GEV) and log-Pearson type 3 (LP3)

Table 1 Information about selected CEHQ stations and representative CRCM grid points used in the comparison of flood characteristics derived

from observed data, CRCM–ERA40 and CRCM–CGCMc for the period from 1970 to 1999

Station

name

CEHQ station CRCM gird point

Station

number

Longitude

(W�)

Latitude

(N�)

Basin area

(km2)

Annual mean

flow (m3/s)

Grid

point

Longitude

(W�)

Latitude

(N�)

S1 40830 -75.8 47.1 6,840 126.5 G1 -76.0 47.0

S2 41903 -77.9 46.8 2,110 26.1 G2 -77.8 46.6

S3 42607 -78.0 47.0 2,110 6.8 G3 -78.0 47.1

S4 43012 -78.9 48.4 2,590 38.3 G4 -78.6 48.4

S5 50119 -73.9 46.7 1,390 24.4 G5 -74.0 46.9

S6 61020 -71.6 48.2 1,110 27.5 G6 -71.7 48.0

S7 61502 -72.0 48.4 2,280 49.1 G7 -72.1 48.3

S8 61905 -73.4 49.3 11,100 229.2 G8 -73.4 49.0

S9 61906 -73.7 49.3 4,330 83.4 G9 -73.8 49.3

S10 81002 -76.9 51.4 40,900 846.1 G10 -76.7 51.3

S11 81006 -72.9 51.1 7,280 190.4 G11 -72.7 51.2

S12 92715 -74.5 53.2 13,200 263.6 G12 -74.3 53.1

S13 93806 -74.0 54.8 21,000 327.9 G13 -74.0 55.1

S14 94207 -74.5 55.6 10,400 14.8 G14 -74.6 55.3

S15 103715 -68.6 56.6 8,990 164.2 G15 -68.6 56.5

S16 104001 -67.6 57.9 29,472 504.5 G16 -67.5 57.6
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distributions are considered in order to identify the best

fitting marginal probability distribution for each of the

three flood characteristics. Maximum likelihood method is

employed for parameter estimation of two parameter dis-

tributions. Following suggestions from Hosking (1985) for

samples of small to medium size, which is 30 in the present

study, the probability weighted moments method is

employed to estimate parameters of the GEV distribution.

The method of moments approach is employed for LP3

distribution following recommendations of Bulletin 17B

(IACWD 1982). The Root Mean Square Error (RMSE),

Akaike Information Criterion (AIC; Akaike 1974) and

Bayesian Information Criterion (BIC; Schwarz 1978) are

used to select most appropriate marginal distribution for

flood peak, volume and duration. The RMSE is expressed

as

RMSE ¼ 1

n

XN

i¼1

½pf ðiÞ � peðiÞ�2
( )1=2

ð1Þ

where N is the number of observations, pe(i) and pf(i)

represent nonexceedance probabilities calculated from an

empirical distribution and a fitted distribution for the ith

observation. To calculate empirical nonexceedance

(cumulative) probability, the Gringorten (1963) plotting

position formula is used. The AIC and BIC can measure

lack-of-fit of the model as well as complexity of the model

due to the inclusion of a penalty term for the number of

parameters in the model (e.g. Zhang and Singh 2006); these

criteria can be expressed as

AIC ¼ N logðMSEÞ þ 2k ð2Þ
BIC ¼ N logðMSEÞ þ k logðNÞ ð3Þ

where k represents the number of parameters and MSE

represents the mean square error (i.e. squared value of

RMSE). The model with the minimum value of RMSE,

AIC, BIC or a combination of these measures is selected as

the potential optimal model.

3.3 Joint distributions

A copula is a distribution function that models the depen-

dent structure between the random variables by connecting

multivariate probability distribution to their one-dimen-

sional marginal probability distributions (Nelsen 1999). Let

X and Y be two random variables with the marginal

cumulative distribution functions (CDFs) FX and FY, the

joint cumulative distribution function of (X, Y), FXY(x, y),

can be expressed as

FXYðx; yÞ ¼ C½FXðxÞ;FYðyÞ� ð4Þ

where C is a bivariate copula of (X, Y). If FX(x) = u and

FY(y) = v, the expression (4) can be written as follows:

Cðu; vÞ ¼ FXY F�1
X ðuÞ;F�1

Y ðvÞ
� �

; ðu; vÞ 2 ½0; 1�2 ð5Þ

where F�1
X and F�1

Y are generalized inverses of FX and FY,

respectively.

Different families of copulas (Archimedean, elliptical

and extreme value) have been suggested and described by

Nelsen (1999). The Archimedean copula family is often

used for multivariate hydrological analysis due to the fol-

lowing advantages (Zhang and Singh 2006): (1) it can

easily be constructed, (2) a huge variety of copula models

belong to this class, which have attractive stochastic
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Fig. 2 A schematic diagram showing flood characteristics (peak,

volume and duration) based on fixed threshold and base flow

approaches; hydrograph corresponds to CEHQ station 40830 for the

year 1996. Dthre and Dbase are the flood durations corresponding to

fixed threshold and base flow approaches, respectively

Fig. 3 Correlation functions of peak–volume, peak–duration and

volume–duration pairs of flood characteristics for different thresholds.

KCC values are averaged over 16 gauging stations (Table 1).

Threshold along the x-axis is ‘x’ times l (the mean annual

streamflow) where x varies from 0.8 to 2.0. The x-value of 1.3 is

used for defining the thresholds in the analysis
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properties that often lead to statistically tractable relation-

ships for continuous data (McNeil and Neslehová 2009),

and (3) it can be applied for both positively and negatively

correlated variables. This family has also been used earlier

for single-site bivariate flood frequency analysis in some

Canadian studies (e.g. Favre et al. 2004; Aissia et al. 2011;

Karmakar and Simonovic 2009). According to Nelsen

(2006), a bivariate Archimedean copula can generally be

expressed as

Chðu; vÞ ¼ /�1½/ðuÞ þ /ðvÞ� ð6Þ

where subscript h of copula C is parameter hidden in the

generating function /. For the Archimedean copula, h can

be determined from the relationship between KCC s and

generating function /(t), which is defined by s ¼ 1þ

4
R 1

0
/ðtÞ
/0ðtÞ dt (Karmakar and Simonovic 2009), where

t = u or v. The KCC s is a well-known nonparametric

measure of dependence between any two (X and Y) random

variables. In addition to the KCC and generating function

based approach, it is also possible to identify a suitable

parametric copula family using the relationship between

the KCC and upper tail dependence coefficient, i.e. the

probability of observing a high value for a variable given

that the other variable assume a high value (e.g. Poulin

et al. 2007; Serinaldi et al. 2009).

Three Archimedean copulas (i.e. Frank, Gumbel and

Clayton copulas) are considered in this study. Selected

mathematical properties (i.e. copula equation, generating

function /(t) and relationship between h and s) of the

three families of Archimedean copula are listed in

Table 2. RMSE, AIC, and BIC values are calculated

from the empirical joint cumulative distribution function

and the copula-based fitted bivariate distribution for

peak–volume, peak–duration and volume–duration bivar-

iate cases. Most appropriate copula function from the

three candidates is chosen that generated smallest values

of RMSE, AIC and BIC. Many studies (e.g. Karmakar

and Simonovic 2009; Chowdhary and Singh 2010;

Zhang et al. 2012) have used these three traditional

accuracy measures to select an appropriate bivariate

copula function. However, more sophisticated goodness-

of-fit procedures are also available (see Kojadinovic and

Yan 2010).

Two types of joint occurrence probabilities are investi-

gated: (1) P1—the probability of X exceeding a threshold x

or Y exceeding another threshold y, i.e. P(X [ x or Y [ y),

and (2) P2–the probability of both X and Y exceeding their

respective thresholds at the same time, i.e. P(X [ x and

Y [ y). Here x and y denote the values of X and Y corre-

sponding to a selected return period, respectively. Fol-

lowing Yue and Rasmussen (2002) and Liu et al. (2011),

these probabilities are formulated as:

PðX [ x or Y [ yÞ ¼ 1� FXYðx; yÞ ¼ 1� C½FXðxÞ;FYðyÞ�:
ð7Þ

PðX [ x and Y [ yÞ ¼ 1� FXðxÞ � FYðyÞ þ FXYðx; yÞ
¼ 1� FXðxÞ � FYðyÞ
þ C½FXðxÞ;FYðyÞ�

ð8Þ

For both x and y, flood peak, volume and duration corre-

sponding to 5-, 20-, and 50-year return periods for the

current climate are used. The joint occurrence probabilities

of peak–volume, peak–duration and volume–duration for

the current climate and their projected changes for the

future climate are estimated based on these fixed thresh-

olds. The joint occurrence probabilities P(X [ x or

Y [ y) and P(X [ x and Y [ y) for an r-year return period

are denoted by P1r and P2r, respectively. The difference

between these two probabilities is explained further as

follows. For example, consider two random variables X and

Y that are mutually independent, their joint probability

FXY(x, y) equal to g and their joint occurrence probabilities

P150 and P250 equal to h1 and h2, respectively. If the two

random variables are mutually correlated, the joint proba-

bility FXY(x, y) would be larger than g, the P150 would be

smaller than h1 and P250 would be larger than h2.

3.4 Merged series analysis

Both marginal and joint frequency analyses are performed

independently for each pair of the five CRCM–CGCM

current and future period simulations to estimate percent-

age changes to return levels of selected return periods.

These changes are then averaged over the five pairs of

simulations to obtain ensemble-averaged projected change.

As demonstrated in Huziy et al. (2012), the Kruskal–Wallis

Table 2 Properties of the three selected Archimedean copulas

Copula Equation h[ Generating function /(t) Relationship with s

Frank chðu; vÞ ¼ 1
h ln 1þ ðexpðhuÞ�1ÞðexpðhvÞ�1Þ

expðhÞ�1

h i
(0, ?) /ðtÞ ¼ ln

expðhtÞ�1

expðhÞ�1

h i
s ¼ 1� 4

h ½D1ð�hÞ � 1�

Gumbel chðu; vÞ ¼ expf�½ð� ln uÞh þ ð� ln vÞh�1=hg (1, ?) /ðtÞ ¼ ð� ln tÞh s ¼ 1� h�1

Clayton chðu; vÞ ¼ ½u�h þ v�h � 1��1=h (0, ?) /ðtÞ ¼ t�h � 1 s ¼ h
hþ2

where t = u or v
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test (Kruskal and Wallis 1952), a multiple comparison test,

suggests that the five streamflow series corresponding to

five members of the CRCM ensemble for the current cli-

mate may belong to the same distribution for the majority

of the CRCM grid cells over the study domain and the

same is also noted for the future climate. Therefore, the five

simulated streamflow series for the current climate are

merged to create a longer sample for each grid-cell and the

same procedure is followed for the future climate. Pro-

jected changes are then assessed from the merged longer

samples for the current and future periods. The advantage

of the latter merged series approach over the former

ensemble averaged approach is the reduced uncertainty

associated with longer return period return levels due to

larger sample size.

4 Results

4.1 Selection of marginal distributions and copula

function

In Table 3, average RMSE, AIC and BIC for 16 gauging

stations and corresponding CRCM grid cells are shown for

Table 3 Average values of RMSE, AIC and BIC for 16 gauging stations and representative CRCM grid points for seven marginal distributions

fitted to flood peak, volume and duration derived from observed records, CRCM–ERA40 and CRCM–CGCMc

Peak Volume Duration

RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC

Obs.

Exponential 0.228 -76.2 -74.9 0.170 -93.6 -92.3 0.210 -82.1 -80.9

Lognormal 0.051 -154.9 -152.4 0.078 -134.7 -132.2 0.068 -143.7 -141.2

Gamma 0.051 -155.8 -153.3 0.060 -147.3 -144.8 0.059 -149.9 -147.3

Gumbel 0.086 -129.7 -127.2 0.083 -130.3 -127.7 0.078 -133.9 -131.4

Weibull 0.058 -150.0 -147.5 0.054 -153.1 -150.6 0.057 -150.3 -147.8

GEV 0.041 2165.5 2161.7 0.043 2162.3 2158.5 0.041 2164.5 2160.7

LP3 0.057 -151.4 -147.6 0.092 -128.7 -124.9 0.086 -136.0 -132.3

CRCM–ERA40

Exponential 0.252 -80.9 -79.5 0.204 -94.2 -92.8 0.233 -86.2 -84.8

Lognormal 0.052 -176.6 -173.8 0.067 -161.9 -159.1 0.064 -165.4 -162.6

Gamma 0.051 -178.3 -175.5 0.056 -171.8 -169.0 0.063 -167.2 -164.4

Gumbel 0.073 -157.5 -154.7 0.066 -164.5 -161.7 0.099 -143.9 -141.1

Weibull 0.056 -173.2 -170.4 0.049 -180.1 -177.3 0.073 -161.6 -158.8

GEV 0.038 2192.0 2187.8 0.037 2194.2 2189.9 0.044 2184.5 2180.3

LP3 0.057 -173.0 -168.8 0.075 -158.0 -153.8 0.077 -158.3 -154.1

CRCM–CGCMc (avg.)

Exponential 0.253 -80.7 -79.3 0.205 -94.4 -93.0 0.229 -87.4 -86.0

Lognormal 0.051 -178.3 -175.5 0.064 -166.2 -163.4 0.060 -169.0 -166.2

Gamma 0.049 -180.0 -177.2 0.054 -175.5 -172.7 0.061 -169.0 -166.2

Gumbel 0.071 -158.0 -155.2 0.065 -163.0 -160.2 0.097 -144.3 -141.5

Weibull 0.054 -174.2 -171.4 0.047 -182.2 -179.4 0.069 -162.9 -160.1

GEV 0.039 2191.4 2187.2 0.037 2193.2 2189.0 0.044 2184.5 2180.3

LP3 0.055 -174.4 -170.2 0.076 -160.0 -155.8 0.070 -163.1 -158.9

CRCM–CGCMc (range)

Exponential 0.009 2.2 2.2 0.017 5.5 5.5 0.015 4.4 4.4

Lognormal 0.004 3.7 3.7 0.013 12.8 12.8 0.010 9.1 9.1

Gamma 0.003 3.7 3.7 0.009 9.6 9.6 0.011 8.6 8.6

Gumbel 0.009 8.1 8.1 0.012 11.7 11.7 0.022 11.2 11.2

Weibull 0.004 4.8 4.8 0.005 5.4 5.4 0.011 7.6 7.6

GEV 0.001 1.8 1.8 0.002 3.3 3.3 0.004 5.0 5.0

LP3 0.007 5.1 5.1 0.023 16.6 16.6 0.018 11.8 11.8

The numbers in bold represent best performance according to the selected goodness-of-fit measures. For CRCM–CGCMc, average and range of

the three goodness-of-fit measures based on five different CRCM simulations are provided
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seven marginal distributions fitted to three flood charac-

teristics derived from observed records, CRCM–ERA40

and CRCM–CGCMc. In the case of CRCM–CGCMc, both

overall average and range of performance measures are

provided. Overall, the values of the three performance

measures (RMSE, AIC and BIC) indicate that the GEV

distribution yields the best performance for all three flood

characteristics for the case of observed records, CRCM–

ERA40 and CRCM–CGCMc. The GEV distribution is also

associated with the smallest values of range for the three

performance measures. Based on these results, the GEV

distribution is selected as the marginal distribution for all

three flood characteristics. Since only one flood event per

year is included in the analysis, the choice of the GEV

distribution can also be justified on theoretical grounds due

to the fact that the distribution of annual or seasonal

maxima converges to the GEV distribution. It should be

noted that the same distribution is used for the future cli-

mate but by re-estimating its parameters for future simu-

lations. Thus, the family of distributions stays the same

both for current and future climates.

In Table 4, average values of RMSE, AIC and BIC for

16 gauging stations and representative CRCM grid cells are

shown for three copula functions fitted to three pairs of

flood characteristics (peak–volume, peak–duration and

volume–duration) derived from observed records, CRCM–

ERA40 and CRCM–CGCMc. The three goodness-of-fit

measures indicate that the Clayton family provides the best

performance for all three pairs of flood characteristics

derived from observed records and CRCM–ERA40 and for

the volume–duration pair derived from CRCM–CGCMc.

For peak–volume and peak–duration pairs derived from

CRCM–CGCMc, the Clayton and Frank families exhibit

comparable performance. Thus, based on these results, the

Clayton family is selected as the copula function for the

three pairs of flood characteristics for both the current and

future climates.

4.2 Performance and boundary forcing errors

Basic statistics (mean and interannual standard deviation

(SD)) of seasonal maximum series of flood characteristics

and estimated values of 5-, 20- and 50-year return levels,

observed and modelled, are compared in Fig. 4. For flood

peak and volume, the above statistics for CRCM–ERA40

compare favorably with those derived from observed

records. R-squared values for peak and volume for CRCM–

ERA40 are larger than 0.8. Flood duration appears to be a

challenging parameter for CRCM to simulate since

R-squared values for CRCM–ERA40 vary from 0.3 to 0.6.

The performance errors associated with flood duration are

thus larger than those associated with flood peak and vol-

ume. The boundary forcing errors, i.e. the errors associated

with the CGCM boundary forcing data, reflected in the

differences between CRCM–ERA40 and CRCM–CGCMc,

are larger for flood duration compared to flood peak and

Table 4 Average values of RMSE, AIC and BIC for 16 gauging

stations and representative CRCM grid points for three copula

functions fitted to flood peak–volume, peak–duration and volume–

duration pairs of characteristics derived from observed records,

CRCM–ERA40 and CRCM–CGCMc. The numbers in bold represent

best performance according to the selected goodness-of-fit measures.

For CRCM–CGCMc, average and range of the three goodness-of-fit

measures based on five different CRCM simulations are provided

Copula Peak–volume Peak–duration Volume–duration

Family RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC

Obs.

Frank 0.045 -162.84 -161.58 0.050 -157.94 -156.68 0.048 -159.59 -158.33

Gumbel 0.049 -159.40 -158.14 0.054 -154.75 -153.49 0.049 -158.91 -157.65

Clayton 0.044 2165.59 2164.33 0.046 2162.36 2161.10 0.047 2161.67 2160.40

CRCM–ERA40

Frank 0.041 -191.12 -189.71 0.046 -186.03 -184.63 0.047 -183.13 -181.73

Gumbel 0.046 -185.43 -184.03 0.050 -180.89 -179.49 0.050 -179.93 -178.53

Clayton 0.040 2192.71 2191.31 0.044 2188.43 2187.03 0.042 2189.62 2188.21

CRCM–CGCMc (avg)

Frank 0.042 2190.76 2189.36 0.045 2187.41 2186.00 0.046 -184.10 -182.70

Gumbel 0.045 -186.12 -184.72 0.051 -180.07 -178.67 0.049 -181.55 -180.15

Clayton 0.042 -190.47 -189.07 0.046 -185.59 -184.19 0.044 2187.68 2186.28

CRCM–CGCMc (range)

Frank 0.002 2.87 2.87 0.006 6.72 6.72 0.003 4.01 4.01

Gumbel 0.002 2.24 2.24 0.004 5.70 5.70 0.005 5.79 5.79

Clayton 0.002 3.19 3.19 0.003 4.06 4.06 0.004 5.29 5.29
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volume. The CRCM–CGCMc ensemble is generally closer

to those observed than the CRCM–ERA40 simulation for

flood peak, while this tendency is not so obvious for flood

volume and duration.

In Fig. 5, average values of KCC and joint occurrence

probabilities (P1 and P2) corresponding to 5-, 20- and 50-

year return periods for 16 gauging stations and represen-

tative CRCM grid cells for three pairs of flood character-

istics derived from observed records, CRCM–ERA40 and

CRCM–CGCMc are presented. Both CRCM–ERA40 and

CRCM–CGCMc tend to under-estimate KCC for all three

pairs of flood characteristics; however, the values for

CRCM–CGCMc are typically closer to observed ones.

Theoretically, the joint cumulative probability C[FX(x),

FY(y)] in Eqs. (7) and (8) increases as KCC increases; the

joint occurrence probability P1 decreases and the joint

occurrence probability P2 increases as KCC increases.

Consequently, CRCM–ERA40 and CRCM–CGCMc tend

to overestimate P1 and underestimate P2. Percentage dif-

ference between observed and simulated values is less than

4 % (26 %) for P1 (P2) for the three pairs of flood char-

acteristics. Though differences exist between CRCM–

ERA40 and CRCM–CGCMc based statistics (Fig. 5),

overall the boundary forcing errors are modest compared to

performance errors.

The boundary forcing errors for the entire domain are

investigated by comparing the selected statistics simulated

by CRCM–ERA40 and CRCM–CGCMc, which are pre-

sented in the first and second columns in Figs. 6, 7, 8 and 9.

In Fig. 6, basic statistics of three flood characteristics for

CRCM–ERA40 and CRCM–CGCMc are provided. The

spatial patterns of the mean and SD are very similar for

CRCM–ERA40 and CRCM–CGCMc. As expected, spatial

patterns of CRCM simulated mean flood peak and volume

show large values for grid points situated along main-

streams or outlet of a basin and small values for upstream

grid points. Similar coherent spatial patterns are not visible

in the case of flood duration statistics simulated by CRCM;

nevertheless the regional model tends to yield larger

duration for grid points on mainstream and outlets than

those on upstream areas in general.

Figure 7 shows 5-, 20- and 50-year return levels of flood

peak, volume and duration for CRCM–ERA40 (first col-

umn) and CRCM–CGCMc (second column). Estimated

return levels for CRCM–ERA40 and CRCM–CGCMc

show good agreement for all three flood characteristics.

Spatial patterns of estimated return levels of short return

periods (i.e. 5- or 20-year) of flood peak, volume, and

duration are basically similar to those of mean values

presented in Fig. 6.

Joint occurrence probabilities P1 of the three pairs of

flood characteristics corresponding to current marginal

return values of 5-, 20- and 50-year return periods for

CRCM–ERA40 and CRCM–CGCMc are given in Fig. 8 in

first and second columns, respectively. Simulated values of

P1 for CRCM–ERA40 and CRCM–CGCMc show good

agreement for the three pairs and three selected return

periods, although the agreement of P1 values is not as good

as those of the marginal values. P1 values for CRCM–

ERA40 and CRCM–CGCMc do not show any clear spatial

patterns. Figure 9 presents joint occurrence probability P2

for the three pairs of flood characteristics corresponding to

current marginal return values of 5-, 20- and 50-year return

periods for CRCM–ERA40 (first column) and CRCM–

CGCMc (second column). Again, the joint occurrence

probability P2 for CRCM–ERA40 and CRCM–CGCMc

show good agreement for the three pairs of characteristics

and selected return levels. As expected, the P2 values are

smaller than the P1 values for the three pairs of flood

characteristic.

4.3 Projections of future flood characteristics

4.3.1 Ensemble-averaged approach

4.3.1.1 Basic statistics—mean and interannual standard

deviation Estimated values of basic statistics (mean and

interannual SD) of seasonal maximum values of flood

characteristics and results of marginal and joint frequency

analyses for CRCM–CGCMf are compared to those of

CRCM–CGCMc for selected return periods in order to

evaluate changes to flood characteristics. In Fig. 6, basic

statistics of three flood characteristics for CRCM–CGCMc

(second column) and CRCM–CGCMf (third column) and

percentage change in these statistics (fourth column) are

presented. After comparing CRCM–CGCMf and CRCM–

CGCMc for the entire domain, 7.4, 12.8 and 10.8 %

increase in mean and 8.7, 14.1 and 39.6 % increase in SD

is found for flood peak, volume and duration, respectively,

i.e. on average the three flood characteristics will have

larger values and will be more variable in the future. Most

of the northern and southern basins (except the southern

part of RDO) show an increase in flood peak and volume in

future climate, while the central eastern basins show some

decreases. Some grid points for central-eastern basins

(LGR and RUP) show also smaller increases or decreases

in mean flood peak and volume. The duration however

shows a general increase in future climate though associ-

ated with higher interannual variability in future climate,

particularly for the central eastern basins. Summary sta-

tistics of the above discussed regional level projected

changes for the northern, central and southern watersheds

with respect to the domain averaged values are provided in

Table 5.

The projected changes in mean flood characteristics are

linked with changes to spring temperatures and/or snow
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Peak Volume Duration

Mean

SD

5-yr RL  

20-yr RL

50-yr RL

Fig. 4 Comparison of simulated (CRCM–ERA40 and CRCM–

CGCMc) and observed mean, interannual standard deviation (SD)

and 5-, 20- and 50-year return levels (RLs) (based on the GEV

distribution) of seasonal maximum values of flood peak, volume and

duration at 16 gauging stations shown in Fig. 1
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water equivalent (SWE). For the northernmost basins

considered in this study, the projected increase in mean

flood characteristics are a result of both increased SWE and

accelerated snowmelt caused by warmer spring tempera-

tures. For the rest of the domain, where increases in flood

characteristics, particularly peak and volume, are noted are

due to increased spring temperatures, as SWE decreases in

future climate for these regions despite an increase in

precipitation. This decrease in SWE for the southern and

central basins is because precipitation falls as rain even

through most of December and snow buildup is delayed

and reduced, leading to a decrease in the snow-to-rain ratio

(Sushama et al. 2006; Huziy et al. 2012). As for the eastern

basins, the impact of reduced SWE is larger than the

impact of the increased spring temperatures, leading to a

decrease in flood volume and peak in future climate.

4.3.1.2 Marginal return levels Figure 7 presents 5-, 20-

and 50-year return levels of flood peak, volume and dura-

tion for CRCM–CGCMc (second column) and CRCM–

CGCMf (third column). Percentage change in various

return levels is also presented in this figure (fourth col-

umn). Again, some grid points for central basins show

smaller increases or decreases in 5-, 20- and 50-year return

levels of flood peak and 5-year return level of flood volume

only. In the central area, longer return period (i.e. 50-year)

return levels of flood volume show large increases which

are consistent with the large increases in SD. Note that the

estimation of the marginal return values corresponding to

50-year return period are more uncertain than those of 5-

and 20-year return periods. Larger increases are noted for

return values of longer return periods than those corre-

sponding to short return periods.

Ratios of regionally averaged increases to entire domain

averaged increases in the marginal return values of 5- and

50-year return period of flood characteristics are provided

in Table 5. Larger increase in flood peak, smaller increases

in flood duration and about similar increases in flood vol-

ume compared to the domain averaged changes in the

50-year return levels are projected for the northern basins.

For the central basins, compared to domain averaged

changes, smaller increase in flood peak, slightly larger

increase in flood volume, and relatively larger increase in

flood duration are projected in the 50-year return levels.

For the southern basins, smaller increases in the three flood

characteristics are projected in the 50-year return levels

compared to domain averaged changes in these return

levels.

4.3.1.3 Joint occurrence probabilities, P1 and P2 Joint

occurrence probabilities P1 and P2 of the three pairs of

flood characteristics for both current and future periods are

estimated using fixed thresholds, i.e. return values of flood

peak, volume and duration corresponding to 5-, 20- and

50-year return periods estimated from the marginal distri-

butions for the current climate. As defined earlier, P1

represents the joint occurrence probability when any one

flood characteristic exceeds its respective threshold and P2

represents the joint occurrence probability when both flood

characteristics exceed their respective thresholds at the

same time. It would be useful to explain first the P1 and P2

estimation procedures before presenting their results.

Therefore, an example of the relationship between mar-

ginal and joint distributions of flood peak and volume and

calculation of joint occurrence probabilities corresponding

to 50-year return period (i.e. P150 and P250) for the current

and future periods for a CRCM grid cell is provided in

Fig. 10. In the figure, flood peak and volume of 50-year

return period are 572.8 m3/s and 622.8 MCM (million

cubic meters) and the cumulative probabilities of the
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Fig. 5 Average values of a KCC and joint occurrence probabilities,

b P1 and c P2 corresponding to 5-, 20- and 50-year return period

thresholds (based on the Clayton family) for 16 gauging stations and

representative CRCM grid points for three pairs of flood character-

istics derived from observed records, CRCM–ERA40 and CRCM–

CGCMc. Each panel uses different scale for y-axis
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thresholds in the future marginal distributions are 0.9313

and 0.8349, respectively. Although, the KCC for the future

period (0.4805) is smaller than that for the current period

(0.6460), future joint cumulative probability (0.7938) is

much smaller than the current joint cumulative probability

(0.9617) because the marginal cumulative probabilities in

the future climate are smaller than those in the current

climate for the two flood characteristics. The estimated

values of P150 and P250 in the future climate for this

sampled CRCM grid cell are five and 14 times larger than

those in the current climate.

Figure 8 presents joint occurrence probabilities P1 of

the three pairs of flood characteristics corresponding to

current marginal return values of 5-, 20- and 50-year return

periods for CRCM–CGCMc (second column), CRCM–

CGCMf (third column) and future changes (fourth column)

to P1 values with respect to current climate. CRCM–

CGCMf yields 38.5 % to more than 200 % larger values

compared to CRCM–CGCMc for the entire domain. It is

also obvious from Fig. 8 that percentage increase in the

probability increases as the return period increases.

Regionally, P1 shows larger increases for the northern

(a) 
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

Mean

SD

(b) 

Mean

SD

(c)

Mean

SD

Fig. 6 Mean and standard deviation (SD) of seasonal maximum

values of a flood peak, b volume and c duration for CRCM–ERA40

(column 1), CRCM–CGCMc (column 2) and CRCM–CGCMf

(column 3). Projected changes to respective statistics in future

climate with respect to current climate are shown in column 4. The

results shown in columns 2–4 correspond to ensemble averaged

values
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(a) 
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

5-year
RL

20-year
RL

50-year
RL

(b)
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

5-year
RL

20-year
RL

50-year
RL

(c)
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

5-year
RL

20-year
RL

50-year
RL

Fig. 7 Five-, 20- and 50-year

return levels (RLs) of a flood

peak, b volume and c duration

for CRCM–ERA40 (column 1),

CRCM–CGCMc (column 2)

and CRCM–CGCMf (column

3). Projected changes to RLs in

future climate with respect to

current climate are shown in

column 4. Results shown in

columns 2–4 correspond to

ensemble averaged values
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(a) 
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

P15

P120

P150

(b) 
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

P15

P120

P150

(c)
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

P15

P120

P150

Fig. 8 Joint occurrence

probability P1 for a peak–

volume, b peak–duration and

c volume–duration

corresponding to current

marginal return values of 5-, 20-

and 50-year return periods for

CRCM–ERA40 (column 1),

CRCM–CGCMc (column 2)

and CRCM–CGCMf (column

3). Percentage difference

between CRCM–CGCMf and

CRCM–CGCMc is shown in

column 4. Results shown in

columns 2–4 correspond to

ensemble averaged values
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(a) 
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

P25

P220

P250

(b) 
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

P25

P220

P250

(c)
CRCM-ERA40 CRCM-CGCMc CRCM-CGCMf Projected change

P25

P220

P250

Fig. 9 Joint occurrence

probability P2 for a peak–

volume, b peak–duration and

c volume–duration,

corresponding to current

marginal return values of 5-, 20-

and 50-year return periods for

CRCM–ERA40 (column 1),

CRCM–CGCMc (column 2)

and CRCM–CGCMf (column

3). Percentage difference

between CRCM–CGCMf and

CRCM–CGCMc is shown in

column 4. Results shown in

columns 2–4 correspond to

ensemble-averaged values
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basins and smaller increases for the central basins for the

peak–volume pair than the domain averaged value. For

peak–duration and volume–duration pairs, some grid points

along the main streams or outlets in the northern and

central basins (i.e. ARN, GRB, PYR, LGR, CAN and

CHU) and southern basins (RDO, STM, BEL, WAS and

SAG) show larger increase than the other regions. Clear

decreases of P15 are observed in the central-eastern part of

the region for all three pairs of characteristics. The above

results are summarized in Table 5 to ease comparison

between changes to P1 values for northern, central and

southern basins with respect to the domain averaged

changes. The regional increases in the joint probability are

consistent with those in the marginal flood characteristics.

As shown in Fig. 7, future flood peak is associated with

large increase for the northern basins and future flood

volume with large increase for the northern and southern

basins; however, both future flood peak and volume yield

smaller increase for the central basins than other regions.

Figure 9 presents joint occurrence probability P2 for the

three pairs of flood characteristics corresponding to current

marginal return values of 5-, 20- and 50-year return periods

for CRCM–CGCMc (second column), CRCM–CGCMf

(third column) and future changes in P2 with respect to

current climate (fourth column). In general, increases in P2

values are larger than those of P1 for all three flood char-

acteristic pairs and return periods. The percentage increase

in the probability increases considerably with the increase

in return period. Although, the spatial distribution of future

increase in P2 is less clear than that of P1, it is basically

Table 5 Ratios of regionally

averaged increases for

Northerna, Centralb, and

Southernc regions to entire

domain averaged increases in

the mean and standard deviation

(SD) of seasonal maximum

values and selected marginal

return levels (RL) of 5- and

50-year return period and joint

occurrence probabilities (P1 and

P2) of flood characteristics

Results corresponding to

ensemble averaged and merged

sample cases are shown
a Northern watersheds

(latitude [ 54.5�N): ARN,

FEU, MEL, GRB, PYR, BAL,

and GEO
b Central watersheds

(50.5�N \ latitude \ 54.5�N):

LGR, CAN, CHU, RUP, MAN,

MOI, ROM, NAT and northern

parts of SAG and BOM
c Southern watersheds (latitude

\50.5�N): RDO, STM, BEL,

WAS, and southern parts of

SAG and BOM

Ensemble averaged case Merged series case

Northern Central Southern Northern Central Southern

Mean

Peak 2.0 0.2 1.0 2.0 0.2 1.0

Volume 1.3 0.3 1.4 1.3 0.3 1.4

Duration 0.5 0.7 1.5 0.5 0.7 1.5

SD

Peak 1.7 1.6 0.2 1.6 1.4 0.4

Volume 0.8 1.7 0.7 0.8 1.6 0.7

Duration 0.4 2.1 0.6 0.4 2.2 0.6

Marginal 5-year RL

Peak 1.9 0.4 0.9 2.0 0.4 0.9

Volume 1.2 0.5 1.3 1.3 0.5 1.3

Duration 0.4 0.8 1.6 0.5 0.8 1.5

Marginal 50-year RL

Peak 2.0 0.6 0.7 1.7 0.6 0.8

Volume 1.0 1.1 0.9 1.0 1.1 1.0

Duration 0.3 1.8 0.9 0.4 1.8 0.9

P15

Peak–volume 1.5 0.5 1.1 1.6 0.5 1.1

Peak–duration 1.3 0.6 1.2 1.3 0.6 1.2

Volume–duration 1.1 0.5 1.3 1.2 0.5 1.3

P150

Peak–volume 1.3 0.8 1.0 1.4 0.7 1.0

Peak–duration 1.0 1.1 1.0 1.1 1.1 0.9

Volume–duration 0.9 1.0 1.1 0.9 1.1 1.0

P25

Peak–volume 1.8 0.4 1.0 1.9 0.4 0.9

Peak–duration 1.3 0.5 1.2 1.4 0.6 1.1

Volume–duration 1.0 0.6 1.3 1.0 0.6 1.3

P250

Peak–volume 1.5 0.7 1.0 1.8 0.5 0.8

Peak–duration 1.1 1.1 1.0 1.3 1.0 0.8

Volume–duration 0.8 1.2 1.1 0.8 1.3 0.9
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similar in character. For the peak–volume pair, future P2

shows larger increases for the northern and smaller

increases for the central basins. For the peak–duration and

volume–duration pairs, some grid points along the main

streams or outlets in the northern, central (i.e. ARN, GRB,

PYR, LGR, CAN and CHU) and southern basins (RDO,

STM, BEL, WAS and SAG) show larger increases in P2

than the other regions in future. A summary of the above

results is presented in Table 5 to ease comparison between

changes to P2 values for northern, central and southern

basins with respect to the domain averaged values.

4.3.2 Merged series analysis approach

Figure 11 presents marginal return values and joint

occurrence probabilities P1 and P2 for 50-year return

period for CRCM–CGCMc and CRCM–CGCMf, esti-

mated using merged series. Percentage changes in marginal

return levels and P1 and P2 values are also shown. Fifty-

year return level is the highest extreme event considered in

this study and it is also associated with higher uncertainty

in the estimated flood characteristics and joint occurrence

probabilities. The merged series analysis has statistical

advantage over the ensemble averaged approach based on

the individual series analyses as the former uses larger

sample size than the latter analysis that help reduce the

range of uncertainty associated with longer return period

return levels. A comparison of 50-year return levels shown

in Figs. 7 and 11 suggests that the two analyses produce

almost similar spatial patterns and changes to the three

flood characteristics. Similarly, a comparison between joint

occurrence probability P1 shown in Figs. 8 and 11 suggests

about similar spatial patterns for the three flood charac-

teristic pairs. However, increases for the case of merged

series analysis approach are much smaller than those

obtained with the ensemble averaged approach for the three

pairs of flood characteristics. A comparison of the joint

occurrence probabilities shows that the ensemble averaged

approach, on average, projects 1.2–2.6 times larger future

increases in the three pairs of flood characteristics than the

merged series analysis approach. Percentage increases are

similar for short (i.e. 5- or 20-year) return periods but differ

considerably for longer (i.e. 50-year) return periods

(detailed results are not shown). Ratios of regionally

averaged changes (mainly increases) to entire domain

averaged changes in the mean and SD of seasonal maxi-

mum values and selected marginal return values of 5- and

50-year return period and joint occurrence probabilities P1

and P2 of flood characteristics are provided in Table 5. The

results of this table support further the correspondence

between the results of ensemble averaged and merged

series approaches presented above.

Fig. 10 An example of marginal and joint distributions of flood peak

and volume for current and future periods for a representative CRCM

grid point. Estimation procedures of current and future joint

cumulative probabilities based on the current 50-year return period

threshold are also shown
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(a) 
CRCM-CGCMc CRCM-CGCMf Projected change

Peak

Volume

duration

(b) 
CRCM-CGCMc CRCM-CGCMf Projected change

Peak-volume

Peak-duration

Volume-
duration

(c) 
CRCM-CGCMc CRCM-CGCMf Projected change

Peak-volume

Peak-duration

Volume-
duration

Fig. 11 Fifty-year return levels

of a peak, volume and duration

and their joint occurrence

probabilities b P1 and c P2

computed using merged longer

samples for CRCM–CGCMc

(column 1) and CRCM–CGCMf

(column 2). Percentage

difference between CRCM–

CGCMf and CRCM–CGCMc is

shown in column 3
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5 Summary and conclusions

In the present work, climate change impacts on three spring

(March–June) flood characteristics, i.e. peak, volume and

duration, for 21 northeastern Canadian basins are evaluated

using univariate and copula based bivariate frequency

analyses using CRCM current (1979–1999) and future

(2041–2070) climate simulations. The mutually correlated

nature of the three pairs of flood characteristics (i.e. peak–

volume, peak–duration and volume–duration) visible

clearly in the observed records and the CRCM simulated

flood events for the study area supports the necessity for

bivariate flood frequency analysis. Prior to assessing pro-

jected changes to flood characteristics, basic statistics (i.e.

mean and interannual standard deviation) of the seasonal

maximum values of flood characteristics and results of

univariate and bivariate frequency analyses for CRCM–

ERA40 are compared to those observed at 16 gauging

stations in order to evaluate the performance of CRCM. A

similar comparison of CRCM–CGCMc results with

CRCM–ERA40 is also performed to assess the lateral

boundary forcing errors. The main results are summarized

below:

Comparison of CRCM–ERA40 simulated flood charac-

teristics with those observed at 16 gauging stations

suggests that the model reasonably well captures the

characteristics. The R-squared values between CRCM–

ERA40 and observed basic statistics and marginal return

values are generally larger than 80 % for flood peak and

volume and lie between 30 to 60 % range for flood

duration. The percentage differences between observed

and CRCM–ERA40 values are modest (less than 4 %)

for the joint occurrence probability P1, and are less than

26 % for the joint occurrence probability P2.

Comparison of the basic statistics and frequency anal-

yses of flood characteristics for CRCM–CGCMc with

those of CRCM–ERA40 helped assess boundary forcing

errors. In general the boundary forcing errors are found

smaller than the differences between CRCM–ERA40

and observations, which is generally referred to as

performance errors.

Though there are important regional differences, the

average projected increase to flood peak, volume and

duration for the 21 basins is 7.4, 12.8 and 10.8 %,

respectively, while the interannual standard deviation of

these flood characteristics is projected to increase by 8.7,

14.1 and 39.6 %, respectively. On average, the projected

changes to marginal return levels of flood peak, volume

and duration suggest increases in future climate. Huziy

et al. (2012) and Clavet-Gaumont et al. (2012), who

studied projected changes to flood peaks for the same 21

watersheds, also reported similar future increases.

The projected increases in the flood peak, volume and

duration for the majority of the basins are caused by

increased winter and spring precipitation and warmer

spring temperatures, leading to increased spring snow-

melt in future climate. Such increases were also reported

recently by Huziy et al. (2012).

Projected changes to the joint occurrence probabilities

P1 and P2 of the peak–volume, peak–duration and

volume–duration pairs of flood characteristics were

studied for the very first time for the 21 watersheds

considered in this study. Results suggest future increases

for both P1 and P2, with larger increases for longer

return periods than shorter return periods.

Comparison of projected changes obtained using the

ensemble-average approach and the merged series

approach, where values of flood characteristics from

five different simulations are merged to create longer

samples for all grid points (i.e. 150 values for each grid

point) projects relatively smaller increases to future joint

occurrence probabilities P1 and P2 than the ensemble-

average approach. The merged series approach helps

reduce uncertainty associated with return values of

longer return periods. Thus, taking into account uncer-

tainties associated with short samples, projected joint

occurrence probabilities for the merged series case

appear to be more reliable than the ensemble-average

approach.

The results of this study are useful for a number of

sectors, including water resources and flood risk manage-

ment, hydropower industry and environmental manage-

ment. Information on projected changes to the joint

occurrence probability of flood characteristics, particularly

P2 related to flood peak and volume, are necessary for the

management of hydroelectric projects and infrastructure

facilities. While planning of adaptation strategies and risk

management based on P2 would minimize risks, those

based on P1 would involve some additional risk.

The projected changes in flood characteristics presented

in this study are based on a five-member ensemble of the

CRCM driven by five different members of the CGCM.

This limited ensemble describes only the uncertainty of the

CRCM–CGCM projections based on A2 scenario. A multi-

model ensemble approach would be necessary to quantify

other sources of uncertainty (e.g. those due to model for-

mulation, future emission scenarios, choice of CGCM lat-

eral boundary conditions) on the impacts of future climate

change over the study area. For instance, Sushama et al.

(2006) investigated climate change impacts on the clima-

tological mean and extremes for major climatic regions in

North America based on two different versions of the

CRCM. They reported that high-flow characteristics, par-

ticularly the seasonal distribution of high-flow events and
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selected return levels, can be more sensitive to model

formulation.
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