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Abstract

Background: We report here the first genome-wide high-resolution polymorphism resource for non-human
primate (NHP) association and linkage studies, constructed for the Caribbean-origin vervet monkey, or African green
monkey (Chlorocebus aethiops sabaeus), one of the most widely used NHPs in biomedical research. We generated
this resource by whole genome sequencing (WGS) of monkeys from the Vervet Research Colony (VRC), an
NIH-supported research resource for which extensive phenotypic data are available.

Results: We identified genome-wide single nucleotide polymorphisms (SNPs) by WGS of 721 members of an extended
pedigree from the VRC. From high-depth WGS data we identified more than 4 million polymorphic unequivocal
segregating sites; by pruning these SNPs based on heterozygosity, quality control filters, and the degree of linkage
disequilibrium (LD) between SNPs, we constructed genome-wide panels suitable for genetic association (about 500,000
SNPs) and linkage analysis (about 150,000 SNPs). To further enhance the utility of these resources for linkage analysis,
we used a further pruned subset of the linkage panel to generate multipoint identity by descent matrices.

Conclusions: The genetic and phenotypic resources now available for the VRC and other Caribbean-origin vervets
enable their use for genetic investigation of traits relevant to human diseases.
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Background
Non-human primates (NHPs) are becoming increasingly
valuable model species for biomedical research. NHPs
share a greater degree of conservation with humans, com-
pared to other animal models, across every level of biology
from genome sequence and structure through physiology
to behavior [1, 2]. At the same time, investigations of
NHPs can incorporate procedures and interventions that
are infeasible in human research participants, as well as
control of environmental exposures, such as diet. Until
very recently, however, the lack of NHP genetic and gen-
omic resources has limited the utility of these models; in
particular, progress in the field requires high-resolution
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genome-wide information on genetic variation compar-
able to that available in humans as well as large pheno-
typed study samples for linkage or association analyses.
As we describe here, genomic resources are now avail-

able in the vervet monkey that will enable genetic investi-
gation of medically relevant traits, in phenotyped samples
from highly abundant Caribbean-origin vervet popula-
tions. One such population is the Vervet Research Colony
(VRC), an NIH-supported research resource founded in
the 1970s and 1980s from 57 wild caught monkeys from
the Caribbean islands of St. Kitts and Nevis [2], which has
included more than 2,000 members (with DNA collected
from more than 1,100 of them) in a nine-generation deep
extended pedigree. We had previously reported on the
construction of a genetic linkage map of the vervet using
a sparse set of short tandem repeat (STR) markers [3]
genotyped in a portion of the VRC pedigree. This initial
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genetic map enabled the provisional genetic mapping of
several quantitative traits in this richly phenotyped pedi-
gree [4–6]. SNPs identified in candidate linkage regions
bolstered the evidence provided by the STRs; however,
large gaps in the STR map rendered substantial portions
of the vervet genome inaccessible to genetic analyses, and
we lacked the high-resolution sets of polymorphisms
needed to conduct genome-wide association studies
(GWASs) or to systematically fine-map linkage regions to
discern potentially causal variations. This insufficiency
motivated the generation of the vervet reference genome
assembly, constructed using a VRC monkey, which now
displays a degree of sequence contiguity that, among
sequenced primates, is second only to that of humans
(Warren et al., submitted). The availability of the vervet
reference assembly enabled the efforts described here to
generate genome-wide vervet SNP sets for genetic investi-
gations of the VRC Caribbean-origin vervet samples.
Commercially available arrays have provided an ex-

tremely inexpensive platform for genotyping genome-
wide SNPs in humans and in a few model systems (such
as the mouse). The insufficient market for such arrays in
NHPs has necessitated the development of an alternative
approach for inexpensively genotyping the vervet and
other NHP models. Pasaniuc and colleagues have demon-
strated that low-pass whole genome sequencing (WGS)
provides a cost-effective alternative to SNP genotyping ar-
rays for GWASs [7]. We reasoned that a similar strategy
could be employed in the vervet. While Pasaniuc et al.
used the extensive reference data available from human
populations to determine genotypes, we planned to lever-
age the information available from the VRC pedigree
structure to enable accurate assignment of genotypes. We
describe here the use of a hierarchical sequence coverage
strategy: deep sequence in 17 VRC monkeys to infer
WGS-based genotype calling in more than 700 additional
descendant VRC monkeys sequenced at a lower depth.
We then indicate how, from these genotypes, we devel-
oped genome-wide panels of common vervet SNPs that
will be useful for both linkage and association analyses of
medically relevant traits.

Results
The generation of common SNPs for linkage and associ-
ation studies in the VRC started from a preliminary
study, in which we systematically assessed the impact of
coverage depth on genotyping accuracy depending on
position in the pedigree, using sequence data from 105
monkeys. We used these data in a down-sampling
experiment to inform our selection of coverage depth
for sequence analysis of 620 additional monkeys. We
then followed four main stages of analysis in the entire
set of 725 monkeys: 1) identifying unequivocal segregat-
ing sites for common variants in 17 monkeys sequenced
at high depth; 2) calling genotypes pedigree-wide at the
SNPs identified in Stage 1 in all 725 monkeys; 3) per-
forming sample-level quality control (QC) using SNPs
called in Stage 2; 4) establishing SNP sets for genetic
analyses by thinning the common SNPs from Stage 2, in
monkeys that passed QC in Stage 3. We describe the re-
sults for each of these stages, indicating the number of
SNPs that we removed, in each stage, by applying a
series of QC filters.
Down-sampling analysis showed that sequencing both

parents at 4× (and their offspring at 1×) resulted in a much
lower rate of Mendelian inconsistencies and a higher de-
gree of genotype concordance with non down-sampled ge-
notypes (in parents) than a strategy in which both parents
are sequenced at 1X and their offspring at 4× (Fig. 1). Im-
portantly, the intermediate strategy (sequencing one parent
at 4X, one parent at 1X, and the child at 1×) has a similar
Mendelian inconsistency rate and genotype concordance
(for all three trio members) to the strategy in which both
parents in the trio are sequenced at 4×, suggesting the pos-
sibility of achieving further gains in cost effective recovery
of genotypes. We also observed, in genotype analysis of the
initial 105 monkeys that lowering the sequencing coverage
of any single monkey has very little impact on the accuracy
of genotyping of pedigree members beyond the trios of
which s/he is a member (data not shown).
Considering the results of the down-sampling analysis,

we used a greedy algorithm (see Methods) to rank the
pedigree members based on the number of their direct
descendants included in the set of 725 monkeys that
comprised the WGS sample, and employed this ranking
as the primary rationale for including them in either
high coverage (>25× average), medium coverage (>4×
average), or low coverage (>1× average) sequencing bins.
Based on this algorithm (and including the 105 monkeys
sequenced in our preliminary study) we assigned 16
monkeys to high coverage, 407 to medium coverage, and
302 to low coverage WGS.
Given improvements in technology over the course of

the project, our sequencing protocol resulted, for a sub-
stantial proportion of samples, in considerably deeper
coverage than had been our target (summary sequencing
statistics for each monkey are given in Additional file 1:
Table S1). As a result, the variation in sequencing depth,
across the pedigree, is more accurately represented as a
continuum than as three discrete bins (Fig. 2). For ex-
ample, among the 406 monkeys targeted for 4–6× sequen-
cing we achieved >20× average depth for 3 monkeys;
10–20× depth for 61 monkeys; and 6–10× depth for 36
monkeys. We considered “high coverage” monkeys to be a
set of 17 monkeys, each with >25× average coverage, in-
cluding the 16 monkeys initially chosen for high-depth se-
quencing and an additional monkey sequenced at a higher
depth than originally planned.



Fig. 1 Using the variant data from the WGS of the trio shown on the left, we evaluated three different down-sampling schemes, drawn on the
right, to determine a pedigree-wide strategy for selecting monkeys for medium (4X) or low (1X) sequencing coverage. a The frequency of
Mendelian errors in a trio increases in all three down-sampling experiments compared to the original data; however, the increase in error rate is
greatest when both parents are low coverage and the child is medium coverage. b The percentage of concordant genotype calls between
original data and down-sampled data is lowest when both parents are low coverage and the child is medium coverage. The percentages shown
for both the rate of Mendelian inconsistency and for genotype concordance represent averages over three down-sampling experiments
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In Stage 1 we discovered 13,550,322 SNPs in the 17 high
coverage monkeys, and removed 9,314,561 SNPs from
further investigation based on different QC-associated
metrics, with low polymorphism content (minor allele fre-
quency [MAF] <25 %) in these 17 monkeys being the
Fig. 2 Boxplot of actual sequencing depth versus planned sequencing dep
largest factor, leading to the removal of about 6M SNPs
(Table 1). For the 4,235,761 SNPs that passed through the
Stage 1 filters, we called genotypes in all 725 sequenced
monkeys (Stage 2). In Stage 2 we retained all SNPs that
had a MAF ≥ 10 % (as estimated in all 725 monkeys) and
th for the 725 monkeys in the WGS study



Table 1 Filtering and QC procedures in Stage 1: identifying
unequivocal segregating sites. Stage 1 started with 13,550,322
sites and after QC ended with 4,235,761 sites

QC filtering procedure Number of variants
removed

Multi-allelic or multi-nucleotide 1,110,071

Cumulative coverage outside of twofold range
of global median coverage

1,158,822

MAF in 17 monkeys <25 % 6,859,481

>0 % missing data 164,781

Within 5 bp of another site 21,406

TOTAL 9,314,561
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performed a series of QC steps (Table 2) that left us with
3,369,989 high-quality common autosomal SNPs for con-
struction of genome-wide association and linkage panels.
In Stage 3 we used SNPs that passed through Stage 2

to perform sample-level QC and to refine the pedigree
structure. Based on discrepancies between known pedi-
gree relationships and identity by descent (IBD) esti-
mated from linkage disequilibrium (LD)-pruned SNPs,
and on concordance between WGS data and a set of
SNP genotypes generated for another study with inde-
pendent methods [5], we excluded data for three monkeys
that we strongly suspected represented contamination or
mislabeling of DNA samples. The information from pair-
wise IBD relationships (together with VRC records, see
Methods) also enabled us to identify the parents for all
but one of the 174 sequenced monkeys whose parentage
had previously been unknown. We excluded from further
Table 2 Filtering and QC procedures in Stage 2: calling genotypes i
identified in Stage 1. Stage 2 started with 4,235,761 sites and ended

QC filtering procedure

Not passing SAMtools filters (“mpileup -S -D -q 30 -Q 20”, “vcfutils.pl varFilter

Cumulative coverage outside of twofold range of global median coverage

MAF in 723 monkeys <10 %

Missing >50 % of data

Too few (<3) loci in 3Mb regions, not enough for TrioCaller to work.

Loci unmapped or not mapped uniquely during LiftOver

Filtered out by GATK’s FilterLiftedVariants

Whole contig removed for contigs with >1 chromosome switching events p

LiftOver MapScore <0.5

Loci mapped to the same coordinate in the new reference genome

Alignment: identified regions of poor alignment (mapping quality <2- or cov
and masked these genotypes as missing. Sites with >50 % missing in 4X and

Sex chromosome SNPs

>=5 Mendel errors in parent–child comparisons

>60 % heterozygous calls

Total
analyses the single monkey for which we could not iden-
tify parents, leaving 721 monkeys for analysis in Stage 4.
In Stage 4 we then obtained final SNP sets for associ-

ation and linkage analysis by thinning the final pedigree-
wide common SNP set generated in Stage 2, removing
variants (assessed in 50 marker windows along each
autosome) with redundant genetic information (as evi-
denced by LD, at r2 thresholds appropriate to either as-
sociation or linkage mapping). We conducted the steps
in Stage 4 to provide the community conducting vervet
research in the VRC with well-vetted sets of polymor-
phisms that will facilitate their performance of genetic
analyses; it is not our intent to utilize these sets to con-
struct vervet-specific genotyping arrays. By LD pruning
at r2 < 0.9 we obtained a set of almost 500,000 SNPs
suitable for genome-wide association analysis, and by
LD pruning at r2 < 0.4 obtained a less dense set of almost
150,000 SNPs suitable for linkage analysis. We then
finalized these SNP sets by removing SNPs for which
pedigree-wide checks revealed Mendelian inconsistencies
(554 and 159 in the 500K and 150K sets, respectively).
Both SNP sets (Table 3) include predominantly highly
polymorphic SNPs (mean heterozygosity of 0.45–0.47 for
each of the 29 autosomes) that are densely placed across
the genome (mean gap is 5.1 Kb for the 500K set and 17.5
Kb for the 150K set).
To further facilitate linkage analyses of the VRC pedi-

gree we used 9,752 SNPs, LD-pruned from the 150K SNP
set, to construct multipoint identity by descent (MIBD)
files. We estimated a genetic map for these SNPs by inter-
polating from the 338 autosomal STRs (Additional file 2:
n all 725 monkeys at the unequivocal segregating sites
with 3,369,989 sites

Number of variants
removed

-w 10 -d 3 -D 12740 -e 0–2 0”) 209,826

20,843

10,766

105

1,360

32,419

4,094

er 100 loci 6,208

61,721

4

erage >2-fold range of global median depth)
above monkeys are removed

438,423

65,271

8,563

6,201

865,772



Table 3 Characteristics of the two mapping sets of markers derived in Stage 4

Approx. 500K mapping
set

Approx. 150K mapping
set

CHR N SNP/Mba Max Gapb (BP) Mean Gapb (BP) Mean R2c N SNP/Mba Max Gapb (BP) Mean Gapb (BP) Mean R2c

1 25863 205.2 1074224 4873 0.38 7695 61.1 1112341 16380 0.31

2 16774 185.7 3730217 5385 0.40 4403 48.8 3731818 20515 0.34

3 18390 199.7 1144078 5007 0.38 5653 61.4 1176302 16291 0.33

4 15560 209.3 1663269 4777 0.39 5476 73.7 1689958 13576 0.34

5 15940 211.4 1150416 4730 0.38 4674 62.0 1275087 16132 0.32

6 10112 198.7 1020214 5032 0.36 2792 54.9 1030612 18227 0.29

7 24288 178.9 1518445 5590 0.40 7026 51.8 1631219 19310 0.35

8 28272 220.8 2004329 4530 0.37 9192 71.8 2598031 13933 0.33

9 21550 171.6 1066472 5828 0.38 6456 51.4 1089666 19453 0.33

10 20112 156.4 1043042 6393 0.39 6104 47.5 1050307 21054 0.37

11 25512 198.5 2199143 5038 0.39 7530 58.6 2424911 17072 0.32

12 17587 162.0 1420166 6171 0.39 5615 51.7 1520086 19331 0.34

13 18794 191.1 1516380 5234 0.38 5934 60.4 1518768 16573 0.33

14 19105 177.6 1817866 5632 0.44 5943 55.3 1830044 18099 0.39

15 18395 200.5 1542801 4988 0.39 5110 55.7 1545377 17952 0.32

16 14040 186.9 1023476 5350 0.36 3698 49.3 1026661 20304 0.30

17 15640 217.3 1093222 4602 0.39 4292 59.7 1122085 16754 0.34

18 15291 211.6 1330661 4726 0.41 4623 64.0 1542198 15620 0.35

19 5596 173.5 476395 5765 0.41 1416 43.9 554050 22793 0.35

20 27113 209.3 459070 4778 0.35 8034 62.1 711003 16094 0.28

21 18878 149.6 1477644 6685 0.41 6175 48.9 1502779 20435 0.37

22 15859 158.4 258174 6314 0.43 5064 50.6 422458 19777 0.40

23 16564 202.4 391245 4940 0.38 5118 62.6 732327 15985 0.32

24 18746 223.4 225900 4476 0.37 4889 58.3 325648 17162 0.32

25 18731 221.2 238967 4522 0.37 5563 65.7 421038 15228 0.30

26 12435 217.8 215585 4593 0.38 3324 58.3 270040 17166 0.31

27 12055 259.1 284037 3860 0.37 3470 74.8 425185 13379 0.31

28 4122 207.4 199874 4822 0.43 1046 52.7 379794 19003 0.37

29 5839 252.6 112574 3960 0.35 1652 71.5 211468 13998 0.29
aNumber of SNPs per Mb
bMax and mean distance between consecutive SNPs, in basepairs
cAverage of pairwise estimates of windows of five markers
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Figure S1) that constituted the vervet STR genetic map
[3], deriving the physical position of these STRs from the
vervet reference assembly. We then estimated the prob-
ability of IBD between all pairs of vervets, including mon-
keys without sequence data (estimated using pedigree
connections), at 1-cM intervals through the genome, for a
total of 2,899 estimates for each pair of monkeys. The
MIBD estimates are available upon request.
Discussion
The completion of the WGS of 721 VRC monkeys and
the generation of the SNP sets reported here will enable
genome-wide genetic analyses of numerous quantitative
traits already assessed in this pedigreed colony.
The development of this sequencing-based resource

will almost certainly be followed in the very near future
by similar mapping tools in large pedigrees in other NHP
species, including rhesus macaques [8] and baboons [9].
As many of the traits assayed in the VRC are also available
in these pedigrees, high-resolution comparative analyses
to elucidate genotype-phenotype relationships may soon
be feasible.
Unlike the pedigrees sequenced in other NHP species,

the VRC derives from a clearly demarcated and homoge-
neous ancestral population, that of the more than 50,000
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feral vervets resident on St. Kitts and Nevis [2]. Because
the monkeys used to found the VRC were trapped from
numerous sites across these small islands, it is hypothe-
sized that the VRC variant catalogue incorporates most
of the genetic variation represented in the island popula-
tions. This expectation is particularly applicable to the
SNP sets, given the initial prerequisite that SNPs
included in these sets displayed a MAF of > 25 % in the
17 high coverage monkeys. As DNA samples, biomate-
rials, and phenotype data are already available for nearly
800 island monkeys, and collections there are ongoing,
it may soon be possible to conduct GWASs or fine-
mapping association studies in these population samples
by analyzing the SNPs identified in the VRC [2, 5]. Be-
cause the samples available from the island vervet popu-
lations are more independent from one another than the
VRC samples sequenced to date, it will be possible to
more accurately delineate blocks of LD, genome wide.
This delineation will enable the modification of the
current 500K association panel, to ensure that future
GWASs adequately tag these blocks.
Further analyses of the already obtained VRC WGS

data will add in other important ways to the genetic ana-
lysis resources described here. First, we anticipate that
the vervet genome assembly will undergo further refine-
ment; as a result, we will obtain a more complete delin-
eation of vervet structural genomic variation and also
close current gaps in SNP coverage. Second, we will
soon be able to use the vervet gene annotation to predict
the functional impact of coding variants, for example, to
identify missense variants predicted to have a deleterious
effect. Given the extensive inbreeding loops within the
2,000-monkey VRC pedigree and its rapid expansion
from 57 founders, we hypothesize that many such vari-
ants that may have been carried by only a single founder
could now be relatively frequent among the 721 se-
quenced VRC monkeys. Such variants could be the
starting point for “phenome screening” of the VRC to
identify traits on which they may have a substantial im-
pact [10]. To conduct such studies we will need a high
degree of confidence in the calling of such variants and
the assignment of genotypes, particularly in those
monkeys sequenced at intermediate and low depths; to
obtain such confidence, we will re-sequence several
hundred VRC monkeys using an independent method
(targeted capture of multiple genome regions) and then
evaluate concordance with the current genotypes. Fi-
nally, we predict that this resource will enable the ex-
tension to vervet of evolutionary analyses that, among
primates, have to date mainly been limited to humans
[11]. By quantifying, in the vervet genome, segregating
mutation rates for different classes of variants (for ex-
ample, those that are protein coding, regulatory, or re-
petitive), we may obtain a clearer picture of similarities
and differences between the evolutionary histories of
humans and NHPs.

Conclusions
We have demonstrated the effectiveness of a strategy
that combines high, medium, and low coverage WGS for
generating the first high-resolution genome-wide SNP
resource for an NHP species. This resource will enable
linkage and association studies that take advantage of
the rich phenotype data available for large samples of
Caribbean-origin vervet monkeys.

Methods
Overview of WGS strategy and methods
We selected, in two phases, 725 monkeys for WGS from
a total of 1,138 VRC monkeys with DNA available in the
Biological Sample Repository at UCLA. In the prelimin-
ary study phase we selected 105 monkeys for initial
WGS, to evaluate the relationships among sequencing
depth, variant identification, Mendelian error rate, and
pedigree structure. The monkeys selected for the prelim-
inary study included i) four monkeys for high coverage
(about 30×) WGS from the surviving generation that was
closest to the VRC founder generation, all having multiple
(14–115) descendants available for WGS; and ii) 101 mon-
keys for medium coverage (about 4–6×) WGS from “mid-
dle” generations, emphasizing either those with multiple
descendants available for WGS or those with extensive
biological samples available for phenotypic investigations.
We then selected for sequencing in the next phase of

the project an additional 620 monkeys, chosen based
either on i) their having multiple descendants or ii) their
having been assessed for ≥ 7 phenotypes or having mul-
tiple biological samples available. Results from analysis of
the preliminary study enabled us to devise an algorithm to
rank these 620 monkeys for assignment to high coverage,
medium coverage, and low coverage (about 1×) WGS,
where monkeys with a higher rank would be sequenced at
greater depth than monkeys with a lower rank.
We identified segregating sites in 17 high coverage

(30×) monkeys and then called genotypes at these sites
in the full set of 725 monkeys (105 + 620). We then
conducted a series of filtering steps to ensure that we
were retaining high-quality, polymorphic sites, including
genotype calling that incorporated linkage disequilib-
rium (LD) and Mendelian constraints. By thinning these
filtered high-quality sites to remove markers with redun-
dant genetic information (based on LD), we generated
the final association and linkage SNP sets. The following
sections provide details of all steps.

Generation of WGS data
We generated the WGS data for 725 monkeys from
genomic DNA provided by the Systems Biology Sample
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Repository at UCLA. We have generated 100 base pair
short read sequences on the Illumina HiSeq2000 instru-
ment from short insert libraries (200–400 bp) for 725
vervets at The Genome Institute (TGI) at Washington
University in St. Louis and the McGill University and
Genome Quebec Innovation Centre. We have submitted
all WGS sequences to the Sequence Read Archive (SRA)
under the NCBI BioProject number PRJNA240242.
Preliminary study
Read mapping of preliminary sequence data and refining
genotype calls
We followed the published protocol of the 1000 Ge-
nomes Project [12] for read mapping of the 105 WGS
produced in the preliminary study, with minor modifica-
tions related to read trimming detailed in Additional file 3:
Supplementary methods Initial variant calling of the align-
ment files used SAMtools [13]. Due to the size and com-
plexity of the VRC pedigree, we were unable to refine
these genotype calls using pedigree-aware methods such
as Polymutt [14]. We therefore broke the pedigree into
units (trios and parent-offspring duos) that could be ana-
lyzed with the programs TrioCaller [15] and Beagle 4.0
[16]. We broke full sibships into distinct trios by replicat-
ing parental information. Similarly, for male monkeys who
have had offspring with multiple different female mon-
keys, we replicated this information for each offspring.
With the pedigree broken into trios, duos, and single-

tons, we used Beagle to first obtain a pedigree-specific
haplotype reference panel from the distantly related high
coverage monkeys. We then used this reference panel to
phase and impute genotypes of all sequenced members
of the pedigree. Finally, we used TrioCaller to refine pre-
vious haplotypes by incorporating trio constraints and
read depth information.
After this step we derived two consensus haplotypes

for each monkey, splitting replicated haplotypes from
the same monkey into two clusters, corresponding to
two chromosomes, based on the Hamming distance be-
tween haplotypes. Within each cluster we built a consen-
sus haplotype by accepting the majority call at each locus.
We applied the above procedure only to SNPs on auto-
somes, as the Mendelian transmission model of Beagle
and TrioCaller is not applicable to chromosomes X and Y.
Down-sampling analysis to determine coverage strategy
We used the preliminary data to evaluate the impact of
WGS coverage in monkeys, in relation to their position
within the pedigree, by conducting analyses of down-
sampling (reducing the coverage of a monkey, in silico,
to a prespecified level). We considered parent-offspring
units for this analysis and determined the relative import-
ance of selected parents, compared to their offspring, in
influencing the accuracy of genotype assignments. We
then extrapolated the results to the entire pedigree.
The down-sampling analysis included three in silico

experiments, each repeated three times, on preliminary
WGS data. All three down-sampling experiments in-
volved reducing the coverage of one trio with the best
available coverage (father sequenced at 30×, mother at
4–6×, offspring at 4–6×) to three different settings. To
down-sample the level of coverage of one monkey in
silico to the prespecified target coverage, we uniformly
sampled a fraction (target-coverage/existing-coverage) of
all its existing sequencing reads that had been aligned to
a reference genome; this step generated a new alignment
file with reduced coverage. We left the alignment files of
other monkeys in the pedigree unchanged, and then ap-
plied the same calling procedure as that described above
to this revised set of 105 alignment files. We then calcu-
lated and compared the Mendelian error rates and geno-
type concordance rates before and after down-sampling.

Sequence coverage ranking
The down-sampling experiment enabled us to evaluate
the effect of sequencing coverage on SNP Mendelian
error rates in the context of a pedigree, and results
suggested that a ranking strategy, based on the number
of a monkey’s direct descendants, would be useful to de-
termine sequence coverage of the remaining 620 mon-
keys. The rank of a monkey would reflect its importance
in holding down the error rate of SNPs of all sequenced
monkeys, not just the error rate of the monkey with its
offspring/parents. We devised a greedy algorithm to
rank monkeys in terms of the impact that their sequen-
cing would have on the frequency of errors in SNP
calling, over the entire pedigree. We applied this algo-
rithm to all 725 monkeys, assigning the 620 monkeys
not yet sequenced to different sequencing coverage clas-
ses based on the ranking. This procedure involved the
following steps:

1) Construct the pedigree as a directed graph. Each
node represents a monkey. Each edge goes from one
parent (father/mother) to a child. Remove monkeys
that will not be sequenced.

2) Initialize an empty set (child-set). It will store the ID
of monkeys for whom one parent has been already
ranked. No identical IDs are stored in it.

3) Start with the monkey that has the most direct
descendants. Assign that monkey “rank 1” and add
its direct descendants into the offspring-set.

4) Select as “rank 2” the remaining monkey that would
most increase the size of the offspring-set; if there
are ties (contribution to the offspring-set is identical
for >1 monkey), older monkeys are given lower rank.

5) Stop when there are no monkeys left to be ranked.
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Execution of the sequencing strategy
Sequence alignment of combined data
We conducted read mapping, as described above, of the
entire set of 725 WGS monkeys; this step included re-
mapping of the 105 monkeys from the preliminary
study, described above, given updates to the reference
genome assembly since we had produced the data from
that study. We performed read mapping for the entire
set using the final pre-submission version of the Vervet
Reference Genome, consisting of 2,199 scaffolds, and
followed the procedures described above for read trim-
ming, alignment, and marking of duplicates.
Additionally, we then performed a base quality score

recalibration, and local indel realignment procedures
[17]. Because a set of known variants is not available in
vervets, we generated an initial “bootstrap” set of SNP
and indel variants by running SAMtools on 82 monkeys
with coverage >=10× and filtering out all loci outside of
a twofold median-depth range or missing fraction more
than 50 %. We then input the positions of these loci to
GATK’s Base Quality Score Recalibration (BQSR) and
local-indel realignment procedures [17].

Stage 1: Identify unequivocal segregating sites from 17 high
coverage monkeys
To assemble SNP sets for linkage and association ana-
lyses, we wished to include only highly polymorphic and
reliable variants. We therefore focused on identifying such
polymorphic variants among the most deeply sequenced
monkeys. We used a local-assembly-based haplotype
caller, Platypus [18], to discover variants from alignment
files of 17 high coverage (HC) monkeys. This caller, unlike
single-site callers (SAMtools and GATK’s UnifiedGenoty-
per) used in the 1000 Genomes Project, employs two mea-
sures to reduce genotyping errors: 1) It assembles reads
within a window (set to 500 Kb in our case) into two hap-
lotypes and then discovers variants by comparing the as-
sembled haplotypes and the reference genome; 2) by local
haplotype assembly, it corrects the indel-induced local
wrong alignment and excludes wrongly placed reads from
the assembled haplotypes. We applied a series of filters
(described in Additional file 3: Supplementary methods)
to the sites identified in the 17 HC monkeys to reduce the
set of variants passed on to Stage 2. Importantly, to retain
polymorphic markers that would be the most useful in
genetic mapping, we filtered out variants with minor allele
frequency (MAF) < 25 % in the set of 17 HC monkeys. As
we selected these 17 HC monkeys primarily because they
are ancestral to a substantial proportion of the current
pedigree, we considered it likely that variants observed
in only one or a few monkeys in this set would not be
well represented in the pedigree overall. We therefore
implemented this relatively high MAF filter to maximize
the identification of variants that would be common
throughout the pedigree and therefore most useful for
genome-wide linkage or association analyses.

Stage 2: Assign genotypes at the SNPs to all monkeys, using
SAMtools, with refinement using TrioCaller and Beagle
We used SAMtools to assign genotypes to all 725 se-
quenced monkeys, at the SNPs identified in Stage 1. As
described for the preliminary study, we subsequently re-
fined SAMtools calls with methods that used LD and
Mendelian constraints (TrioCaller and Beagle). We then
discarded loci whose coverage is outside the twofold
range of global median coverage, loci whose minor allele
frequency is below 10 % (as estimated in the full set of
725 monkeys), and loci with >=50 % missing calls.
We lifted over the scaffold-based coordinates of VRC

SNPs retained in Stage 2, from the pre-submission version
of the reference assembly, to the chromosome coordinates
of the NCBI-released version (Chlorocebus_sabaeus 1.1,
GCA_000409795.2), using GATK’s LifeOverVariants pro-
cedure. We applied additional filters to remove SNPs with
questionable positions (details are given in Additional
file 3: Supplementary methods).

Stage 3: Sample-level QC of WGS data and refinement of
pedigree structure
Once we had obtained genotypes for all 725 monkeys at
the variant sites identified in the 17 high coverage mon-
keys, we performed sample-level QC to identify possible
sample mix-ups or contamination. Using PLINK [19],
we LD-pruned the SNPs that passed Stage 2, employing
a very low LD threshold (pairwise r2<=0.1, window size=50,
shift=20). We then estimated the pairwise IBD sharing for
all pairs of monkeys using this set of roughly independent
SNPs. We then compared the PLINK IBD estimates with
the kinship estimates that were entirely based on the pedi-
gree structure, as estimated by SOLAR [20], and identified
those monkeys frequently involved in discordant pairs. We
also checked the genotype concordance between the WGS
SNP set and a dataset of SNP genotypes, generated previ-
ously, using independent methods, for fine mapping of
QTL in the VRC [4]; for this comparison we used 415
monkeys for which we had genotypes from both the WGS
SNPs and the previously generated SNPs.
At the start of the WGS studies, parentage was known

for monkeys born prior to 2008; this information derived
from microsatellite-based genotyping [3] together with
observational data. For monkeys born during or after
2008 (N=174) we attempted to identify parentage using
the pairwise IBD relationships (estimated with WGS data
as described above) between these monkeys and all others.
To assign parentage we required: 1) identification of

levels of IBD sharing expected between parent-offspring,
with at most one monkey of each gender demonstrating
such a level of sharing to monkeys of unknown
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parentage; 2) for mothers, concordance between the
WGS IBD information with data from colony records on
observed mother-infant behavior; 3) for fathers, con-
cordance between WGS IBD information and data from
colony records indicating a set of possible fathers (based
on their sharing housing with the mothers and infants in
question); 4) a plausible age difference between putative
parents and offspring (within a range of 4–15 years).
Stage 4: Generating the final SNP mapping sets and
multipoint IBD files
After removing data from samples suspected of contam-
ination or mislabeling, and updating the pedigree based
on newly identified parent-offspring relationships, we re-
peated the genotype call refining (Beagle + TrioCaller)
step, described in Stage 2. We then applied the following
filters to generate our final mapping sets: 1) removed
SNPs with >=5 Mendel errors between parents and
offspring; 2) removed SNPs with excess heterozygosity
(heterozygous fraction>0.6); 3) marked the remaining
(sporadic) parent-offspring Mendelian-error genotypes
as missing; 4) removed SNPs with missing rate >5 %.
We then thinned the SNP dataset to generate two genetic

mapping marker sets, one appropriate for association
(retaining SNPs with pairwise r2<=0.9) and one appropriate
for linkage mapping (retaining SNPs with pairwise r2<=0.4).
In conducting the pruning for both marker sets we used
PLINK, with window size=50 and shift size =20. Lastly we
used PedCheck [21] to detect SNPs that showed pedigree-
wide Mendel errors and removed them from both mapping
sets. We deposited in NCBI the WGS-based genotype data
from 721 VRC vervets (used to construct the 500K and
150K SNP mapping sets); these data are publically available
under BioProject PRJEB7923, and browsable at [22].
To further enhance the utility of the SNP sets, we used

LOKI [23] to construct multipoint identity by descent
(MIBD) files. These files summarize the probability that,
at a particular location in the vervet genome, a pair of
sequenced monkeys share genotypes IBD. These esti-
mates are the basis for multipoint variance component
linkage analysis in SOLAR, the most widely used ap-
proach for pedigree-based QTL analysis. In order to
evaluate MIBD, which is very computationally intensive,
we used LD pruning to obtain a subset of SNPs from the
linkage mapping SNP set. This reduced set of markers
was adequate for MIBD evaluation, as the close connec-
tions among the inbred pedigree has led to IBD sharing
over long chromosomal segments.
Additional files

Additional file 1: Table S1. Presents target read depth and actual read
depth for sequenced animals.
Additional file 2: Figure S1. Presents the number of SNPs in intervals
between STR markers from the initial vervet genetic map.

Additional file 3: Supplementary methods.
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