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Abstract

Background: Culex univittatus and Culex perexiguus mosquitoes (Diptera: Culicidae) are competent arbovirus vectors,
but with unclear morphological differentiation. In Europe, and in the Iberian Peninsula in particular, the presence of
either or both species is controversial. However, in order to conduct adequate surveillance for arboviruses in this
region, it is crucial to clarify whether Cx. univittatus is present or not, as well as to critically assess existing differentiation
tools. This study aimed to clarify this situation, by morphological and molecular phylogenetic comparison of Iberian
specimens deemed as Cx. univittatus, with others of South African origin, i.e. from the type-locality region.

Methods: Thus, morphological characteristics useful to distinguish both species, such as midfemur pale line, hindfemur
R ratio, seta g R1 ratio, seta f shape, length of ventral arm of phalosome and number of setae on IX tergal abdominal
segment, were observed. A phylogenetic analysis based on cox1 mtDNA, of which there were no sequences from Cx.
univittatus yet available in the GenBank database, was performed.

Results: This analysis showed that Iberian and South African specimens are morphologically similar, except for the
length of the ventral arm of the phalosome, which was higher in the Iberian specimens. Although the Iberian
specimens could not be accurately identified using BOLD Systems, phylogenetic analysis still grouped these closer to
South African Cx. univittatus, than to Cx. perexiguus from Turkey and Pakistan, despite the observed segregation of both
taxa as two individual monophyletic clusters with shared common ancestry.

Conclusions: This survey demonstrates that the West Nile virus vector Cx. univittatus is present in the Iberian Peninsula.
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Background
Mosquitoes are responsible for the transmission of several
pathogens causing diseases with high morbidity and/or
mortality [1]. Among them, the genus Culex comprises
about 768 taxa, including some of the most ubiquitous, as
well as important vectors of human pathogens which, in
the present context of global warming and environmental
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changes, pose particular concern [1, 2]. Within the sub-
genus Culex lies the Univittatus subgroup, with four
closely related taxa that exhibit external morphological
similarities in all life stages [2, 3]: Culex (Culex) univitta-
tus Theobald, 1901, Culex (Culex) perexiguus Theobald,
1903, Culex (Culex) neavei Theobald, 1906 and Culex
(Culex) fuscocephala Theobald, 1907, the latter being an
Oriental species [2]. Culex univittatus is a competent vec-
tor of arboviruses with public health importance, such as
West Nile, Sindbis and Usutu viruses, in South Africa [4].
Culex perexiguus has also been found infected with West
Nile, Sindbis and/or Usutu viruses, in Israel, Egypt and
Saudi Arabia (reviewed in [3]). Culex univittatus/
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perexiguus was found as competent vector for West Nile
in Portugal, Italy and Spain [5–7]. Culex neavei from
South Africa seems to be a less competent vector of both
West Nile and Sindbis viruses [8]. The methods of mos-
quito species identification in these viral surveys were not
always stated, as referred below. However, this group has
been subjected to extensive systematic treatment, with
some taxa sunk under synonymy, or considered forms or
varieties, until finally Cx. perexiguus was reinstated to full
species rank [3, 9], as was Cx. neavei [8–10]. Thus, White
[9] proposed a differentiation key that, based on the
morphological studies by Jupp [10], indicates that analysis
of morphological characters such as mid and hind femurs,
and male genitalia, would allow the separation of Cx. uni-
vittatus, Cx. perexiguus and Cx. neavei. The characters
used to distinguish Cx. univittatus and Cx. perexiguus are
summarized in Additional file 1.
Culex univittatus, originally described from Salisbury,

Zimbabwe (lectotype designated by White [9]), is widely
distributed in the temperate highlands of the Afrotropical
region, particularly in southern and eastern Africa, in
countries such as Angola [11], Ethiopia, Kenya,
Zimbabwe, South Africa and Madagascar [9, 10, 12], and
Yemen, in the south-western corner of the Arabian Penin-
sula [3]. However, the occurrence of this species in the
lowlands of western Africa, in countries such as Benin,
Niger and Burkina Faso [9, 10, 12] has been considered
controversial [3]. Culex perexiguus extends throughout
the arid areas of West, North and East Africa, across the
Sudan savannah belt, Mediterranean basin, Middle East,
and south-western Asia, extending eastwards into India
[3, 9, 13]. The distribution of Culex neavei is also some-
what controversial, occurring throughout the subtropical
and tropical lowlands, either just in southern Africa,
Reunion and Madagascar [9], or south of the Sahara [3].
The presence of Cx. univittatus in Europe has been

the subject of controversy. It was reported for the first
time in Portugal, by Ribeiro et al. [14], and in Spain, by
Encinas-Grandes [15]. These reports included a thor-
ough morphological analysis of adults of both sexes as
well as larvae, and a sound systematic discussion.
However, after examination of specimens from southern
Europe (Italy and Greece) and Middle-East (Turkey),
based on characteristics of the male genitalia and larvae,
Harbach [13] found that these appeared to be Cx.
perexiguus, and concluded that the species within the
Univittatus subgroup that “occurs in southern Europe
should be regarded as Cx. perexiguus rather than Cx.
univittatus”. Recent molecular studies based on the ana-
lysis of mitochondrial cox1 gene confirmed the presence
of Cx. perexiguus in Turkey [16].
Later surveys, usually focused on arboviruses, carried out

in the Iberian Peninsula have recorded Cx. univittatus both
in Portugal and Spain [17–21], by general external
morphological identification, based on the findings of either
Ribeiro et al. [14] and Encinas-Grandes [15], but without
confirmation by the study of male genitalia. Likewise, Cx.
perexiguus has also been recorded in Portugal [22] and in
Spain, [23–27], albeit without any mention of particular
morphological analysis or how the material was identified,
and often exclusively based on the distribution criteria de-
scribed by Harbach [3, 13]. Nevertheless, other authors
[28–30] identified Cx. perexiguus by studying male geni-
talia, confirming its presence in Spain. The paucity of mo-
lecular data concerning these two taxa is also striking. The
Barcode of Life Data Systems database (BOLD) [31] does
not bear public sequences of either taxon, originating from
Europe. Furthermore, the absence of cox1 sequences of Cx.
univittatus in the GenBank database is notable, with only 8
sequences of Cx. perexiguus from Turkey and Pakistan.
Culex univittatus and Cx. perexiguus are considered

mainly ornitophilic, although Cx. univittatus feeds also
on humans, and more frequently than Cx. perexiguus,
thus presenting a higher potential for arboviruses trans-
mission between birds and humans or other mammals
[3]. Furthermore, they also present different breeding
place preferences, with Cx. univittatus immature stages
found only in freshwater natural biotopes, while Cx.
perexiguus tolerates moderate pollution or salinity and
also use artificial containers [3]. In the Iberian Peninsula,
Cx. univittatus is deemed as mainly ornithophilic, but
also mammo- and particularly anthropophilic [14, 15].
However, Cx. perexiguus in Spain seems to be primarily
ornithophilic and less mammophilic [26, 28] or precisely
the opposite [27]. Thus, the body of evidence for each of
these species vector competence, bionomic features, vec-
torial capacity and transmission efficiency, is still lacking
particularly in this geographic region. Due to these dif-
ferences and to the presence of arboviruses with medical
importance such as West Nile and/or Usutu in Portugal
and Spain [5, 7], the clarification of whether only Cx.
univittatus or Cx. perexiguus or both species are present
in the Iberian Peninsula, is imperative for the operation
of surveillance programmes in this region. These pro-
grammes must accurately identify the presence and rela-
tive abundance of every vector species.
Therefore, the purpose of this study was to simultan-

eously use cox1 mtDNA as a molecular marker, coupled
with a morphological analysis, including that of male
genitalia, to identify specimens of Univittatus subgroup
in the Iberian Peninsula, in order to ascertain which of
its species is/are present in the extreme of western
Europe, contributing to the clarification of earlier con-
flicting results. In parallel, these specimens were com-
pared with specimens from the highlands of South
Africa, also known as the Highveld, where Cx. univitta-
tus is the only species of this subgroup known to occur.
To the best of our knowledge, the studies that involved
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the analysis of mosquitoes collected in the Iberian
Peninsula have neither used molecular data to corrobor-
ate the identification of these two species, nor combined
this approach with morphological analysis.

Methods
Mosquito selection
Mosquitoes (n = 80) tentatively identified as Cx. univittatus,
were collected in Portugal (n = 47) (districts of Santarém
and Setúbal), between 2010 and 2013; in Spain (n = 15)
(Extremadura Region) between 2012 and 2013; and in
South Africa (n = 18) (Gauteng and Limpopo Provinces) in
2014 (Fig. 1), either by CDC miniature light-traps,
Fig. 1 Map with the three main areas of study, Portugal, Spain and South
mechanical hand aspirators (indoor resting mosquitoes), or
tent traps (Additional file 2). Captured specimens were ini-
tially stored at -20 °C, brought to the respective laboratories
and observed under a stereomicroscope and morphologic-
ally identified according to keys of Ribeiro & Ramos [32]
for Portugal, of Becker et al. [1] for Spain, and of Jupp [33]
for South Africa. While females were stored again at -20 °C
until DNA extraction to be used for pathogen screening,
males (n = 22) were kept in silica gel (Additional file 2).

Morphology study and data analysis
Specimens were observed according to the keys of
White [9] for the Univittatus subgroup. However, as
Africa
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many of these mosquitoes had already been used for
pathogen screening, or were physically damaged, mor-
phological characterization could only be done in a sub-
sample of all the collected specimens. Critical to
observe, included the presence or absence of a pale
stripe in mid femur and determination of hind femoral
index (R) (percentage of its length taken by the dorso-
anterior black stripe) [10].
Male terminalia were sectioned from the abdomen and

immersed in Marc André solution [34], for 5 days at
room temperature. When clarified, genitalia were dis-
sected under a stereomicroscope, in solidifiable formic
acid-PVA mounting medium [34], and mounted between
slide and cover slip. Gonocoxites were separated and, in
each one, two structures were observed in its subapical
lobe: (i) seta f, whose tip was denoted as either thin/
unswollen (whether rounded or pointed), or wide/swol-
len (usually rhomboid and where the tip was much
wider than its “neck”, c. ≥ 2.5× its “neck”) [10]; (ii) seta
g, also known as “the leaflet”, for which R1 index was
calculated, as the ratio of the greatest width (s) to the
length (l), expressed as a percentage (s/l*100) [10].
In the phallosome, the length of the ventral arm (VA)

(also known as outer division or spine), as well as the
width of the lateral plate (LP) (also known as aedeagal
plate), at the point of attachment of the former, were
measured. Based on the fact that Cx. univittatus has a
long spine-like VA, reaching beyond the caudal margin
of LP [3], a ratio was calculated, consisting of VA/LP.
The ninth abdominal segment was also dissected,
mounted and the number of setae on its dorsal or tergal
side, recorded.
Slide mounts were observed with Nomarski differential

interference contrast under an Olympus microscope
(BX51), and photographed with an Olympus SC30
digital camera. Normality of data distribution was
assessed with Kolmogorov-Smirnov, and Shapiro-Wilk
tests, and homogeneity of variances with Levene’s test.
Student’s t-test and Mann-Whitney U-test, were used to
compare means or medians, respectively, whether the
data had normal distribution and homogeneity of vari-
ances, or not, respectively. Fisher’s exact test compared
discontinuous or ordinal variables, such as the frequency
of specimens with seta f, whose tip was denoted as either
thin/unswollen or wide/swollen. The statistical package
SPSS 20.0 [35] was used. Beeswarm graphs (one-dimen-
sional scatter) of seta g R1 ratio and VA/LP ratio, from
both groups of specimens were plotted using the
Beeswarm R package (version 0.2.3) to the R statistical
software (version 3.2.4) [36].

DNA extraction and amplification of cox1 mtDNA
Genomic DNA was extracted using the CTAB (Cetyltri-
methylammonium bromide) method, as described by
Ferreira et al. [20]. Phenol/chloroform/isoamyl alcohol
was used for DNA purification. DNA was ethanol pre-
cipitated and suspended in TE buffer (pH 7.0) and
stored at -20 °C until use. Negative controls were per-
formed for each extraction procedure.
Amplification of cox1 mtDNA from both male and fe-

male specimens was performed using LCO1490 and
HCO2198 specific primers, described by Folmer et al.
[37]. PCR was performed in 20 μl reaction mixture con-
taining GreenGoTaq® Flexi Buffer (Promega), 5 mM of
MgCl2 (Promega), 0.2 mM of each dNTP (Promega), 0.3
pM of each primer, 0.04 U/μl of GoTaq® DNA Polymerase
(Promega) and 1 ng/μl of template DNA. The thermal
cycler was set at 95 °C for 5 min, followed by 40 cycles of
denaturation for 30 s at 95 °C, annealing for 30 s at 48 °C,
extension for 45 s at 72 °C, and a final extension for 5 min
at 72 °C. The amplified products of approximately 650 bp
were analysed by electrophoresis in 1.5% agarose gels
stained with Ethidium bromide and observed under UV
light.

DNA sequencing and sequence analysis
PCR products amplified from each sample were puri-
fied with the QIAquick PCR Purification Kit (Qiagen
GmbH, Hilden, Germany) and sequenced by GATC
Biotech AG or STAB VIDA in forward and reverse
senses, using the same primers as for the PCR. Se-
quences were edited in Chromas Lite 2.1.1 (Technely-
sium Pty Ltd) and consensus sequences for each
forward/reverse pair were created in BioEdit [38], using
CLUSTAL-W version 2.0 [39]. The identity at the spe-
cies level was investigated based on the analysis of the
generated cox1 sequences, taking into consideration
both the higher similarity in the BOLD Systems identi-
fication tool (http://www.boldsystems.org/index.php/
IDS_OpenIdEngine), and results of homology searches
using the sequences deposited at GenBank (http://
www.ncbi.nlm.nih.gov/genbank/). All newly-generated
sequences were submitted to DNA Data Bank of Japan
(DDBJ) database (http://www.ddbj.nig.ac.jp) under
accession numbers LC088986–LC088999, LC100115,
LC102118–LC102131, LC102134–LC102136, and
LC102138–LC102162.
In order to better characterize our sequence dataset

using phylogenetic analysis, cox1 mtDNA sequences
from Culex mosquitoes were retrieved from GenBank
(accession numbers, origin and other information about
those sequences in Additional file 3). All sequences were
aligned using the online version of MAFFT (http://
mafft.cbrc.jp/alignment/server/index.html), with the G-
INS-i interactive refinement method, and taking into ac-
count alignment. Confidence score was inferred with
Guidance2 Server (http://guidance.tau.ac.il/ver2/). Only
regions or sequences with a score higher than 90% were
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considered to posterior analysis. A region of 637 bp
common to all sequences (as well as a smaller 287 bp in-
ternal fragment of the latter) were used for further ana-
lysis. MEGA 6 software [40] was used to identify
variable sites in the alignment.

Phylogenetic analysis
MEGA 6 software [40] was used to infer the best DNA
substitution model for phylogenetic analysis. Maximum
Likelihood trees were produced based on the Tamura
3-parameter formula [41], with heuristic searches based
on initial trees obtained automatically from Neighbor-
Joining to a matrix of pairwise distances estimated
using the Maximum Composite Likelihood approach.
Bootstrap coefficients were calculated for 10,000 repli-
cates. Estimates of evolutionary pairwise divergence be-
tween all sequences, between and within the defined
groups, were estimated using the Tamura 3-parameter
model [41].
Phylogenetic reconstruction (consensus tree) following

a Bayesian approach was also conducted using MrBayes
v3.0b4 [42], using the GTR + Γ + I model (GTR-General
Time Reversal; Γ-Gamma distribution; I-proportion of
invariable sites) and default priors. This analysis con-
sisted of 5 × 107 generations starting from a random tree
and four Markov chains with default heating values,
sampled every 100th generation. Two separate runs were
conducted for each analysis, and the first 10% sampled
trees discarded as 'burn-in’. Maximum Clade Credibility
trees were constructed using BEASTv1.7.5 [43], using
the GTR + Γ + I model, and as coalescent priors a con-
stant population size and a strict molecular clock. These
analyses were run for 1 × 108 generations starting from a
random tree with sampling at every 5,000th generation.
The results of two separate runs were combined using Log-
Combiner (available at http://beast.bio.ed.ac.uk/logcombi-
ner), and the first 10% discarded as 'burn-in'. For each case,
convergence was monitored with Tracer v1.6 (available
from http://beast.bio.ed.ac.uk/tracer), ensuring that ESS
values were above 200. The obtained phylogenetic trees
were manipulated for display using FigTree v.1.4.2. (avail-
able at http://tree.bio.ed.ac.uk/software/figtree/).

Results
Morphological study
All specimens in this study had been tentatively mor-
phologically identified as Cx. univittatus according the
keys of White [9] and Jupp [10]. Curiously, upon obser-
vation of 49 specimens, 62.5% (20/32) from Portugal and
Spain (PT & SP), and 58.8% (10/17) from South Africa
(SA) displayed a clear continuous pale stripe in mid
femur, while 21.9% (7/32) PT & SP, and 35.3% (6/17)
from SA had an interrupted but clear line, while 15.6%
(5/32) from PT & SP, and 5.9% (1/17) from SA had no
line at all (Additional file 2). The presence and form of
this character was therefore not significantly different
between these two samples, Fisher’s exact test = 1.52,
P = 0.414, two-sided exact significance.
As to the R hind-femoral index (n = 31), specimens from

PT & SP had a mean of 82.7% (95% CI: 77.8–87.6, range
60–98, n = 16), and specimens from SA had a mean of
81.96% (95% CI: 76.7–87.2, range 66–95, n = 15), hence
not significantly different (Student’s t = 0.22, df = 29, P =
0.83, 95% CI for the difference: -6.15–7.61).
Dissected genitalia from 22 males, 11 from Portugal

and 11 from South Africa (the sample from Spain did
not include males), were analysed (Fig. 2; full collection
of photographs in Additional file 4). The tip of seta f was
thin in 89.5% and swollen in 10.5% of Portuguese speci-
mens versus thin in 75% and swollen in 25% of South
African specimens, hence not significantly different,
Fisher’s exact test 2-sided P = 0.407, n = 39 (see
Additional file 5 for all data).
Leaflet or seta g R1 ratio [10] varied between 32 and

54%, mean 45% (± 0.07 SD), for Portuguese specimens,
and 34–57%, mean 45% (± 0.05 SD), for South African
specimens (Fig. 3a), hence not significantly different be-
tween these two populations; Student’s t = 0.15, df = 33,
P = 0.8 (see Additional file 5 for all data).
For the phallosome, the ratio of the length of the ven-

tral arm (VA) over the width of the lateral plate (LP) at
the point of attachment of the former, VA/LP, varied be-
tween 1.235–1.746, mean 1.451 (± 0.17 standard devi-
ation, SD) for Portuguese specimens, and from 1.081–
1.529, mean 1.321 (± 0.13 SD) for the South African
specimens (Fig. 3b). This difference was shown to be sta-
tistically significant by Student’s t-test [t = 4.18, df = 42,
P < 0.001, 95% CI of the difference: 0.09–0.27 (data with
normal distribution and homogeneity of variances)] (see
Additional file 5 for all data). A scatter diagram of paired
values of seta g R1 index and VA/LP ratio is plotted in
Fig. 3c, showing an overlap of these compound ratios for
the two population samples.
The ninth tergal lobe had 8–11 (median 9) setae for

Portuguese specimens, and 7–15 (median 10) setae for
South African specimens (Fig. 2). This difference, how-
ever, was not statistically significant, using the Mann-
Whitney U-test (U = 262, P = 0.286) (see Additional file
5 for all data).

cox1 mtDNA amplification and sequence analysis
From all 80 specimens, it was only possible to have good
cox1 mtDNA amplification for 56 samples (Additional
file 2). From these specimens, consensus sequences were
obtained and examined in BLASTn and BOLD System.
Their analysis with BLASTn revealed homologies ran-
ging between 90 and 96% with cox1 sequences of Cx.
perexiguus (accession numbers: KJ012105.1, KF406802.1,

http://beast.bio.ed.ac.uk/logcombiner
http://beast.bio.ed.ac.uk/logcombiner
http://beast.bio.ed.ac.uk/tracer
http://tree.bio.ed.ac.uk/software/figtree/


Fig. 2 Dissected and mounted genitalia of male Cx. univittatus from South Africa (a-c; specimen SAfr-GAU-117-w3) and Cx. univittatus from
Portugal (d-f; specimen Port-2630.69/3435). Gonocoxites with g and f setae (a, d; magnification 100×), phalosome (b, e; magnification 200×) with
ventral arm (VA) and lateral arm (LA), and ninth segment tergum (c, f; magnification 200×) with setae (S). Scale-bars: a, d, 100 μm; b, c, e,
f, 50 μm
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KJ012109.1), worthy of being noted the absence of cox1
sequences of Cx. univittatus in the GenBank database
(the only sequence found for Cx. univittatus in GenBank
was a 375 bp mtDNA sequence from 12 NADH de-
hydrogenase subunit 4 gene, accession number:
EF030093.1). Therefore, BLASTn could not allow an ac-
curate identification of our samples, as even with the
MegaBlast option implemented, sequence homology
values of 96% do not allow for clear-cut species
identification.
When submitted to the BOLD System identification

tool, all the sequences from South Africa presented
more than 98.46% similarity with Cx. univittatus
sequences, though for the great majority of them (all
but 3), sequence similarity values with Cx. univittatus
was equal or higher than 99.23%. Thus, all samples
from South Africa were considered as Cx. univittatus
by the BOLD system platform (Additional file 2). Se-
quences from the Iberian Peninsula, in BOLD System
platform revealed similarities with Cx. univittatus that
varied from 97.22 to 98.01%. After these higher simi-
larities, in 21 samples, the next matches corresponded
to sequences of Cx. univittatus, and then, to Cx. per-
exiguus (in this order) (Additional file 6). However, in
7 samples from Portugal, as well as in all samples from
Spain, this order was inverted, with higher similarity



Fig. 3 Beeswarm scatter plots (a, b), and Scatter diagram (c). Gonocoxite’s leaflet or seta g R1 ratio [10] (a) and phallosome’s ratio of the length of
the ventral arm (VA) over the width of the lateral plate (LP), at the point of attachment of the former, VA/LP, from Portuguese and South African
mosquitoes (b). All ratios for individual structures are plotted. The horizontal lines show the 25, 50 and 75% quartiles. Scatter diagram of g R1 ratio
versus VA/LP ratio of mean values for each specimen (c)
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corresponding to Cx. univittatus, immediately followed
by similarities (< 97%) with Cx. perexiguus (Additional
file 2), and thereafter to Cx. univittatus again. There-
fore, it was not possible to clearly identify the Iberian
specimens as Cx. univittatus or Cx. perexiguus. How-
ever, in phylogenetic trees obtained through BOLD
Systems identification, our sequences appear clustering
with Cx. univittatus sequences, and in a different clade
of Cx. perexiguus sequences, including 4 sequences
from Spain (Additional file 6).
Phylogenetic analysis
Additionally, a 637 bp region of the alignment obtained
was analysed, leading to the finding of 76 polymorphic
sites in sequences from the Univittatus subgroup (Add-
itional file 7). Those polymorphisms revealed the exist-
ence of substantial differences between sequences from
the Iberian Peninsula (Portugal and Spain), with respect
to other species from this subgroup, including Cx. uni-
vittatus from South Africa and Cx. perexiguus from
Turkey and Pakistan. From all 56 DNA sequences, only
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44 were considered for phylogenetic analysis, since all
sequences with less than 648 bp were excluded. All the
aligned positions with a Guidance score lower than 90%
were also excluded (Additional file 2).
By phylogenetic analysis (Fig. 4) it was perceptible that

sequences from Portugal and Spain are closer to each
other, forming a joint clade that groups the Iberian spec-
imens together (bootstrap value, BS = 97), which is a sis-
ter clade of another one which clustered the South
African sequences, considered as bona fide Cx. univitta-
tus (BS = 99). This monophyletic clade that reveals com-
mon ancestry for the Iberian and South African
sequences is only subsequently joined with that defining
Cx. perexiguus (BS = 93). Therefore, the analysis of cox1
coding sequences here performed strongly suggests that
Portuguese and Spanish specimens are closer to the
South African Cx. univittatus, than to Cx. perexiguus
from Turkey and Pakistan (Fig. 4). Furthermore, phylo-
genetic analyses carried out under a Bayesian frame-
work, as implemented in MrBayes (consensus tree with
default priors) or Beast (strict molecular clock and a
constant population size) confirmed the topology of the
ML tree. Both trees present identical topologies, for
which only the consensus tree is shown as Additional
file 8.
Our phylogenetic analysis also provides a clear differ-

entiation between all our sequences and those from
other Culex taxa, namely Cx. fuscocephala, another
member of the Univittatus subgroup. On the other hand,
no sequences of Cx. neavei were included as none were
available in GenBank. A second phylogenetic analysis,
including sequences of lesser quality, and from a smaller
part of the alignment (287 bp), but including more male
specimens, in relation to Fig. 4, with combined morpho-
logical genitalia analysis, corroborated these findings,
with only a slight decrease in bootstrap values and main-
taining the same tree topology (Additional file 9).
The analysis of pairwise distance values also indicates

that cox1 mtDNA sequences from Portugal and Spain
are very similar to one another, some comparisons re-
vealing sequence identity (genetic distance of 0), which
is in accordance with results from determination of
polymorphic sites presented in the previous section. Es-
timates of average evolutionary divergence over se-
quence pairs within groups (Additional file 10) allowed
the confirmation of low divergences within samples from
Portugal and Spain (0.001; standard error, SE 0.0), sup-
porting our decision to perform the analysis grouping
sequences from both countries. Estimates of evolution-
ary divergence over sequence pairs between groups
showed that sequences from Portugal and Spain have a
distance of 0.022 (SE 0.005) with sequences of Cx. uni-
vittatus from South Africa and of 0.042 (SE 0.008) with
Cx. perexiguus from Turkey and Pakistan (Table 1).
Discussion
The Univittatus subgroup of Culex spp. mosquitoes in-
cludes Cx. univittatus and Cx. perexiguus, which are
vectors of arboviruses such as West Nile, Sindbis or
Usutu. These viruses are responsible for various febrile
or neurological syndromes, either in humans or other
animals, in several countries of the northern and south-
ern hemisphere especially in Europe and Africa [4–8].
However, controversy has existed regarding which spe-
cies of this subgroup is/are present in Europe. In the
Iberian Peninsula, the presence of Cx. univittatus has
been documented [14, 15], while specimens from Italy,
Greece and Turkey were stated to be Cx. perexiguus [13,
16]. In the context of arboviral circulation [5–7], the
correct identification of infected/infectious species is
mandatory since all cascade of bionomical and epi-
demiological studies, as well as control strategies that
might be applied, depend on this knowledge.
In this study, comparative morphological and molecu-

lar analyses were carried out, based on the study of spec-
imens putatively identified as Cx. univittatus from
Portugal and Spain, as well as others previously identi-
fied as Cx. univittatus, from a region where this is the
only species of the Univittatus subgroup known to be
present (the Highveld region of South Africa) [10].
The morphological analysis revealed no significant dif-

ferences in the proportion of mosquitoes from either
population that possessed a continuous pale line on the
mid femur. Although this character is one of those used
to separate Cx. univittatus from both Cx. perexiguus and
Cx. neavei [9], contrary to what might be expected, Cx.
univittatus from the Highveld South Africa often have
an interrupted discontinuous pale line, possibly indicat-
ing that this feature should not be considered a deter-
minant or reliable character for the identification of this
species. The hind femoral R index which allows the dif-
ferentiation between Cx. univittatus and Cx. neavei [10],
was not different between these mosquito populations of
South Africa and Iberia Peninsula, either. Obviously, the
observation of both these characters is strongly condi-
tioned by the conservation status of the captured speci-
mens, which in CDC traps is often poor, hence should
be evaluated with caution.
In the males, the study of the genitalia, allowed us the

confirmation that the shape of the tip of seta f, the seta
g R1 ratio, and the number of setae in the ninth tergal
lobe, are also similar between the Portuguese and the
South African specimens. In the phalosome, although
the ventral arm seemed to be longer in Portuguese spec-
imens than in South African ones, the range of variation
was overlapping, and in any case would point further in
the direction of Cx. univittatus, rather than to Cx. perex-
iguus which has a short ventral arm [3, 9]. Altogether,
these morphological characters, particularly those from



Fig. 4 Phylogenetic analysis by Maximum Likelihood. The tree with the highest log likelihood (-2167.4061) is shown. The size bar indicates 0.02
substitutions per site. The analysis involved 84 nucleotide sequences, with a total of 637 positions in the final dataset. The tree has been rooted
using Ae. (Och) caspius as the outgroup. Abbreviations: SAfr, South Africa; Port, Portugal; Spai, Spain
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Table 1 Estimates of evolutionary divergence of cox1 over sequence pairs between groups. The analysis involved 84 nucleotide
sequences. Codon positions included were 1st + 2nd + 3rd + Noncoding. All positions containing gaps and missing data were
eliminated. There were a total of 637 positions in the final dataset. Data are presented as the mean followed by standard error
estimates in parentheses

Portugal and Spain 1 2 3 4 5 6 7

1 Cx. univittatus 0.022 (0.005)

2 Cx. perexiguus 0.042 (0.008) 0.044 (0.008)

3 Cx. fuscocephala 0.077 (0.011) 0.079 (0.012) 0.067 (0.010)

4 Cx. pipiens 0.084 (0.012) 0.087 (0.012) 0.087 (0.012) 0.076 (0.011)

5 Cx. quinquefasciatus 0.085 (0.012) 0.087 (0.012) 0.089 (0.012) 0.078 (0.011) 0.002 (0.002)

6 Cx. torrentium 0.085 (0.012) 0.088 (0.012) 0.088 (0.012) 0.077 (0.011) 0.028 (0.006) 0.031 (0.007)

7 Cx. theileri 0.075 (0.011) 0.078 (0.011) 0.072 (0.011) 0.093 (0.012) 0.065 (0.011) 0.068 (0.011) 0.059 (0.010)

8 Ae. caspius (outgroup) 0.148 (0.017) 0.138 (0.016) 0.140 (0.015) 0.142 (0.016) 0.126 (0.015) 0.125 (0.015) 0.125 (0.014) 0.134 (0.015)
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the genitalia, seem to indicate that the Iberian specimens
should be identified as Cx. univittatus, confirming previ-
ous studies [14, 15].
Identification of our samples through the BOLD Sys-

tems platform clearly assigned the South African speci-
mens as Cx. univittatus. Likewise, the sequences of
Turkish Cx. perexiguus from GenBank [16] were clearly
identified as Cx. perexiguus. For the Iberian specimens,
no sequence was clearly identified as either species, al-
though their higher similarity was always closer to Cx.
univittatus. Furthermore, trees generated through the
BOLD System identification tool showed a differenti-
ation of the sequences of Portuguese and Spanish origin
with respect to four sequences of Cx. perexiguus from
Spain. Although the latter were not available for further
sequence inspection, the separation between Cx. univit-
tatus and Cx. perexiguus was further reinforced by
phylogenetic analysis. However, in the Barcode of Life
Data Systems database [31], 184 sequences of Cx. perexi-
guus were referred with origins such as Jordan, Tanzania,
Turkey, Kenya, India and Pakistan, with no mention to
the existence of those Cx. perexiguus sequences from
Spain that appeared in the trees (http://www.boldsys-
tems.org/index.php/Taxbrowser_Taxonpage?taxon=culex
+perexiguus&searchTax= accessed on 28-6-2016).
Likewise, in BOLD Systems platform there are only 21

sequences of Cx. univittatus from Tanzania, 1 from
South Africa and 1 from Kenya. Therefore it is not sur-
prising that Iberian samples did not reach maximum
similarity or clear identification (http://boldsystems.org/
index.php/Taxbrowser_Taxonpage?taxon=culex+univit-
tatus&searchTax=, accessed on the 28-06-2016). These
results show one of the limitations of barcoding identifi-
cation that is the dependence on available similar se-
quences for evaluation. Other authors have also reported
some difficulties in distinguishing some mosquito close
related species by barcoding [44, 45]. Thus, the phylo-
genetic analysis based on the larger region of cox1
mtDNA performed in this survey was essential to clarify
the identification of Iberian specimens.
In order to perform a rigorous phylogenetic analysis

(637 bp cox1 fragment), some of the specimens were ex-
cluded from the dataset due to a low score in the align-
ment, or because of their reduced size. This latter reason
led to the absence from this so-called main-tree of some
sequences obtained from male specimens with morpho-
logical analysis associated. For that reason, a second tree
corresponding to the analysis of a smaller fragment size
(287 bp) was generated. While the number of species
differs in both datasets (e.g. Cx. fuscocephala is absent
from one of them) the resulting sequence-clustering pat-
tern (tree topology) remained generally congruent with
that of the main-tree. Altogether, the phylogenetic ana-
lyses here presented allowed the distinction between all
the known species within the Univittatus subgoup (Cx.
univittatus, Cx. perexiguus and Cx. fuscocephala) except
for Cx. neavei, for which cox1 sequences could not be
found in the public databases. Fortunately, the BOLD
Systems database does include Cx. neavei sequences (8
from Kenya and Nigeria, albeit not public), therefore
their absence from the BOLD Systems automatic se-
quence identification result lists clearly shows that the
specimens analysed in this report are not closely related
to this species. We therefore consider their absence in
our phylogenetic analysis not paramount to the study.
The phylogenetic analysis hereby reported confirms that
cox1 sequences amplified from mosquitoes from
Portugal and Spain cluster together and are closer to Cx.
univittatus from South Africa than to Cx. perexiguus
from Turkey and Pakistan, in accordance with the
BOLD system analysis.
Although the obtained Bayesian trees were based on a

smaller sequence dataset than that previously used for
the ML phylogenetic reconstruction, both of them
showed a clear separation of the Cx. perexiguus and Cx.
univittatus clusters, and a clear-cut segregation of the

http://www.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxon=culex+perexiguus&searchTax
http://www.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxon=culex+perexiguus&searchTax
http://www.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxon=culex+perexiguus&searchTax
http://boldsystems.org/index.php/Taxbrowser_Taxonpage?taxon=culex+univittatus&searchTax
http://boldsystems.org/index.php/Taxbrowser_Taxonpage?taxon=culex+univittatus&searchTax
http://boldsystems.org/index.php/Taxbrowser_Taxonpage?taxon=culex+univittatus&searchTax
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South African Cx. univittatus away from the Iberian Cx.
univittatus/perexiguus sequences.
The differentiation observed between the Iberian and

the South African cluster is in accordance with the geni-
talia VA/LP ratio values, which although overlapping,
were already statistically different. Such differences are
naturally expected in such geographically distant popula-
tions, and it would be interesting to study the cross-
breeding success of these populations. Nevertheless,
both the morphological and molecular analysis were co-
herent in supporting the identification of these Iberian
specimens as Cx. univittatus.

Conclusions
This study represents, to the best of our knowledge, the
first molecular and phylogenetic analysis of Cx. univittatus/
perexiguus. Although not exhaustive, either geographically
or taxonomically, our results clearly confirm the presence
of Cx. univittatus in the Iberian Peninsula, as previous mor-
phological studies have shown [14, 15]. Thus, it can be con-
cluded that Cx. perexiguus is not the only species of the
Univittatus subgroup existing in Europe. It was also pos-
sible to see that these Cx. univittatus specimens are genet-
ically different from those from South Africa, and it would
be interesting to study the evolutionary track of the
Univittatus subgroup, including its other members and
other origins, to clarify their evolutionary relationships.
Considering the vector role for arboviruses of both these
taxa and the lack of updated characterization of their re-
spective vectorial capacity and transmission efficiency, fur-
ther bionomic characterization subsequent to correct
species identification is needed for a sounder knowledge of
arbovirus receptivity in this geographic region.
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