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Abstract Generalizing the idea of the Lovász extension of a set function and the
discrete Choquet integral, we introduce a combinatorial model that allows us to define
and analyze matroid-type greedy algorithms. The model is based on a real-valued
function v on a (finite) family of sets which yields the constraints of a combinatorial
linear program. Moreover, v gives rise to a ranking and selection procedure for the
elements of the ground set N and thus implies a greedy algorithm for the linear pro-
gram. It is proved that the greedy algorithm is guaranteed to produce primal and dual
optimal solutions if and only if an associated functional on R

N is concave. Previous
matroid-type greedy models are shown to fit into the present general context. In partic-
ular, a general model for combinatorial optimization under supermodular constraints
is presented which guarantees the greedy algorithm to work.

Mathematics Subject Classification (2000) 90C27 · 90C57

1 Introduction

The ”greedy algorithm” represents one of the most fundamental (but not necessar-
ily optimal) algorithmic principles: always take the locally best step! The question
arises when optimality of the greedy solution can be guaranteed. A well-known and
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394 U. Faigle et al.

important model for the latter are matroids (in particular, in Edmonds’ [5] polyhedral
model), where the greedy algorithm successfully solves certain combinatorial linear
programs (see also, e.g., Fujishige [14], Faigle and Fujishige [7]). The greedy princi-
ple shows up in even wider contexts (see, e.g., Hoffman [17,19]) and appears to be
generally closely connected with the algorithmic theory of combinatorial optimization
(cf. Hoffman and Schwartz [16,18]).

There have been many generalizations of the matroid-greedy model. Frank’s [11]
supermodular model is one of the farthest-reaching and derives the greedy algorithm
from a 2-phase procedure, where a pair of dual linear programs is solved (thus gener-
alizing the approach of Faigle and Kern [9]). Often, however, “the greedy algorithm”
is viewed (and analyzed) as a one-sided procedure with respect to just one in the pairs
of linear programs (see, e.g., the greedy algorithm of Dietrich and Hoffman [3] or
Fujishige’s [13] dual greedy algorithm).

The main contribution of the present investigation is a model that comprises and
extends all of the aforementioned polyhedral matroid-type greedy models. Moreover,
our model offers an integrated approach with respect to the underlying primal-dual
linear programs. We arrive at a greedy algorithm through a notion of ranking selec-
tions, based on the restriction function in the combinatorial model. We then show that
the greedy algorithm is guaranteed to be successful for one type of linear program if
and only if it solves the other type as well (Theorem 5.1). Generalizing the approach
of Fujishige [13] and the Monge extensions of the game-theoretic model of Faigle
et al. [8], our model associates with the greedy algorithm a certain functional, which
turns out to be concave if and only if the greedy algorithm works. This greedy func-
tional generalizes the so-called Lovász extension of a set function (which coincides
with Choquet’s [2] discrete integral).

Lovász [21] observed in the set function context that the concavity of the greedy
functional is equivalent to the supermodularity of the underlying restriction function.
This observation has initiated a theory of “discrete convexity” that investigates sub-
or supermodular type functions on the lattice of integer points in R

n (cf. Murota [22]).
Note that our theory differs substantially from the latter. Concavity (or convexity,
when seen from a maximizing point of view) of the greedy functional does not rely
on notions of super- or submodularity and hence suggests a new model for “discrete
convexity”.

Nevertheless, traditional models for successful matroid-type greedy algorithms all
involve a notion of sub- and supermodularity. We present a general model for su-
permodularity in Sect. 6 and prove supermodularity of the restriction function to be
sufficient for the greedy algorithm to work. Curiously, a similarly general model seems
to be much harder to establish with respect to optimization under submodular con-
straints. So we do not take it into consideration here. (For some results on optimization
under generalized submodular constraints, see, e.g., Faigle and Peis [10].)

2 Combinatorial linear programs

Let N be a finite set and F a family of non-empty subsets of N . A valuation is a
function v : F → R (resp. v ∈ R

F ). It is convenient to extend F to F0 = F ∪ {∅}

123



A ranking model for the greedy algorithm and discrete convexity 395

and to set v(∅) = 0. Moreover, we use the notation

F(X) = {F ∈ F | F ⊆ X} for anyX ⊆ N .

Given a valuation v and a parameter vector c ∈ R
N , we refer to the optimization

problem

min〈c, x〉 s.t. xi ≥ 0 ∀i ∈ N and x(F) ≥ v(F) ∀F ∈ F (1)

as a combinatorial linear program. As usual, 〈c, x〉 = ∑
i∈N ci xi denotes the inner

product of c and x and x(F) = 〈1F , x〉, where 1F ∈ {0, 1}N is the incidence vector
of the subset F with

1F
i = 1 ⇐⇒ i ∈ F.

Remark In certain specific contexts, x → 〈c, x〉 is often called the cost function of
the optimization problem (1).

The linear programming dual of (1) is:

max 〈v, y〉 s.t. yF ≥ 0 ∀F ∈ F and
∑

F�i

yF ≤ ci ∀i ∈ N . (2)

Defining the non-negative function v+ : F0 → R+ by

v+(F) = max{v(F), 0} (F ∈ F),

we may replace v by v+ without affecting the feasibility region of (1):

P+(v) = {x ∈ R
N+ | x(F) ≥ v(F) ∀F ∈ F} = P+(v+).

Observe that (1) is bounded if and only if c ∈ R
N+ . Hence we will usually assume

that c and v are non-negative. In this case, both linear programs are feasible and hence
have optimal solutions.

3 Greedy rankings

We take a greedy approach to the linear programming problems (1) and (2). Our algo-
rithm consists of two phases. In the first phase, we construct a feasible solution y for
the linear program (2) in a greedy fashion. At the same time, we choose a sequence
π of representatives for the sets in F by selecting members of N into π that yield
tight constraints during the construction of y. The second phase of the algorithm will
construct a candidate solution hπ from π for the linear program (1).
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396 U. Faigle et al.

3.1 Ranking functions

A ranking function for (F , v) is an operator X → μ(X) on the subsets of N such that
for all X ⊆ N ,

μ(X) ∈ F0(X) and v(μ(X)) = max
F∈F0(X)

v(F).

Example 3.1 The greedy algorithm of Hoffman [17] arranges F in a linear order
F = (F1, . . . , Fm) according to non-increasing v-values and works with the ranking
function μH (X) = Fi , where Fi ∈ F(X) has the smallest possible index i . (See also
Sect. 6 below.)

Remark A ranking function is a special case of a choice function in the sense of
Moulin [23]. Choice functions underly also Fujishige’s [13] model for dual greedy
algorithms.

3.2 The greedy algorithm

Given the ranking function μ, we execute the following procedure for any non-nega-
tive input parameter vector c ∈ R

N+ and select a sequence π = p1 . . . pk of elements of
N as representatives of the members of F so that each pi is chosen from the currently
ranked set. As usual, we denote the empty string by π = �.
Greedy Algorithm

(G0) Initialize: X ← N , π ← �, γ ← c, y ← 0,
(G1) While μ(X) �= ∅ Do:

Select some p ∈ μ(X) of minimal current weight γp;
Update yμ(X)← γp, π ← [πp];
Update γq ← [γq − γp] for all q ∈ μ(X), X ← [X\p];

The procedure returns a sequence π = p1 . . . pk of elements of N (with possi-
bly k<|N |) and a non-negative parameter vector y ∈ R

F , to which we refer as the
greedy solution. The sequence π is called a μ-ranking of N (or just a ranking, for
short). So π = p1 . . . pk is a μ-ranking if and only if pi ∈ μ(N\{p1, . . . , pk}) and
μ(N\{p1, . . . , pk}) = ∅.

The family M of sets μ(X) considered in the course of the construction of the rank-
ing π is the family of Monge sets of π . So with the notation X1 = N and Xi+1 = Xi\pi

for i = 1, . . . , k, we have Mk+1 = μ(Xk+1) = ∅ and

M = {M1 = μ(X1), M2 = μ(X2), . . . , Mk = μ(Xk)},

pi ∈ Mi\Mi+1 for all i = 1, . . . , k. Note that M is uniquely determined by the
ranking π .

Lemma 3.1 Let (π, y) be the output of the greedy algorithm relative to the input
c ≥ 0. Then the following holds:
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A ranking model for the greedy algorithm and discrete convexity 397

(0) y is non-negative.
(1)

∑

F�p

yF ≤ cp for all p ∈ N.

(2)
∑

F�p

yF = cp for all p in π .

In particular, y is a feasible solution for (2).

Proof The properties (0–2) are immediate consequences of the selection and update
rules in step (G1) of the algorithm. ��

We denote by � = �(F , v, μ) the collection of all rankings for all c ≥ 0.

Remark The type of algorithm considered in this section is also called “dual greedy”
(cf. Fujishige [13]) as it works on the “dual” optimization problem (2). We prefer the
term “greedy” because the algorithm constructs a ranking π greedily with respect to
the F-valuation v.

4 Greedy functionals and kernels

The selection rule (G1) of the greedy algorithm leaves some freedom in the choice of
a representative p ∈ μ(X) of minimal current weight. This does not affect the greedy
solution y, however.

Lemma 4.1 The greedy solution y is uniquely determined by the input c ≥ 0 into the
greedy ranking algorithm.

Proof Suppose, for example, that p ∈ μ(N )was selected in step (G1), while q ∈ μ(N )

would have been a candidate as well. Let M be the first subsequent choice of a Monge
set with a non-trivial value yM > 0. In view of yμ(N ) = cp = cq , it is then clear that
M ∈ F(N\{p, q}) must hold. Hence the same y would have resulted from the choice
q ∈ μ(N ) as a representative. ��

We may thus associate with the ranking structure (F , v, μ) a well-defined func-
tional vμ : RN → R ∪ {−∞} via

vμ(c) =
{ 〈v, y〉 if c ≥ 0
−∞ otherwise,

where y = y(c) is the greedy solution with respect to c, and define the μ-kernel of
(F , v) as the closed convex set

kerμ(v) = {x ∈ R
N | 〈c, x〉 ≥ vμ(c) ∀c ∈ R

N }.

Proposition 4.1 kerμ(v) = P+(v).
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Proof Because vμ(c) is non-negative for every c ≥ 0, we conclude x ≥ 0 for every
x ∈ kerμ(v). Letting 1F ∈ {0, 1}N be the incidence vector of F , the greedy algorithm
yields vμ(1F ) ≥ v(F) for any F ∈ F and, therefore, kerμ(v) ⊆ P+(v).

Conversely, any z ∈ P+(v) is a feasible solution for the linear program (1), while
y is feasible for (2). So P+(v) ⊆ kerμ(v) follows from linear programming duality in
view of

〈c, z〉 ≥ 〈y, v〉 = vμ(c) for all c ∈ R
N+ .

��
Note that the greedy functional vμ is positively homogeneous in the sense

vμ(λv) = λvμ(c) for all λ > 0.

Recall that vμ is said to be concave if for all c, d ∈ R
N and 0 ≤ t ≤ 1,

vμ(tc + (1− t)d) ≥ tvμ(c)+ (1− t)vμ(d).

It follows that the greedy algorithm is guaranteed to be optimal for the dual linear
program (2) if and only if the associated greedy functional is concave:

Theorem 4.1 The following statements are equivalent:

1. vμ : RN → R ∪ {−∞} is concave;
2. vμ(c) = min{〈c, x〉 | x ∈ P+(v)} for all c ∈ R

N+ .

3. vμ(c) = max{〈v, y〉 | y ≥ 0,
∑

F�i
yF ≤ ci ∀i ∈ N } for all c ∈ R

N+ .

Proof In view of Proposition 4.1, the equivalence of the first two statements comes
from a well-known fact in convex analysis (cf. Rockafellar [24]). The last two state-
ments are equivalent by linear programming duality. ��
Example 4.1 In the case of F0 = 2N and of a non-decreasing set function v : F → R,
the ranking function μ(X) = X yields vμ(c) as the value of the so-called Lovász
extension of v for every c ≥ 0 (cf. Lovász [21]).

5 Marginal vectors and convexity

While Theorem 4.1 characterizes combinatorial structures (F , v) for which the greedy
algorithm solves the dual linear program (2) optimally, we now turn our attention to
the primal linear program (1).

5.1 Marginal vectors

Given a ranking π = p1 . . . pk with associated family M of Monge sets returned by
the greedy algorithm, a straightforward candidate solution for the linear program (1)
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A ranking model for the greedy algorithm and discrete convexity 399

exists. Observe that π and M induce a unique vector hπ ∈ R
N with the property

(i) hπ
p = 0 if p does not occur in π

(ii) hπ (M) = v(M) for all M ∈M.

Indeed, the (π ×M)-incidence matrix A = [ai j ] ∈ R
k×k with coefficients

ai j =
{

1 if pi ∈ M j

0 otherwise

is (lower) triangular with diagonal elements aii = 1 and hence invertible and therefore
yields a unique solution for the equations (i) and (ii). We call hπ the marginal vector of
(F , v) relative to the ranking π . Observe that this notion coincides with the classical
definition of marginal vectors

hπ (pi ) = v({pi , . . . , pn})− v({pi−1, . . . , pn})

when F0 comprises all subsets of N .

Lemma 5.1 Let (π, y) be the output of the greedy algorithm for c ≥ 0. Then one has

〈c, hπ 〉 =
∑

p∈π
cphπ

p =
∑

M∈M
v(M)yM = 〈v, y〉 = vμ(c).

Proof Let h̃ be the restriction of hπ to π and ṽ the restriction of v to the Monge
set M of π . Then we have h̃T

A = ṽT from property (ii) of a marginal vector.
On the other hand, property (2) of Lemma 3.1 above says Aỹ = c̃, where we have

restricted ỹ similarly to M. Hence we deduce:

∑

p∈N

cphπ
p = 〈c̃, h̃〉 = 〈h̃, c̃〉 = 〈ṽ, A

−1c̃〉 = 〈ṽ, ỹ〉 =
∑

F∈F
v(F)yF .

��

5.2 Convexity

We now characterize the structures where the marginal vectors hπ yield optimal solu-
tions for the linear program (1). We say that (F , v, μ) is convex if each marginal vector
hπ lies in P+(v), i.e., if each hπ is a feasible solution for (1). (See Sect. 6 for some
generic examples of convex structures.)

Theorem 5.1 The following statements are equivalent:

(a) (F , v, μ) is convex.
(b) For every c ∈ R

N+ , the corresponding marginal vector hπ is optimal for the linear
program (1).
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400 U. Faigle et al.

(c) For every c ∈ R
N+ , the corresponding greedy solution y is optimal for the linear

program (2).
(d) The greedy functional vμ : RN → R ∪ {−∞} is concave.

Proof We first show (a)⇒ (b),(c). Assume that (F , v, μ) is convex and let y be the
greedy solution relative to c ≥ 0. Then hπ is feasible for (1) while y is feasible for
(2). In view of 〈c, hπ 〉 = 〈v, y〉 (Lemma 5.1), the optimality of hπ and of y follows
from linear programming duality.

For (c) ⇒ (a), let π = p1 . . . pk be some ranking with associated Monge sets
M1, . . . , Mk and marginal vector hπ . By Lemma 5.2 (below), we may assume that π

arises from the greedy algorithm relative to some c ≥ 0 such that the greedy vector y
satisfies:

(i) yMs > 0 for all s = 1, . . . , k.
(ii)

∑
F�p yF < cp for each p /∈ π .

Let x∗ be an optimal solution for the linear program (1). Since y is optimal for (2),
the complementary slackness conditions hold. So we conclude:

yF > 0 �⇒ x∗(F) = v(F).

x∗p > 0 �⇒
∑

F�p

yF = cp.

In view of (ii), the latter conditions imply x∗p = 0 for all p /∈ π . So (i) says that x∗
satisfies the defining conditions of hπ , which yields hπ = x∗ ∈ P+(v). The equiva-
lence of (c) and (d) was exhibited in Theorem 4.1. ��

Remark Given Theorem 5.1, one might want to call convex structures (F , v, μ)

rather ’concave’. With the present terminology, we follow the terminology of cooper-
ative game theory that calls a game ’convex’ if all marginal vectors lie in P+(v) (cf.
Shapley [25]).

Lemma 5.2 Let π = p1 p2 . . . pk be an arbitrary ranking for (F , v) with Monge
family M = {M1, M2, . . . , Mk}. Then there exists a parameter vector c̃ with positive
components c̃p > 0 such that the greedy algorithm outputs the pair (π, ỹ) with the
properties

(i) ỹMs > 0 for all s = 1, . . . , k.
(ii)

∑
F�p ỹF < c̃p for each p /∈ π .

Proof Arguing by induction, let N ′ = N\{p1} and assume that the ranking π ′ =
p2 . . . pk and the greedy vector y ∈ R

F(N ′)
+ are produced by the greedy algorithm

relative to some positive c ∈ R
N ′ such that

(i) yMs > 0 for all s = 2, . . . , k.
(ii)

∑
F�p yF < cp for each p /∈ π .
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A ranking model for the greedy algorithm and discrete convexity 401

Note that M′ = {M2, . . . , Mk} is the Monge family of π ′ and construct c̃ from c
as follows:

c̃p =
⎧
⎨

⎩

1 if p = p1
1+ cp if p ∈ M1\{p1}
cp otherwise.

Relative to c̃, the greedy algorithm will produce the ranking π = p1 p2 . . . pk and the
greedy solution ỹ with the property

ỹF =
⎧
⎨

⎩

1 for F = M1
yF for F ∈ {M2, . . . , Mk}
0 otherwise,

which proves the Lemma. ��

6 Examples

We exhibit some generic convex combinatorial structures. An important feature of
these structures is the existence of a consecutive (partial) precedence ordering (F ,�).
Convexity is guaranteed if the valuation v : F → R is sufficiently order-compatible
(i.e., in a sense monotone and supermodular). Frank’s model for a greedy algorithm
arises as a special case in this framework. Furthermore, Dijkstra’s shortest path algo-
rithm, Edmond’s algorithm for minimal rooted branchings, and Ford and Fulkerson’s
maximum flow algorithm for planar graphs can be viewed as further examples.

6.1 Consecutive orders

A (partial) ordering (F ,�) is called consecutive if for all F ′, F, F ′′ ∈ F ,

(C) F ′ � F � F ′′ �⇒ F ′ ∩ F ′′ ⊆ F.

We interpret F ′ � F as a dominance relation, where F ′ is “preferred” to F . Con-
secutive dominance orders always exist. For example, the trivial order on F (with no
comparable pairs of elements) is consecutive. Also the set-theoretic containment order
(F ,⊆) is consecutive (and yields the combinatorial model investigated in [8]). Often
more refined consecutive orderings are ”natural”.

Example 6.1 (Cuts) Let C consist of the non-empty cut sets

δ+(S) = {(x, y) ∈ A | x ∈ S, y /∈ S}

of the digraph G = (V, A). Then (C,�) is consecutive, where

δ+(S) � δ+(T ) ⇐⇒ S ⊇ T .
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402 U. Faigle et al.

Example 6.2 (Planar flows) Let G = (V, E) be a (directed or undirected) graph in
a planar representation with specified vertices s, t (i.e., G is a so-called (s, t)-planar
graph). There exists an intuitive partial order “�” on the collection P of all cycle-free
(s, t)-paths: For any P, Q ∈ P , we define

P � Q ⇐⇒ P “lies below” Q

and find that (P,�) is consecutive.

Example 6.3 (Convex geometries and posets) Let X → X be a closure operator with
ground set N such that every S ⊆ N admits a unique minimal subset ext(S) ⊆ S of
so-called extreme points with S ⊆ ext(S). (The associated closure space is a convex
geometry in the sense of Edelman and Jamison [6]). Order the family E = {ext(S) |
S ⊆ N } via

ext(S) � ext(T ) ⇐⇒ S ⊇ T .

Then (E,�) is consecutive. A well-studied special class of such structures arises from
partial orders P = (N ,≤), when E is taken as the collection of all antichains of P .
The trivial closure X = X yields E as the collection of all subsets of N .

In the following, we will always assume that (F ,�) is consecutive and the valuation
v : F → R+ is monotone in the sense

F ′ � F ′′ �⇒ v(F ′) ≥ v(F ′′) (F ′, F ′′ ∈ F).

Hence we may assume F = {F1, . . . , Fm} to be arranged such that

(i) Fi ≺ Fj �⇒ i < j .
(ii) v(F1) ≥ · · · ≥ v(Fm).

6.2 Sub- and supermodularity

A submodular pair relative to (F ,�) is a pair (F, G) of distinct sets F, G ∈ F that
admits sets F ∨ G, F ∧ G ∈ F(F ∪ G) with the property

F ∧ G � F, G � F ∨ G.

For example, (F, G) is a submodular pair when F ≺ G holds: It suffices to set
F ∨ G = F and F ∧ G = G. The terminology is motivated by the following obser-
vation:

Lemma 6.1 Let (F ,�) be consecutive and χp : F → {0, 1} the indicator function
of p ∈ N. Then the submodular inequality holds for every submodular pair (F, G):

χp(F ∧ G)+ χp(F ∨ G) ≤ χp(F)+ χp(G). (3)

��
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A ranking model for the greedy algorithm and discrete convexity 403

Remark The indicator function may be replaced by any non-negative vector in
Lemma 6.1.

A submodular family for (F ,�) is a collection S of submodular pairs (F, G) that
includes all comparable pairs, i.e., for all F, G ∈ F ,

F ≺ G �⇒ (F, G) ∈ S.

We refer to (F, G) ∈ S as an S-pair.

Example 6.4 Let (E,�) be the ordered family of extremal sets of a convex geometry
(cf. Ex. 6.3). Let S be the collection of all pairs (F, G) of distinct sets F, G ∈ E . Then
S is a submodular family in view of the operations

F ∧ G = ext(F ∪ P) and F ∨ G = ext(F ∩ G).

We say that the valuation v : F → R+ is S-monotone if for every F ∈ F and
collection G ⊆ F of sets with F � G for all G ∈ G the following is true:

(SM) either v(F) ≥∑
G∈G v(G) or G contains an S-pair.

The singleton case G = {G} exhibits an S-monotone valuation to be monotone in
particular.

Example 6.5 Assume that S is a submodular family such that

(D) (G, G ′) ∈ S is guaranteed for the distinct sets G, G ′ if some jointly dominating
F ∈ F with F � G, G ′ exists.

Then every monotone valuation is trivially S-monotone. (Not only Ex. 6.4 has property
(D). Also the more general model of Frank [11] enjoys (D).)

Relative to a given submodular family S, we say that v is S-supermodular if the
following inequality holds for every (F, G) ∈ S:

v(F ∧ G)+ v(F ∨ G) ≥ v(F)+ v(G). (4)

Note that the supermodular inequality holds trivially in the case F ≺ G. Hence it
suffices to investigate it on incomparable S-pairs.

6.3 Supermodularity in intersecting systems

A submodular family S is said to be intersecting (relative to (F ,�) if for all incom-
parable sets F, G ∈ F ,

(I) F ∩ G �= ∅ �⇒ (F, G) ∈ S.

Our next result generalizes Frank’s [11] greedy algorithm.
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Theorem 6.1 Let (F ,�) be consecutive and S an intersecting and submodular
family of pairs. Let v : F → R+ be an S-monotone and S-supermodular valua-
tion. Then (F , v, μ) is convex for every ranking function μ such that μ(X) is always
a maximal member of (F(X),�).

Proof Let π = p1, . . . , pk be the ranking and M = {M1, . . . , Mk} be the family of
Monge sets relative to the input c ≥ 0 and ranking function μ. We must show that the
greedy algorithm provides an optimal solution for the linear program

max
y≥0

∑

F∈F
v(F)yF s.t.

∑

F�p

yF ≤ cp ∀p ∈ N .

To this end, we order F0 = (F1, . . . , Fm) linearly so that F1 = M1 = μ(N ) and
for all Fi , Fj ,

Fi � Fj �⇒ i ≤ j.

Let y be the greedy solution and y∗ the lexicographically maximal optimal solution
with respect to the fixed order on F0. Arguing by induction, we will show y = y∗.

If yF1
= y∗F1

, we apply the induction hypothesis to F(N\p1) and find that y∗ and
y, in fact, agree on all components. So it suffices to demonstrate that yF1

> y∗F1
would

contradict the choice of y∗ as the lexicographically maximal optimal solution.
Note first that the support supp(y∗) = {F ∈ F | y∗F > 0} of y∗ cannot contain any

incomparable S-pair (F, G). Adding some ε > 0 to the components y∗F∧G and y∗F∨G
and subtracting ε from the components y∗F and y∗G would otherwise produce a lexi-
cographically larger vector, which is feasible by the submodularity of S (Lemma 6.1)
and still optimal by the supermodularity of v.

Consider the family G ⊆ supp(y∗) of immediate successors of F1 in the support of
y∗ (relative to the order relation �). Since S is intersecting, any two intersecting sets
F, G ∈ supp(y∗) must be comparable. Hence the consecutiveness of (F ,�) implies
that every element p ∈ F1 that could stop us from increasing y∗F1

towards yF1
feasibly

must occur in some set G ∈ G. So we obtain another feasible (and lexicographically
larger!) solution ỹ from y∗ when we increase y∗F1

by some ε > 0 and simultaneously
decrease y∗G for all G ∈ G by the same amount ε.

On the other hand, the sets in G are pairwise incomparable. So G contains no S-pair
at all. Hence the S-monotonicity of v yields

v(F1) ≥
∑

G∈G
v(G).

Therefore, ỹ would also be optimal and thus contradict the choice of y∗. ��

6.4 Cuts, arborescenses and planar flows

We give two illustrations of Theorem 6.1.
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6.4.1 Cuts and arborescences

Let G = (V, A) be a directed graph with a fixed root s ∈ V such that any t ∈ V can
be reached from s by some directed path. Consider the family of s-cuts

Cs = {δ+(S) | s ∈ S, S �= V }

with the order (Cs,�) as in Ex. 6.1. Define for any S, T ⊆ V with s ∈ S ∩ T and
S ∪ T �= V ,

δ+(S) ∧ δ+(T ) = δ+(S ∪ T )

δ+(S) ∨ δ+(T ) = δ+(S ∩ T ).

The family S of all incomparable pairs of cuts is submodular. Moreover, the valuation
v with v(∅) = 0 and v(C) = 1 otherwise is trivially S-monotone and supermodular.
Frank [11] has observed that (Cs,�) is an intersecting system as in Ex. 6.5 and that the
associated pair of optimization problems of type (1) and (2) can be solved greedily.

Indeed, Theorem 6.1 guarantees (Cs,�) to be convex. Consequently, the greedy
algorithm produces a ranking π so that the associated marginal vector hπ has (0, 1)-
components and satisfies

hπ (δ+(S)) ≥ 1 (s ∈ S, S �= V ).

This marginal vector is the incidence vector of an s-branching, i.e., an arc set that
admits directed paths from s to any t ∈ V . If A is weighted with nonnegative weights
ca ≥ 0, the greedy algorithm will produce an s-branching of minimal weight, which
solves the problem considered by Fulkerson [15]. For general weights ca , the greedy
algorithm will produce an s-branching which solves Fulkerson’s problem (including
Edmonds’ [4] s-branchings and min-cost spanning trees as special cases).

If furthermore some t ∈ V \{s} is fixed, we may consider the subfamily

Cst = {δ+(S) | s ∈ S, t /∈ S}.

Cst is closed under the operations ∧ and ∨. Moreover, the function v from before
remains monotone and supermodular on Cst . It follows that the greedy algorithm now
becomes Dijkstra’s shortest (s, t)-path algorithm, which has been observed already
by Johnson [20] (see also [17]).

6.4.2 Flows in planar graphs

Let G = (V, E) be an (s, t)-planar graph and consider the ordered set (P,�) of all
cycle-free s, t-paths as in Ex. 6.2. For any P, Q ∈ P , set

P ∨ Q = largest path in G(P ∪ Q)

P ∧ Q = lowest path in G(P ∪ Q)
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(cf. the “switched paths” of Hoffman [16]). Since P∨Q and P∧Q contain only edges
from P∪Q, the consecutive order (P,�) satisfies the hypothesis of Theorem 6.1 with
v(P) = 1 for all P ∈ P .

Given capacities c(e) on the edges, the greedy algorithm computes a maximum
flow f ∈ R

E in G as follows: in each iteration, the algorithm sends as much flow
as possible along the largest path. More precisely: in each iteration, the algorithm
chooses an edge e of minimal capacity c(e) in the largest path P and assigns the flow
f (P) = c(e). It reduces the capacities of all edges in P by c(e), removes e from G,
and continues with the largest path in G\e in the next iteration until finally no s, t-
path exists anymore. This is the uppermost path algorithm of Ford and Fulkerson [12]
(see also, e.g. [1]).
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