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Abstract Thioridazine as an antipsychotic agent was exten-
sively used to treat various psychotic disorders, e.g. schizo-
phrenia. However, the therapy with this drug can induce seri-
ous side effects such as extrapyramidal symptoms or ocular
and skin disorders, which mechanisms are still not fully
established. To gain inside the molecular mechanisms under-
lying thioridazine toxicity, we examined the effect of this drug
on cell viability, antioxidant defence system as well as mela-
nogenesis in normal human melanocytes. It was demonstrated
that thioridazine induces concentration-dependent loss in cell
viability. The value of EC50 was calculated to be 2.24 μM. To
study the effect of thioridazine on antioxidant defence system
in melanocytes, the level of hydrogen peroxide and the activ-
ities of antioxidant enzymes superoxide dismutase, catalase
and glutathione peroxidase were determined. The drug in con-
centrations of 0.1, 0.25, 1.0 and 2.5 μM caused changes in
cellular antioxidant defence system indicating the induction of
oxidative stress. It was also shown that the analysed neurolep-
tic in concentrations of 1.0 and 2.5 μM significantly inhibited
melanogenesis. The observed changes in cell viability, antiox-
idant defence system and melanization in normal human me-
lanocytes after thioridazine treatment may explain an impor-
tant role of reactive oxygen species as well as melanin in
mechanisms involved in this drug side effects directed on
pigmented tissues.
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Introduction

Thioridazine is a typical antipsychotic drug belonging to pheno-
thiazine neuroleptics of the piperidine type. It is a mild neurolep-
tic, displaying sedative and antidepressant effects, which was
used in the treatment of positive and negative symptoms of
schizophrenia (Wójcikowski et al. 2006). Because of the fact that
thioridazine treatment is associated with prolongation of the QT
interval, this agent was withdrawn from the market (Buj Alvarez
et al. 2007). Thioridazine also exhibits anticancer, antibacterial,
antiviral, antiprotozoic as well as multidrug resistance reversal
activity (Morak-Młodawska and Jeleń 2007; Rho et al. 2011).
Anticancer activity of this drug results from its antiproliferative
and antisurvival effects (Min et al. 2014). Thioridazine increased
apoptosis in melanoma (Gil-Ad et al. 2004), endometrial (Kang
et al. 2012), ovarian (Rho et al. 2011) and lymphoma (Nagel
et al. 2012) cells. Due to the fact that thioridazine is a subject
of many novel studies, it is important to explainmolecular mech-
anisms underlying these drug adverse effects directed to
pigmented tissues such as skin disorders, e.g. maculopapular
rash, erythema multiforme, contact dermatitis, generalized urti-
caria, pigmentation changes and photoinduced lichenoid reaction
(Arana 2000; MacMorran and Krahn 1997). It has been reported
that thioridazine photosensitivity is less common than chlor-
promazine but as other phenothiazine derivatives may lead to
retinal pigment epithelium (RPE) damage (Drucker and Rosen
2011; Hu et al. 2002; Llambrich and Lecha 2004). The skin
photosensitivity reactions are primarily seen in sun-exposed areas
of the face, neck, upper chest, dorsum of the hand and lower legs
and begin with a tan or brownish discoloration that progresses to
a purple or slate-like metallic blue. Pigmentation changes occur
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usually after a long-term and/or high-dose use of phenothiazines
such as chlorpromazine or thioridazine (MacMorran and Krahn
1997). Pigmentation disorders of the skin can be either
hypomelanotic or hypermelanotic or may be present with a pat-
tern ofmixed hypo- and hypermelanosis (Lamer et al. 2010). The
skin disorders suggest a potential role of endogenous melanin in
the induction of these side effects in pigmented tissues.

Melanocytes are highly specialized cells that are not only found
in the skin or eyes but are also present in the hair, inner ear, brain,
lungs, heart and adipose tissue, where they produce melanin
(Plonka et al. 2009; Rok et al. 2012; Tolleson 2005). The cellular
antioxidant system, the first line of defence against oxidative
stress, includes a number of antioxidant enzymes, such as super-
oxide dismutase (SOD), catalase (CAT) and glutathione peroxi-
dase (GPx). It has been demonstrated that melanins possess su-
peroxide dismutase activity and are able to remove reactive oxy-
gen species (ROS), and thus may protect pigmented tissues
against cellular damage (autocatalytic lipid peroxidation of mem-
branes, lesions in DNA, cross-linkage in proteins) induced by
oxidative stress (Bickers and Athar 2006; Hoogduijn et al. 2004;
Otręba et al. 2012; Singh et al. 2009; Wakamatsu et al. 2008).

Previously, we have documented that another neuroleptic—
chlorpromazine (Otręba et al. 2015), as well as aminoglycoside
antibiotics (Wrześniok et al. 2013a,b,c), and fluoroquinolone an-
tibiotics (Beberok et al. 2012) induce oxidative stress in normal
human melanocytes, which may be a reason for many disorders.

The aim of this study was to examine the effect of thioridazine
on cell viability, antioxidant defence system aswell asmelanogen-
esis in normal human melanocytes dark pigmented (HEMn-DP).

Materials and methods

Materials

Thioridazine hydrochloride, phosphate-buffered saline (PBS),
3,4-dihydroxy-L-phenylalanine (L-DOPA) and amphotericin B
were purchased from Sigma-Aldrich Inc. (USA). Neomycin
sulphate was obtained from Amara (Poland). Penicillin was
acquired from Polfa Tarchomin (Poland). Growth medium M-
254 and human melanocyte growth supplement-2 (HMGS-2)
were obtained from Cascade Biologics (UK). Trypsin/EDTA
was obtained from Cytogen (Poland). Cell Proliferation
Reagent WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-
tetrazolio]-1,3-benzene disulphonate) was purchased from
Roche GmbH (Germany). The remaining chemicals were pro-
duced by POCH S.A. (Poland).

Cell culture

The normal human epidermal melanocytes (HEMn-DP;
Cascade Biologics) were grown according to the manufac-
turer’s instruction. The cells were cultured in M-254 basal

medium supplemented with HMGS-2, penicillin (100 U/ml),
neomycin (10 μg/ml) and amphotericin B (0.25 μg/ml) at
37 °C in 5 % CO2. All experiments were performed using
cells in the passages 6–9.

Cell viability assay

The viability of melanocytes was evaluated by the WST-1
(4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-
benzene disulphonate) colorimetric assay. WST-1 is a water-
soluble tetrazolium salt; the rate of WST-1 cleavage by mito-
chondrial dehydrogenases correlates with the number of via-
ble cells. In brief, 5000 cells per well were placed in a 96-well
microplate in a supplemented M-254 growth medium and
incubated at 37 °C and 5 % CO2 for 48 h. Then the medium
was removed and cells were treated with thioridazine solu-
tions in a concentration range from 0.0001 to 10 μM. After
21-h incubation, 10 μl of WST-1 were added to 100 μl of
culture medium in each well, and the incubation was contin-
ued for 3 h. The absorbance of the samples was measured at
440 nm with a reference wavelength of 650 nm, against the
controls (the same cells but not treated with thioridazine)
using a microplate reader UVM 340 (Biogenet, Poland). The
controls were normalized to 100 % for each assay and treat-
ments were expressed as the percentage of the controls.

SOD assay

Superoxide dismutase (SOD) activity was measured using an
assay kit (Cayman, MI, USA) according to the manufacturer’s
instruction. This kit utilizes a tetrazolium salt for the detection
of superoxide radicals generated by xanthine oxidase and hy-
poxanthine. One unit of SOD was defined as the
amount of enzyme needed to produce 50 % dismutation
of superoxide radical. SOD activity was expressed in
units per milligram protein.

CATassay

Catalase (CAT) activity was measured using an assay kit
(Cayman, MI, USA) according to the manufacturer’s instruc-
tion. This kit utilizes the peroxidatic function of CAT for de-
termination of enzyme activity. The method is based on the
reaction of the enzyme with methanol in the presence of an
optimal concentration of hydrogen peroxide (H2O2). The
formaldehyde produced is measured colorimetrically with 4-
amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald) as the
chromogen. One unit of CAT was defined as the amount of
enzyme that causes the formation of 1.0 nmol of formalde-
hyde per minute at 25 °C. CAT activity was expressed in
nanomole per minute per milligram protein.
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GPx assay

GPx activity was measured using an assay kit (Cayman, MI,
USA) according to the manufacturer’s instruction. The mea-
surement of GPx activity is based on the principle of a coupled
reaction with glutathione reductase (GR). The oxidized gluta-
thione (GSSG) formed after reduction of hydroperoxide by
GPx is recycled to its reduced state (GSH) by GR in the pres-
ence of NADPH. The oxidation of NADPH is accompanied
by a decrease in absorbance at 340 nm. One unit of GPx was
defined as the amount of enzyme that catalyses the oxidation
of 1 nmol of NADPH per minute at 25 °C. GPx activity was
expressed in nanomole per minute per milligram protein.

H2O2 assay

H2O2 content was measured using an assay kit (Cell Biolabs,
Inc., USA) according to the manufacturer’s instruction. This
method is based on the ability of sorbitol to convert peroxide
to a peroxyl radical, which oxidizes Fe2+ into Fe3+. Then Fe3+

reacts with an equimolar amount of xylenol orange in the
presence of acid to create a purple product that absorbs light
at maximal wavelength 595 nm. The antioxidant—butylated
hydroxytoluene (BHT)—is provided to prevent further unde-
sirable chain peroxidation. Hydrogen peroxide content in the
samples was expressed in micromole per milligram protein.

Measurement of melanin content

The melanocytes were seeded in T-25 flasks at a density of 1×
105 cells per flask. Thioridazine treatment in a concentration
range from 0.01 to 2.5 μM began 48 h after seeding. After
24 h of incubation, melanocytes were washed three times with
PBS and viable cells were detached with trypsin–EDTA. Cell
pellets were placed into Eppendorf tubes, dissolved in 100 μl
of 1 M NaOH at 80 °C for 1 h and then centrifuged for 20 min
at 16,000g. The supernatants were placed into a 96-well mi-
croplate, and absorbance was measured at 405 nm—a wave-
length at which melanin absorbs light (Ozeki et al. 1996). A
standard synthetic melanin curve (0 to 400 μg/ml) was per-
formed in triplicate for each experiment. Melanin content in
thioridazine treated cells was expressed as the percentage of
the controls (untreated melanocytes).

Tyrosinase activity assay

Tyrosinase activity in HEMn-DP cells was determined by
measur ing the ra te of ox ida t ion of L -DOPA to
DOPAchrome, according to the method described by Kim
et al. (2005) and Busca et al. (1996), with a slight modifica-
tion. The cells were cultured at a density of 1×105 cells in T-
25 flasks for 48 h. After 24-h incubation with thioridazine
(concentration range from 0.01 to 2.5 μM), cells were washed

three times with PBS, lysed and clarified by centrifugation at
10,000g for 5 min. A tyrosinase substrate L-DOPA (2 mg/ml)
was prepared in the same lysis phosphate buffer. One hundred
microlitres of each lysate were put in a 96-well plate, and the
enzymatic assay was initiated by the addition of 40 μl of L-
DOPA solution at 37 °C. Absorbance was measured every
10 min for at least 1.5 h at 475 nm using a microplate reader.
Tyrosinase activity was expressed as the percentage of the
controls (untreated melanocytes).

MITF assay

Microphthalmia-associated transcription factor (MITF) con-
tent was measured using ELISA, an assay kit (USCN Life
Science Inc, USA), according to the manufacturer’s instruc-
tion. This kit is a sandwich enzyme immunoassay for in vitro
quantitative measurement of MITF providing a 96-well mi-
croplate pre-coated with a biotin-conjugated antibody specific
for MITF. The colour change of the enzyme (horseradish per-
oxidase)–substrate (TMB) reaction was measured spectropho-
tometrically at 450 nm using a microplate reader. MITF con-
tent in the samples was expressed as the percentage of the
controls (untreated melanocytes).

Statistical analysis

In all experiments, mean values of at least three separate ex-
periments (n=3) performed in triplicate±standard deviation
(SD) were calculated. Statistical analysis was performed with
one-way ANOVA followed by Tukey post-hoc test using
GraphPad Prism 6.01 software. The significance level was
established at a value of P<0.05 (*) or P<0.01 (**), by com-
paring the data with those for control (cells without
thioridazine).

Results

The effect of thioridazine on cell viability

The cell viability was determined by theWST-1 test after 24-h
incubation with thioridazine in a concentration range from
0.0001 to 10 μM. It has been demonstrated that the analysed
drug induces concentration-dependent loss in cell viability
(Fig. 1). Melanocytes treated with 1.0, 2.5, 5.0, 7.5 and
10 μM of thioridazine for 24 h lost 14.3, 50.2, 89.2, 96.7
and 99.1 % in cell viability, respectively. The value of EC50

(the concentration of a drug that produces loss in cell viability
by 50 %) was calculated to be 2.24 μM. At lower drug con-
centrations (0.0001, 0.001, 0.01 and 0.1 μM), the loss in me-
lanocytes viability was not observed.
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The effect of thioridazine on antioxidant defence system
in melanocytes

To study the effect of thioridazine on reactive oxygen species
metabolism in melanocytes, the activity of antioxidant en-
zymes and the content of hydrogen peroxide were determined.
Cells were exposed to thioridazine in concentrations of 0.01,
0.025, 0.1, 0.25, 1.0 and 2.5 μM for 24 h.

Thioridazine raised SOD activity (Fig. 2a). After
performing a calibration curve, the SOD activity was deter-
mined as 0.82 to 1.19 U/mg protein for melanocytes treated
with a drug and 0.78±0.06 U/mg protein for a control sample.
The treatment of cells with 0.1, 0.25, 1.0 and 2.5 μM of thi-
oridazine increased the SOD activity by 12.5, 23.9, 33.1 and
52.6 %, respectively, as compared with the controls. The
analysed drug in concentrations of 0.01 and 0.025 μM had
no impact on SOD activity.

After 24-h incubation with thioridazine, the intracellular
CAT activity decreased (Fig. 2b). After performing a calibra-
tion curve, the CAT activity was determined as 18.45 to
24.98 nmol/min/mg protein for melanocytes treated with a
drug and 23.62±0.48 nmol/min/mg protein for a control sam-
ple. Treatment of HEMn-DP cells with thioridazine in con-
centrations of 0.1, 0.25, 1.0 and 2.5 μM decreased enzyme
activity by 9.0, 12.3, 14.4 and 21.9 %, respectively.
Thioridazine in concentrations of 0.01 and 0.025 μM had no
impact on CAT activity.

The analysed drug modified GPx activity in melanocytes
(Fig. 2c). After performing a calibration curve, the GPx activity
was determined as 14.60 to 17.87 nmol/min/mg protein for
cells treated with thioridazine and 16.89±0.44 nmol/min/mg
protein for a control sample. Treatment of melanocytes with
0.1 μM of a drug caused small increase (by 5.8 %) in GPx
activity, while the concentrations 1.0 and 2.5 μM decreased

the enzyme activity by 7.4 and 13.6 %, respectively.
Thioridazine in concentrations of 0.01, 0.025 and 0.25 μM
had no impact on GPx activity in comparison with the controls.

After 24-h incubation of melanocytes with thioridazine, the
hydrogen peroxide (H2O2) content increased in a
concentration-dependent manner (Fig. 2d). The H2O2 content
was determined as 166.10 to 252.64 μmol/mg protein for
melanocytes treated with a drug and 151.28±5.92 μmol/mg
protein for a control sample. The treatment of cells with 0.01,
0.025, 0.1, 0.25, 1.0 and 2.5 μM of thioridazine increased the
H2O2 content by 9.8, 26.9, 44.2, 49.4, 51.7 and 67.0 %, re-
spectively, as compared with the controls.

The effect of thioridazine on melanization process

The effectiveness of melanization process was estimated by
measuring the melanin content, cellular tyrosinase activity and
microphthalmia-associated transcription factor (MITF) content
in melanocytes treated with 0.01, 0.025, 0.1, 0.25, 1.0 and
2.5 μMof thioridazine for 24 h. After determining a calibration
curve, the melanin content per cell was determined as 53.5 to
63.6 pg/cell for melanocytes treated with the analysed drug and
61.2±2.39 pg/cell for a control sample. The obtained results,
recalculated for culture (1×105 cells), were finally expressed as
a percentage of the controls (Fig. 3a). Treatment of HEMn-DP
cells with 1.0 and 2.5 μMof a drug caused decrease in melanin
content by 7.4 and 12.6 %, respectively. Thioridazine in con-
centrations from 0.01 to 0.25 μM had no impact on melanin
content in melanocytes.

Tyrosinase activity inmelanocytes treated with thioridazine
decreased in a manner correlating well with the effect on mel-
anin production (Fig. 3b). The enzyme activity was deter-
mined as 0.85 to 1.03 μmol/min/mg protein for melanocytes
treated with thioridazine and 0.98±0.02 μmol/min/mg for a
control sample. The tyrosinase activity was decreased by 6.5
and 13.7 % for cells treated with a drug in concentrations of
1.0 and 2.5 μM, respectively, as compared with the controls.
Thioridazine in concentrations from 0.01 to 0.25 μM had no
impact on cellular tyrosinase activity.

After performing a calibration curve, the MITF content was
determined as 0.18 to 0.26 ng/mg protein for melanocytes treat-
ed with a drug and 0.26±0.01 ng/mg protein for a control
sample (Fig. 3c). Treatment of HEMn-DP cells with thiorida-
zine in concentrations of 0.25, 1.0 and 2.5 μMdecreasedMITF
content by 12.7, 28.7 and 31.3 %, respectively. Thioridazine in
concentrations from 0.01 to 0.1 μM had no impact on the cel-
lular MITF content in comparison to the control cells.

Discussion

Human skin is a major target for oxidative stress because of
constant exposure to high levels of ROS produced by

Fig. 1 The effect of thioridazine on viability of melanocytes. Cells were
treated with various doses of thioridazine (0.0001–10 μM) and examined
byWST-1 assay. Data are expressed as percentage of cell viability. Mean
values±SD from three independent experiments performed in triplicate
are presented. **P<0.01 vs. the control samples
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physical, chemical and biological reactions. Under normal
conditions, various antioxidant enzymes, such as SOD, GPx
and CAT, protect cells from the oxidative injury (Frey et al.
2007; Kalyanaraman 2013; Schallreuter et al. 2012).
Melanocytes are especially sensitive to reactive oxygen spe-
cies because of the low level of main enzyme responsible for
degrading hydrogen peroxide—catalase (Schallreuter et al.
2008; Kim and Lee 2013). Under pathological conditions,
oxidative stress arises from a serious imbalance between
the free radicals and antioxidants levels and leads to
modification and/or damage of lipids, proteins and
DNA and thereby contributes to cellular dysfunction.
Increased production of ROS after exposure to drugs
and/or toxins has been linked with several major dis-
eases such as cancer, diabetes, schizophrenia and neuro-
degenerative disorders (Frey et al. 2007; Kalyanaraman
2013; Mattila et al. 2007).

It is of interest that accumulation of H2O2 inmelanocytes in
millimolar concentrations may lead to disruption of many
proteins and peptides leading to deactivation of important an-
tioxidant enzymes including catalase, thioredoxin reductase
and methionine sulphoxide reductases A and B (Schallreuter
et al. 2008; Kim and Lee 2013). Sravani et al. (2009) demon-
strated that high SOD levels and low levels of CAT in the skin
of vitiligo patients are associated with oxidative stress in the
pathogenesis of vitiligo. On the other hand, the micromolar
concentrations of H2O2 cause an increase in the activity of
many proteins and peptides such as tyrosinase, transcription
factors (e.g. MITF, p53) as well as antioxidant enzymes
(Schallreuter et al. 2008).

The aim of the present study was to investigate the effect of
thioridazine on the antioxidant defence system and melanin
formation in HEMn-DP melanocytes. In this study, we have
used the culture of normal human epidermal melanocytes as
an in vitro experimental model system.

Analysis of the effect of thioridazine on antioxidant status
of HEMn-DPmelanocytes demonstrated that this drug in con-
centrations of 0.1, 0.25, 1.0 and 2.5 μM significantly in-
creased SOD activity and decreased CAT activity (Fig. 2a,
b). The observed increase in SOD activity correlates well with
the elevated level of H2O2 (Fig. 2d). The tested drug exerted a
different effect on GPx activity (Fig. 2c). Thioridazine in con-
centration of 0.1 μM increased activity of this enzyme in
comparison to 1.0 and 2.5 μM drug concentration, when de-
crease in GPx activity was observed. The presented decrease
in CAT and GPx activity at higher drug concentrations (1.0
and 2.5 μM) may be connected with redundant cellular H2O2

level that cannot be eliminated. The activities of antioxidant
enzymes and the content of H2O2 in melanocytes were nor-
malized to viable cells which suggests that the observed
changes in cellular antioxidant status may be caused by the
reduced enzymes expression. Moreover, the disturbances of
antioxidant defence system in melanocytes may result from
the antagonistic effect of thioridazine on D2 receptors (Cuevas
et al. 2013). Activation of dopamine D2 receptors regulates the
production of reactive oxygen species by inhibiting pro-
oxidant (NADPH oxidase) and stimulating antioxidant (CAT
and SOD) enzyme activity (Cuevas et al. 2013; Iida et al.
1999). Thioridazine, which acts as a D2 receptor antagonist
(Beaulieu and Gainetdinov 2011), can induce oxidative stress

Fig. 2 Superoxide dismutase
(SOD) (a), catalase (CAT) (b) and
glutathione peroxidase (GPx) (c)
activities and hydrogen peroxide
(H2O2) content (d) in HEMn-DP
cells after 24-h incubation with
0.01, 0.025, 0.1, 0.25, 1.0 or
2.5 μM of thioridazine. Data are
mean±SD from at least three in-
dependent experiments per-
formed in triplicate. *P<0.05 vs.
the control samples; **P<0.01
vs. the control samples
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in cells. The thioridazine-induced generation of reactive oxy-
gen species and changes in SOD and CAT activities were also
stated by other authors (Rukmini et al. 2004). It was shown
that thioridazine and chlorpromazine evoked oxidative stress
in serum of schizophrenia patients in whom the increase of
SOD and CAT activity was observed.

Because of the fact that melanin may act as a scavenger of
free radicals, we have examined the effect of thioridazine on
melanogenesis process. Melanogenesis is a complex, multi-
stage biochemical pathway responsible for brownish-black
eumelanins and/or reddish-yellow pheomelanin synthesis. It

takes place in melanocytes, in separate cytoplasmic organ-
elles, called melanosomes. The key regulatory and rate-
limiting melanogenic enzyme is tyrosinase, which is able to
catalyse the first two steps of melanogenesis: the hydroxyl-
ation of L-tyrosine and the subsequent oxidation of the inter-
mediate L-3,4-dihydroxyphenylalanine (L-DOPA) to yield L-
DOPAquinone (Hearing 2011; Liu et al. 2010; Otręba et al.
2012; Schallreuter et al. 2008). A large number of signal mol-
ecules and transcription factors regulate melanogenesis, but
the major transcription factor is microphthalmia-associated
transcription factor (MITF). The gene expression of main en-
zymes regulating melanogenesis (tyrosinase, TRP1, TRP2),
cell survival, proliferation and differentiation is regulated by
MITF (Kim et al. 2013; Otręba et al. 2012; Otręba et al. 2013).

The analysis of melanogenesis process in cells cultured in
the presence of thioridazine demonstrates that this drug in
concentrations of 1.0 and 2.5 μMdecreases tyrosinase activity
as well as melanin content (Fig. 3a, b). Moreover, after mela-
nocyte treatment with thioridazine in concentrations of 0.25,
1.0 and 2.5 μM, the decrease in MITF content (Fig. 3c) was
stated, which confirms the ability of this drug to inhibit mela-
nogenesis in HEMn-DP melanocytes.

It is of interest that thioridazine has antagonistic properties
for serotonin (5-HT) and dopamine (D) receptors that might
be implicated in melanocyte biology. Immunocytochemical
analysis of skin biopsies revealed that tryptophan hydroxylase
(THP) and serotonin (5-HT) are localized primarily in normal
melanocytes and inmalignant melanoma cells, suggesting that
the pathway for 5-HT synthesis is expressed predominantly in
the melanotic cells. Serotonin can interact with specific cell
surface membrane-bound receptors coupled with G proteins.
5-HT1A receptor expression was demonstrated in the basal
epidermal melanocytes, 5-HT2A receptors in the epidermis
of normal and eczematous human skin and 5-HT3 in the pro-
liferative basal layer of the epidermis (Nordlind et al. 2008;
Lundeberg et al. 2002). 5-HT7 receptors can stimulate and 5-
HT1A receptors can attenuate adenylate cyclase activity,
resulting in reducing and increasing of cyclic AMP level.
Due to the fact that antagonists of 5-HT receptors may de-
crease the cAMP level, the reduction in expression of TYR
and MITF genes may be observed (Nordlind et al. 2008;
Otręba et al. 2012). Dopamine receptors are localized in the
basal layer of the epidermis where they play an important role
in the regulation of cell proliferation. The antagonists of D2

receptors reduce the cAMP level (Schallreuter et al. 2008;
Slominski et al. 2012). Thus, the pharmacological properties
of thioridazine with respect to its possibility to receptor bind-
ing in melanocytes should be taken into consideration in the
elucidation of molecular mechanisms of thioridazine side ef-
fects in vivo. Taking into account the data published by
Richtand et al. (2007) concerning the Ki values of dopamine
and serotonin receptor binding affinity for thioridazine (Ki

from 10 to 579 nM), it may be suggested that the analysed

Fig. 3 The effect of thioridazine on melanin content (a), tyrosinase
activity (b) and microphthalmia-associated transcription factor (MITF)
content (c) in melanocytes. Cells were cultured with 0.01, 0.025, 0.1,
0.25, 1.0 or 2.5 μM of thioridazine for 24 h. Data are mean±SD from
at least three independent experiments performed in triplicate. *P<0.05
vs. the control samples; **P<0.01 vs. the control samples
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drug is able to D2 dopamine and 5-HT receptor binding in all
thioridazine concentrations (from 0.01 to 2.5 μM, i.e. from 10
to 2500 nM) used in this study.

Our earlier study showed that another phenothiazine deriv-
ative, namely chlorpromazine, in lower concentrations induced
melanogenesis, while changes of antioxidant status were not
observed (Otręba et al. 2015). The use of that drug in higher
concentrations caused similar to thioridazine significant alter-
ations of antioxidant enzyme activity in normal melanocytes.

The present work provides the first in vitro study on the
mechanisms involved in thioridazine-induced oxidative stress
and pigmentation disorders using HEMn-DP cells. The ob-
tained results may explain a potential role of thioridazine in
the depletion of cellular antioxidant status leading to
hypopigmentation. Our results also demonstrate that HEMn-
DP cells represent a suitable cell model to study mechanisms
regulating melanogenesis and antioxidant defence system in
human pigmentation disorders.
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