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Abstract. The main theorem of this paper states that Morse cohomology
groups in a Hilbert space are isomorphic to the cohomological Conley
index. It is also shown that calculating the cohomological Conley index
does not require finite-dimensional approximations of the vector field.
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1. Introduction

The aim of this paper is to show that Morse cohomology groups defined for a
certain functional in a Hilbert space can be recovered via the Conley index.
This was motivated by the growing number of different Floer cohomology
theories in three- and four-dimensional topology. A lot of applications come
from the fact that some of those theories are equivalent. As an example, let
us mention the Seiberg–Witten–Floer cohomology and the embedded con-
tact Floer cohomology. The equivalence between those two was used to find
Reeb orbits on contact manifolds. Some stronger versions of the Weinstein
conjectures were obtained (cf. [Tau]).

However, some of the Floer theories are still conjectured to be equiv-
alent, e.g. Seiberg–Witten–Floer (HSW) cohomology and Monopole–Floer
cohomology (HM). The former is defined by the Conley index while the lat-
ter one by counting connecting orbits. The idea of using the Conley index
instead of Floer theory for Seiberg–Witten equations was first introduced by
Manolescu in [Man]. One of the motivations was the fact that we do not have
to deal with transversality.

Our approach to the Floer theory via the Conley index is slightly differ-
ent from that in [Man]. We would like to work with an index pair in a Hilbert
space and apply the concept of G ↪eba–Granas cohomology (see [G-G]). This
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allows us to avoid finite-dimensional approximations of the vector field. Re-
sults presented below are obtained by the facts that those cohomology groups
satisfy axioms of the generalized cohomology theory (see below for a precise
statement) and that they are invariant under the flow deformations. Those
two facts were proved by Abbondandolo in [Abb97].

2. E-cohomology

E-cohomology groups are defined to be the direct limit of certain ordinary
cohomology groups. Let us remark on the latter first. The main require-
ment is that the theory satisfies the strong excision axiom. There are various
possible choices, e.g. Čech cohomology groups [G-G] or Alexander–Spanier
cohomology groups [Abb97]. We choose the homotopical point of view. Let us
recall the definition from the Appendix in [C-J] (cf. [AGP, Chap. 7]). Denote
by K(F, n) an appropriate Eilenberg–Maclane space. For a topological pair
(X,Y ) define cohomology groups by

Hn(X,Y ) = [X ∪ CY,K(F, n)],

where CY is a cone on Y . In the case when X is a compact Hausdorff space
and Y is its closed subset, Hn(X,Y ) coincides with the Alexander–Spanier
cohomology group and

Hn(X,Y ) = [X/Y,K(F, n)].

One can also define cohomology groups with compact supports of a locally
compact Hausdorff space U by

Hn
c (U) = Hn(U+, ∗) = [U,K(F, n)]c,

where U+ denotes the one-point compactification of U and [ , ]c denotes ho-
motopy classes of compactly supported maps.

Throughout the rest of the paper, we take F = Z2.

We are now ready to give an overview on what E-cohomology is. Let E
be a Hilbert space with a splitting E = E+ ⊕E−, where each of E+ and E−

is either infinite dimensional or trivial. We say that {En}n∈N is an approxi-
mating system for E if

(1) En is a finite-dimensional subspace of E for every n;
(2) there is an inclusion in,n′ : En ↪→ En′ for every n′ > n;

(3)
⋃

n En = E.

We recall the definition of E-cohomology in two extremal cases: (i) when
E+ = {0}, E− = l2 and (ii) when E+ = l2, E− = {0}. For l2 we take an
approximation system induced by the spaces of finite sequences. However,
one can prove (see [G-G], [Abb97]) that the definition does not depend on
the choice of the approximation system.

Let us first consider the case of E = {0}⊕l2. Take a closed and bounded
set X ⊂ E. We define the finite-codimensional cohomology in the following
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way (see [G-D]). Put

En = {(x1, x2, . . . ) ∈ E : xk = 0 for k > n},

Ên = {(x1, x2, . . . ) ∈ En : xn ≥ 0},
Ěn = {(x1, x2, . . . ) ∈ En : xn ≤ 0},

Xn = X ∩ En, X̂n = X ∩ Ên, X̌n = X ∩ Ěn.

En+1

En

Xn+1

Xn

X̂n+1

X̌n+1

Figure 1

Since X̂n+1 ∩ X̌n+1 = Xn and X̂n+1 ∪ X̌n+1 = Xn+1, the Mayer–Vietoris

sequence for a triad (Xn+1, X̂n+1, X̌n+1) gives a homomorphism

δn : Hk(Xn) → Hk+1(Xn+1).

Definition 2.1. Finite-codimensional cohomology groups on l2 are defined by

Hk
E(X) = lim−→

(
HdimEn+k(Xn), δn

)
.

Notice that if k > 0, then dimEn+k > dimXn. Thus, the above groups
can be nontrivial only for negative k. We have chosen a convention which is
compatible with the one in [Abb97] and opposite to that in [G-D]. This would
be more convenient when we deal with the case when both E+ and E− are
nonzero.

As a simplest nontrivial example, take X = S(E); i.e., X is a unit
sphere in E. Then Xn = S(En), H

n−1(Xn) = Z2 and all the maps δn are
isomorphisms. Thus

H−1
E (S(E)) � Z2

and Hk
E(S(E)) is trivial if k �= −1 (notice that since H0(S(En)) is mapped

by δn to HdimEn+1−dimEn(S(En+1)), we do not see zeroth cohomology of
the sphere). Let us also emphasize that if X is compact (in particular, if it
is contained in a finite-dimensional subspace), then all the E-cohomology
groups are trivial. For a general separable Hilbert space E = {0} ⊕ E− we
can take an isomorphism with l2 (i.e., choose an approximating system) and
repeat the construction.
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This simple concept can be generalized in many directions. Gȩba and
Granas [G-G] proved that for any generalized cohomology theory, the above
groups are well defined. For example, taking cohomotopy groups instead of co-
homology groups gives us stable cohomotopy groups. In addition, they proved
that the resulting theory is always a generalized cohomology theory on the
Leray–Schauder category. Morphisms of the Leray–Schauder category are
compact fields (i.e., Id+K where K is compact) so one could try to apply
the above techniques to fixed point theory.

However, it is good to extend the set of morphisms of the Leray–
Schauder category. One reason for this is that one cannot compare spheres
of different radii via maps Id+K. Obviously, such spheres should have the
same cohomology groups.

First of all, notice that the above cohomology groups are trivially in-
variant under translations. Abbondandolo proved that they are also invariant
under the flow deformations. This allows us to compare spheres of different
radii and also, which is more important, to use Morse theory and the Conley
index techniques.

Another feature of [Abb97], [K-Sz] and [Sz] is a generalization to the so-
called middle-dimensional cohomology, i.e., the case when both E+ and E−

are of infinite dimension. Before introducing that, let us consider a second ex-
tremal example: E+ = l2, E− = {0}. In this case, E-cohomology groups are
defined by

Hk
E(X) = lim−→

(
Hk

(
Xm, δ′m

))
,

where δ′m is induced by the inclusion of Xm into Xm+1. One can easily see
that if X is a sphere in Em, then Hk

E(X) is nontrivial (and equal to Z2) only
if k = m − 1 or k = 0. In fact, it is true that if X is locally compact, then
H∗

E is isomorphic to the compactly supported cohomology mentioned above.
Now the middle-dimensional cohomology groups are defined by

Hk
E(X) = lim−→

(
HdimE−

n +k
(
X(m,n), δ

′
m, δn

))
,

where Xm,n = X ∩ (Em ⊕ En), δn : Xm,n → Xm,n+1 is the map from the
Mayer–Vietoris sequence and δ′m : Xm,n → Xm+1,n is the map induced by in-
clusion. Again, this definition does not depend on the approximating system.

One can think of E-cohomology as cohomology of finite-codimensional
cohomology with respect to E− and cohomology with compact supports with
respect to E+.

We would like to emphasize the fact that E-cohomology groups satisfy
axioms of a generalized cohomology theory (see [Abb97, Theorem 0.2]). All
the results presented below can be obtained by these axioms without the
knowledge of the precise construction of E-cohomology groups. For the sake
of completeness, let us recall the homotopy invariance, the strong excision
axiom and the long exact sequence for a triple.

Definition 2.2. A continuous map Ψ : (X,A) → (Y,B) is an E-morphism if

(1) it has the form
Ψ(x) = Lx+K(x),
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where L is a linear automorphism of E such that LE+ = E+ and K
maps bounded sets into precompact sets;

(2) Ψ−1(U) is bounded for every bounded set U .

We also say that E-morphisms Φ and Φ′ from (X,A) to (Y,B) are E-
homotopic if there exists an E-homotopy joining them, i.e., a continuous map
Ψ : (X,A)× [0, 1] → (Y,B) such that

(1) Ψ(x, t) = Ltx+K(x, t), where Lt is a linear automorphism of E and K
maps bounded sets into precompact sets;

(2) Ψ−1(U) is bounded for every bounded set U ;
(3) Ψ(·, 0) = Φ and Ψ(·, 1) = Φ′.

The above definitions allow us to state the following.

• Homotopy invariance: if two E-morphisms Φ and Φ′ are E-homotopic,
then H∗

E(Φ) = H∗
E(Φ

′).
• Strong excision: if X and Y are closed and bounded subsets of E and
i : (X,X ∩ Y ) → (X ∪ Y, Y ) is the inclusion map, then H∗

E(i) is an
isomorphism.

• Long exact sequence: for a triple X ⊂ Y ⊂ Z of closed and bounded
sets we have a long exact sequence:

· · · → Hk
E(Z, Y ) → Hk

E(Z,X) → Hk
E(Y,X)

δ−→ Hk+1
E (Z, Y ) → Hk+1

E (Z,X) → · · · .
In the proof of Proposition 3.4 we will also need the following two lem-

mas (cf. [Abb97, pp. 372–373]).

Lemma 2.3. Let Y be a closed subset of X. If there exists an E-homotopy

Ψ : (X,A)× [0, 1] → (X,A)

such that Ψ0 = Id, Ψ1(X) ⊂ Y and Ψt(Y ) ⊂ Y for every t ∈ [0, 1], then

H∗
E(X,A) � H∗

E(Y,A),

the isomorphism being induced by the inclusion map.

Lemma 2.4. Let B be a closed subset of A. If there exists an E-homotopy

Ψ : (X,A)× [0, 1] → (X,A)

such that Ψ0 = Id, Ψ1(A) ⊂ B and Ψt(B) ⊂ B for every t ∈ [0, 1], then

H∗
E(X,A) � H∗

E(X,B),

the isomorphism being induced by the inclusion map.

3. Conley index

We make the following assumptions throughout this section.
Let f ∈ C2(E,R) be a function of the form

f(x) =
1

2
〈Lx, x〉+ b(x),
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where L is a self-adjoint isomorphism, ∇b(x) is globally Lipschitz and D2b(x)
is compact for every x ∈ E. Then the operator L gives a splitting of E into
E+ and E− corresponding to positive and negative eigenspaces, respectively.
We would like to work with flows generated by the minus-gradient equations;
i.e.,

ẋ = −∇f(x).

We define the cohomological Conley index in a Hilbert space E as the
E-cohomology of an index pair in E. This is a different approach than in [Izy]
and [Man], because it does not use finite-dimensional approximations of the
vector field. We compare our approach to [Izy] after proving Proposition 3.4.

Following [GIP, p. 221], we define an isolating neighborhood in a Hilbert
space.

Definition 3.1. We say that a bounded and closed set N ⊂ E is an isolating
neighborhood if

Inv(N) ⊂ intN.

Definition 3.2. Let N be an isolating neighborhood of an invariant set S. We
call a closed and bounded pair (N1, N0) an index pair for S if

(1) N0 is positively invariant relative to N1,
(2) S ⊂ intN1 \N0,
(3) if γ ∈ N1, t > 0 and γ ·t �∈ N , then there exists t′ such that γ ·[0, t′] ⊂ N1

and γ · t′ ∈ N0.

Moreover, we say that an index pair is regular if the function

τ(x) = inf
{
s ∈ R≥0 : x · [0, s] �⊂ N1 \N0

}

is continuous.

Unless otherwise stated, we assume that all index pairs are regular
(cf. Remark 3.6 for the existence).

We say that an index pair (N1, N0) is contained in the isolating neigh-
borhood N if N0 ⊂ N1 ⊂ N and N1, N0 are positively invariant relative to N
(cf. [Smol, p. 489]).

Definition 3.3. We define the cohomological Conley index of S (denoted by
ch∗(S)) to be H∗

E(N1, N0), where (N1, N0) is an index pair for S.

The above definition only makes sense if we prove the independence of
a choice of index pairs. This is stated in the following proposition.

Proposition 3.4. Suppose that we have a flow as in the beginning of this
section. Let (N1, N0), (N̂1, N̂0) be two regular index pairs for S = Inv(N)
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contained in the same isolating neighborhood N . Then

H∗
E(N1, N0) � H∗

E

(
N̂1, N̂0

)
.

Notice that the assumption on the flow is crucial.
Define the sets N t

1, N
−t
0 by

N t
1 = {x ∈ N1 : x · [−t, 0] ⊂ N1},

N−t
0 =

{
x ∈ N1 : ∃y∈N0

∃t′∈[0,t] s.t. y · [−t′, 0] ⊂ N1, y · (−t′) = x
}
.

F
L
O
W

N1

N0

N t
1

N0

N1

N−t
0

Figure 2

The proof of Proposition 3.4 can be divided into three steps.

Step 1. For every t > 0 there is an isomorphism

H∗
E(N1, N0) → H∗

E

(
N t

1, N0 ∩N t
1

)
.

Step 2. For every t > 0 there is an isomorphism

H∗
E(N1, N0) → H∗

E

(
N1, N

−t
0

)
.

Step 3. There exists T > 0 such that
(
NT

1 , N0 ∩NT
1

)
⊂

(
N̂1, N̂

−T
0

)
,

(
N̂T

1 , N̂0 ∩ N̂T
1

)
⊂

(
N1, N

−T
0

)

and the inclusions induce isomorphisms of E-cohomology groups.

Proof.

Step 1. Define Ψ : (N1, N0)× [0, 1] → (N1, N0) by

Ψ(x, s) =

{
x · s if x · [0, s] ∈ N1 \N0;

x · τ(x) otherwise.

Put X = N1, Y = N t
1 ∪N0, A = N0. Lemma 2.3 gives us

H∗
E(N1, N0) � H∗

E

(
N t

1 ∪N0, N0

)
.

From the excision axiom we have

H∗
E

(
N t

1, N0 ∩N t
1

)
� H∗

E

(
N t

1 ∪N0, N0

)
.
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Step 2. This can be done in a similar way as Step 1.

Step 3. Take N̂ = cl(N \N1). For every x ∈ N̂ there exists Tx > 0 such that

x · (−Tx) �∈ N̂ . In fact, we will show that there exists T1 which satisfies the

above condition for every x ∈ N̂ . In a finite-dimensional case this is just a
consequence of the compactness of N̂ .

Suppose we have a sequence (yn) ⊂ N̂ such that yn · (−2n, 0) ⊂ N̂ . Put

xn := yn · (−n). Then both sets xn · (−n, 0) and xn · (0, n) are contained in N̂ .

If xnk
→ x0, then x0 · (−∞, 0) ⊂ N̂ and x0 ∈ N̂ and we have arrived at a

contradiction.
We now prove that if xn · (−n, n) ⊂ N̂ for every n, then (xn) contains

a convergent subsequence.
Suppose that (x+

n ) ⊂ E+ does not have a convergent subsequence. Then
there exists ε > 0 such that |x+

n − x+
m| > ε for every n �= m.

Take s, T1 > 0 such that

N ⊂ B(0, s),
∣∣eT1Lx

∣∣ > 3s

ε
|x|

for every x ∈ E+. Then for n,m > T1 we have

3s <
∣∣eT1L(xn − xm)

∣∣
� |xm · T1|+ |xn · T1|+

∣∣K(xm, T1)−K(xn, T1)
∣∣

� 2s+
∣∣K(xm, T1)−K(xn, T1)

∣∣
and so ∣∣K(xm, T1)−K(xn, T1)

∣∣ > s

for every n,m > T1. However, K(·, T1) is compact and we have a contradic-
tion. As a consequence, we can choose a convergent subsequence (x+

nl
). In a

similar way, from (x−
nl
) we can take a convergent subsequence (x−

nk
) and this

gives us a convergence of (xnk
).

By the same argument we can find T2 > 0 such that for every x ∈ N0

we have x · T �∈ N0. Take

T = max
{
T1, T2, T1, T2

}
,

where T1, T2 correspond to the pair (N̂1, N̂0). Then
(
NT

1 , N0 ∩NT
1

)
⊂

(
N̂1, N̂

−T
0

)
,

(
N̂T

1 , N̂0 ∩ N̂T
1

)
⊂

(
N1, N

−T
0

)
.

The proof that the above inclusions induce isomorphisms on the cohomology
groups runs as in the finite-dimensional case (see [Smol, pp. 486–492] or [Ch,
p. 401]). �

Remark 3.5. One can show the independence of the Conley index without
the assumption that both index pairs are contained in the same isolating
neighborhood (cf. [Smol, p. 491]).
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Remark 3.6. We want to emphasize that for an isolated invariant set S there
exists a regular index pair. Let U be an isolating neighborhood and define

GT (U) =
⋂

|t|�T

U · (−t, t).

Then there exists T > 0 such that GT (U) ⊂ intU .
Suppose the converse; i.e.,

Gn(U) �⊂ intU for every n.

Take xn ∈ Gn(U)\ intU ; i.e., xn ·(−n.n) ⊂ U . There exists a convergent sub-
sequence xnk

→ x0 ∈ S ⊂ intU (see the proof above); a contradiction.
This proves that GT (U) ⊂ intU for some T > 0. For such a U one can

construct a regular index pair (see [Ch, Theorem 5.5.13]).

Let us compare our definition of the cohomological Conley index to the
one which uses finite-dimensional approximations of the vector field [Izy]. For
a compact K define Kn : E → E by

K(x) = Pn ◦K ◦ Pn(x).

Let S be an isolated invariant set for the flow generated by F = L+K and
let N̂ be an isolating neighborhood for S. Then F is related by continuation
(through E-homotopies) to Fn0

= L+Kn0
for sufficiently large n0. Let (N,L)

be an index pair for the approximation, i.e., for the finite-dimensional flow
generated by Fn0 |En0

: En0 → En0 . Clearly

(NE , LE) =
(
N ×D+

−n ×D−
−n, L×D+

−n ×D−
−n ∪N ×D+

−n × ∂D−
−n

)

is an index pair for F in E, whereD
+/−
−n denotes a disc in E⊥

n ∩E+/−. It is easy
to check that H∗

E(NE , LE) coincides with the cohomological Conley index
defined in [Izy]. Since E-cohomology does not depend on the index pair, those
two approaches coincide in general.

4. Main theorem

Let us recall that we are interested in a flow generated by the minus gradient
vector field for a function f ∈ C2(E,R) of the form

f(x) =
1

2
〈Lx, x〉+ b(x),

where L is a self-adjoint isomorphism, ∇b(x) is globally Lipschitz and D2b(x)
is compact for every x ∈ E.

Let S be a compact isolated invariant set containing only nondegenerate
critical points x1, . . . , xn and orbits connecting them.

For a nondegenerate critical point x we define an E-index by

indE x = dimV ∩ E+ − dimV ⊥ ∩ E− = dimV ∩ E+ − codimE+ + V,

where V is the negative eigenspace of D2f(x), E+ and E− are, respectively,
positive and negative eigenspaces of L.
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Suppose further that the transversality condition holds; i.e., if

indE y − indE x = 1,

the stable manifold of y and unstable of x intersect transversally.

Main Theorem. We have

HF ∗(S) � ch∗(S),

where HF ∗(S) denotes Floer cohomology.

Salamon [Sal] used an analogous theorem in the following way. Take
a function f on finite-dimensional closed manifold M . Then (M, ∅) is an
index pair for the isolated invariant set S = M . If the Morse cohomology is
isomorphic to the cohomological Conley index, we have

H∗(M) = H∗(M, ∅) � H∗
Morse(M).

Thus, this is just another proof that Morse theory recovers singular
cohomology groups.

Let us first give the main ideas of the proof. Take two nondegenerate
critical points x and y of a relative index 1 and a connecting orbit C. By the
transversality, Ŝ = {x, y, C} is an isolated invariant set. Now choose a triple
(N2, N1, N0) in such a way that the pairs (N2, N0), (N2, N1) and (N1, N0)

are index pairs for the invariant sets Ŝ, {y} and {x}, respectively (given a
pair (N2, N0) put N1 = N2 ∩ f−1((−∞, b]) for an appropriate b).

N2

N1

N0

y

x

Figure 3

We have the following long exact sequence:

· · · → Hk
E(N2, N0) → Hk

E(N1, N0)

→ Hk+1
E (N2, N1) → Hk+1

E (N2, N0) → · · · .
(4.1)

One can show that the cohomological Conley index for S is trivial; i.e., all
the groups Hn

E(N2, N0) are trivial. Thus, for every k we have an isomorphism

Hk+1
E (N2, N1) → Hk

E(N1, N0).
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Abbondandolo computed (see [Abb97, Proposition 14.6]) the cohomological
Conley index for a nondegenerate critical point:

chk({x}) =

{
Z2 for k = indE x,

0 otherwise.

The only nontrivial morphism in the exact sequence (4.1) is the isomorphism

between Hk+1
E (N2, N1) and Hk

E(N1, N0) where k = indE x.
By the compactness of S and the transversality condition, we have

finitely many orbits C1, C2, . . . , Cm connecting y and x. Take

Ŝ = {x, y, C1, . . . , Cm}.

By the additivity (see [McC, p. 201]), the Conley connection matrix is a sum
of isomorphisms from Z2 to itself so it is an algebraic count modulo 2. This
is exactly the Floer boundary operator. Since ch∗({x}) � Z2, one can think
of ch∗({x}) as a generator of the Floer chain group CindE x.

Here are some technical details of the above construction. We would like
to prove that the Conley index of Ŝ = {x, y, C} is trivial. Let us examine
a special case. Suppose C ′ is contained in one-dimensional subspace E1 and
x′ = (−1, 0) ∈ E1 ⊕ E⊥

1 , y′ = (1, 0), C ′ = [−1, 1]× {0}.

Lemma 4.1. The Conley index of Ŝ is trivial.

Proof. We follow an approach of McCord [McC]; i.e., we use a series of con-
tinuations. Choose a small isolating neighborhood N of S′. First continue the
vector field F (x, y) = (Fx(x, y), Fy(x, y)) to

F1(x, y) =
(
Fx(x, 0) +DyFx(x, 0)y, Fy(x, 0) +DyF (x, 0)y

)

=
(
Fx(x, 0) +DyFx(x, 0)y,DyF (x, 0)y

)

and then to

F2(x, y) =
(
Fx(x, 0), DyF (x, 0)y

)
.

Now put a(x) = Fx(x, 0), M = maxx∈[0,1] a(x) and continue F2(x, y) to

F3(x, y) =
(
Fx(x, 0)−M − 1, DyF (x, 0)y

)
.

Notice that inv(F3, S) = ∅ and thus the Conley index is trivial. �

Now we would like to find an E-homotopy which reduces a general case
to the above one (compare [G, Section C]).

Let M be a compact C1 submanifold of a Hilbert space E.

Lemma 4.2. There exists a finite-dimensional subspace T of E such that the
orthogonal projection PT onto T maps M diffeomorphically onto PT (M).

Proof. For every x ∈ M there is an open neighborhood Ux such that Ux is
diffeomorphic to the open neighborhood of 0 in TxM via the exponential map.
Choose a finite subcover Ux1

, Ux2
, . . . , Uxk

and put

T ′ = span{TxiM : i = 1, . . . , k}.
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The orthogonal projection PT ′|M : M → T ′ is an imbedding. Thus, for a given
x ∈ M , there is only a finite number of points y1, y2, . . . , yp such that PT ′x =
PT ′yi. Define T ′

x as the space spanned by T ′ and y1 − x, y2 − x, . . . , yp − x
and let Px be the orthogonal projection onto T ′

x. It is easy to see that there
is an open neighborhood Vx of x such that y ∈ Vx, z ∈ M and Pxz = Pxy
imply z = y. Again, choose a finite cover Vx1

, Vx2
, . . . , Vxq

and put

T = span{T ′
i : i = 1, . . . , q} �

Lemma 4.3. There exist an E-homotopy and a finite-dimensional subspace T1

such that

(1) Ψ(·, 0) = Id,
(2) Ψ(M, 1) is contained in T1.

Proof. By Lemma 4.2 we can find a finite-dimensional space such that PT :
M → T is an injection. For x ∈ M define φx : M → E by

φx(y) = PT (y − x) + x.

Then φx is an imbedding and φx(x) = x. Let Ux1 , . . . , Uxk
be a cover of M

and let {νi} be a subordinated partition of unity. Define φ : M → E by

φ(x) =
∑

νi(x)φxi
(x).

Take T1 to be the space spanned by T and x1, . . . , xk. Then φ(M) ⊂ T1.

Define η0 : PT (M) → T⊥ by

η(PTx) = x− φ(x).

Since PT (M) is a C1 submanifold of T , we can extend η to a C1 map on T .
Define Ψ(x, y) = x− tη(PTx). �

Two critical points together with an orbit between them is a compact
submanifold of E. Thus we can apply the above lemma to M = Ŝ. Suppose
that Φ(Ŝ, 1) is contained in a finite-dimensional space T1. Choose a one-

dimensional subspace E1 ⊂ T1 and a diffeomorphism h of T1 which takes Ŝ
onto (−1, 1) ⊂ E1. Extend h to E by the identity on T⊥. This reduces a
general case to the one in Lemma 4.1.

5. Further directions

Some of the Floer theories come with additional symmetry. One expects an
analogous theorem to the main theorem of this paper for the equivariant
Morse cohomology and the equivariant Conley index in a Hilbert space.

For an S1-action there is the conjecture that the Monopole–Floer coho-
mology and the Seiberg–Witten–Floer cohomology are isomorphic (that is,
HM∗(Y ) � HSW∗(Y )). However, this should be treated more carefully since
one cannot assume the existence of the (local) flow in a Hilbert space.
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Another direction, that one would like to investigate, is the case of
Hilbert (Banach) manifolds. Let us just recall that recently intensively ex-
plored Lagrangian intersection Floer theory (see [FOOO]) is a Floer theory
on a Banach manifold.
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