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1 Introduction

One of the indispensable requirements an acceptable fundamental quantum gravity theory

must satisfy is the emergence of a classical regime where in particular small perturbations,

i.e. gravitational waves, can propagate on an almost flat background spacetime. This regime

should be well described by classical General Relativity or, if one pushes its boundary

towards the quantum domain a bit further, by the effective quantum field theory approach

pioneered by Donoghue [1, 2].

In this paper we shall consider the scenario where the ultraviolet (UV) completion of

quantized gravity is described by an asymptotically safe quantum field theory [3]. In a

formulation based upon the gravitational average action [4], this quantum field theory is

defined by a specific renormalization group (RG) trajectory k 7→ Γk which lies entirely

within the UV-critical hypersurface of a non-Gaussian fixed point (NGFP). Here Γk ≡
Γk[hµν ; ḡαβ ] denotes the Effective Average Action, a ‘running’ action functional which,

besides the scale k, depends on the (expectation value of the) metric fluctuations, hµν , and

the metric of the background spacetime on which they are quantized, ḡαβ .

To recover classical General Relativity in this setting it would be most natural if the

asymptotically safe RG trajectory of the fundamental theory, emanating from the NGFP

in the UV (k → ∞), contains a segment in the low energy domain (k → 0) where the

full fledged description in terms of the effective average action, valid for all scales and all

backgrounds, smoothly goes over into the effective field theory of spin-2 quanta propagating

on a rigid background Minkowski spacetime. The simplest picture would then be that the

approximating low energy theory which is implied by the fundamental asymptotically safe
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one is ‘standard’ in the sense that it complies with the usual axiomatics of local quantum

field theory on Minkowski space which underlies all of particle physics, for instance.

However, almost all existing RG studies of the Asymptotic Safety scenario, using func-

tional RG methods, indicate that there is a severe tension, if not a clash, between their

predictions and the picture of a conventional Minkowski space theory describing propagat-

ing gravitons or gravitational waves at low energies [5–43, 45–47].1

In the following we try to describe this tension as precisely as possible. It is necessary

to distinguish the real question of (non-)existing propagating gravitational waves in the

classical regime from certain objections against Asymptotic Safety in general that were

raised occasionally but were based on misconceptions and are unfounded therefore. One of

these misconceptions is the believe that the anomalous dimensions of quantum fields must

be positive, always.

In fact, for asymptotically safe Quantum Einstein Gravity (QEG) it is crucial that the

anomalous dimension of the metric fluctuations, ηN, is negative, at least in the vicinity of

the NGFP. There, by the very construction of the theory’s UV completion, it assumes the

value η∗N = −(d− 2), in d spacetime dimensions.2 And indeed, the RG equations obtained

within the special class of non-perturbative approximations that have been considered in

the past almost exclusively, the so called ‘single-metric’ truncations of theory space, had

always given rise to a negative anomalous dimension [44–47]. Moreover, ηN < 0 was found

not only near the NGFP but even everywhere on the truncated theory space considered.

In these truncations the ansatz for the Effective Average Action (EAA) always included

a term ∝ G−1
k

∫
ddx

√
g R(g) from which ηN was obtained as the scale derivative of the

running Newton constant: ηN = k∂k lnGk. Since in this term the metric gµν is to be

interpreted as gµν = ḡµν + hµν , the running Newton constant fixes the normalization of

the fluctuation field, hµν . While extremely tiny in magnitude, ηN turned out negative

with this entire class of truncations even in the ‘classical regime’ displayed by the special

(Einstein-Hilbert truncated, Type IIIa) trajectory which matches the observed values of

Newton’s constant and the cosmological constant [5, 48, 49].

To see why the sign of the anomalous dimension is important let us consider an arbi-

trary field in d spacetime dimensions with an inverse propagator ∝ Z(k2)p2 which depends

on an RG scale k. In absence of other relevant scales we may identify k2 = p2, obtaining

the dressed propagator G̃(p) ∝
[
Z(p2)p2

]
−1

. For example in a regime where Z(k2) ∝ k−η

with a constant exponent η we have, in momentum space, G̃(p) ∝ 1/(p2)1−η/2. If this

propagator pertains to an Euclidean field theory on flat space it is natural to perform a

Fourier transformation with respect to all d coordinates, whence

GE(x− y) ∝ 1

|x− y|d+η−2
. (1.1)

For field theories on Minkowski space the static limit of the propagator is particularly

interesting; setting the time component of pµ to zero and taking the (d − 1) dimensional

1For a review on QEG and Asymptotic Safety and a comprehensive list of references see ref. [44].
2We assume d > 2 throughout.
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Fourier transform of G̃(p) we get, with x ≡ (x0,x) and y ≡ (x0,y) at equal times,

GM(0,x− y) ∝ 1

|x− y|d+η−3
. (1.2)

Eqs. (1.1) and (1.2) confirm that the exponent η which comes into play via the scale

dependent field normalization Z(k2) ∝ k−η indeed deserves the name of an ‘anomalous

dimension’: the renormalization effects changed the effective dimensionality of spacetime,

which manifests itself by the fall-off behavior of the 2-point function, from d to d + η. In

d = 3 + 1, for instance, we obtain the modified Coulomb potential

GM(0,x− y) ∝ 1

|x− y|1+η
. (1.3)

The point to be noted here is that, as compared to the classical Coulomb Green’s function,

a positive value of the anomalous dimensions renders the propagator more short ranged,

while it becomes more long ranged when η is negative.

Thus we conclude that the anomalous dimension ηN < 0 found by the single-metric

truncations of QEG corresponds to a graviton propagator on flat space which falls off for

increasing distance more slowly than 1/|x|. Also notice that, strictly speaking, eq. (1.1)

holds only when d + η − 2 6= 0. If d + η − 2 = 0 one has an increasing behavior even,

GE(x−y) ∝ ln(x−y)2. This is precisely the case relevant at the NGFP of quantum gravity

where η∗N = −(d−2). In the fixed point regime the momentum dependence is G̃(p) ∝ 1/pd.

Note that at the NGFP the function (1.2) becomes linear: GM(0,x− y) ∝ |x− y|.
The fall-off properties of the propagator have occasionally been adduced as a difficulty

for the Asymptotic Safety idea. We emphasize that in reality there is no such difficulty. It

is nevertheless instructive to go through the argument, and to see where it fails. For this

purpose, consider an arbitrary bosonic quantum field Φ on 4D Minkowski space. Under

very weak conditions one can derive a Källén-Lehmann spectral representation [50, 51] for

its dressed propagator:

∆′

F(x− y) =

∫
∞

0
dµ2 ρ

(
µ2

)
∆F

(
x− y;µ2

)
. (1.4)

Here

∆F(x− y;µ2) = −
∫

d4p

(2π)4
eip(x−y)

p2 − µ2 + iε
(1.5)

is the free Feynman propagator (with possible tensorial structures suppressed), and the

spectral weight function

ρ(q2) = (2π)3
∑

α

δ4(pα − q) |〈0|Φ(0)|α〉|2 (1.6)

contains a sum over all states |α〉 with momenta pα where p2α ≥ 0, pα 0 ≥ 0 (the one-particle

contribution included). It is assumed that the states are elements of a vector space which

is equipped with a positive-definite inner product. Therefore it follows directly from its

definition (1.6) that ρ(µ2) is a non-negative function. The Källén-Lehmann representation

itself follows from only a few, very basic additional assumptions: (a) completeness of the

momentum eigenstates, in particular completeness of the asymptotic states, (b) the spectral

condition p2 ≥ 0, p0 ≥ 0 for the states, (c) Poincaré covariance, in particular invariance of

the vacuum state.
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If a dressed propagator ∆′

F possess a Källén-Lehmann representation it follows that

its Fourier transform behaves as 1/p2 for p2 → ∞ limit, exactly as for the free one, ∆F.

Conversely, for |x − y| → ∞ at equal times, ∆′

F cannot decay more slowly than ∝ 1/

|x − y|. Indeed, the free massive Feynman propagator behaves as ∆F(0,x − y;µ2) ∝
exp

(
− µ |x− y|

)
in this limit, so that the µ2-integral in (1.4) amounts to a superposition

of decaying exponentials with non-negative weight, since ρ(µ2) ≥ 0. The best that can

happen is that ρ(µ2) has support at µ2 = 0, in which case the free propagator behaves

Coulomb-like ∝ 1/|x−y|, and, as a consequence, the dressed one as well, ∆′

F(0,x−y) ∝ 1/

|x − y|. Obviously this is the behavior corresponding to an anomalous dimension η = 0.

If a Källén-Lehmann representation exists, ∆′

F may fall off faster, so η > 0 is possible, but

not more slowly.

As a consequence, under the conditions implying the existence of a Källén-Lehmann

representation negative anomalous dimensions η < 0 cannot occur. This entails that,

conversely, whenever an anomalous dimension is found to be negative one or several of

those conditions must be violated.

In the case of asymptotically safe gravity, described by the EAA, we can easily identify

at least one of the above necessary conditions which is not satisfied: the functional integral

related to Γk

[
hµν , ξµ, ξ̄

µ; ḡµν
]
is a modified version (containing an IR regulator term) of

the standard Faddeev-Popov gauge-fixed and BRST invariant functional integral which

quantizes hµν in some background gauge, usually the de Donder-Weyl gauge [4]. However,

the operatorial reformulation of this quantization scheme is well-known to involve a state

space with an indefinite metric [52]. Therefore, ρ(q2) has no reason to be positive, and the

short distance behavior of the dressed hµν propagator may well be different from 1/p2 in

momentum space. In fact, Asymptotic Safety makes essential use of this possibility: for

p2 → ∞, and in d = 4, the propagator must be proportional to 1/p4 as a consequence of

the UV fixed point.

A well-known example with similar properties is the Lorentz-covariant quantization

of Yang-Mills theories on flat space, QCD, for instance. Here the anomalous dimension

related to the gluon, η ≡ ηF, is negative too, and its negative sign is precisely the one

responsible for asymptotic freedom. Analogous to the computation done for the Newton

constant, one can obtain ηF in the EAA approach by using a (covariant) background type

gauge and reading off ηF from the term 1
4g2k

∫
F 2
µν in Γk as the logarithmic scale derivative

of the gauge coupling gk, see refs. [53–57] for details. A long ranged gluon propagator

due to η < 0 could be indicative of gluon confinement, at least in certain gauges. Again

the pertinent state space is not positive-definite, and so even propagators increasing with

distance are not excluded by general principles.

It is actually quite intriguing that a linear confinement potential ∝ |x − y| for static

color charges, corresponding to a 1/p4 behavior in the IR, is precisely what in gravity is

realized in the UV. While the fixed point regime of QEG is realized at small rather than

large distances, the graviton carries a large negative anomalous dimension there.

Up to now we exploited only a rather technical, non-dynamical property of the quan-

tization scheme used, namely the indefinite metric on state space, in order to reject the

implications of a Källén-Lehmann representation with a positive spectral density. This was
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sufficient to demonstrate that within the setting of the (background gauge invariant) grav-

itational EAA of ref. [4] the exact anomalous dimension derived from the running Newton

constant is not bound to be positive for any general reason. Therefore there is nothing

obviously wrong with the negative ηN’s that were found in concrete QEG calculations on

truncated theory spaces, and a similar statement is true for Yang-Mills theory.

However, the previous argument has not yet much to do with the dynamical properties

of the respective theory. Taking QCD as an example again, we can solve the BRST co-

homology problem which underlies its perturbative quantization, and in this way we learn

how to reduce the indefinite-metric state space to a subspace of ‘physical’ states which car-

ries a positive definite inner product. One finds that, in this sense, transverse gluons and

quarks are ‘physical’, while longitudinal and temporal gluons, as well as Faddeev-Popov

ghosts are ‘unphysical’.

Now, it is a highly non-trivial question whether the dynamics of the ‘physical’ states

is such that the above requirements (a), (b), (c) are satisfied so that a Källén-Lehmann

representation of the transverse gluon propagator could exist. The general believe is that

the answer is negative since gluons, being confined, do not form a complete system of

asymptotic states. So here we have a deep dynamical rather than merely kinematical

reason to reject the implications of the Källén-Lehmann representation concerning the

propagator’s fall-off behavior. This opens the door for a gluon propagator which might

even increase with distance, like, for instance, the ‘IR enhanced’ propagator proportional

to 1/p4 for p2 → 0.3

Even though the gluon propagator is gauge dependent there is a direct connection to

the gauge invariant confinement criterion of an area law for Wilson loops. It has been

shown [62] that if the gluon propagator possesses the singular 1/p4 behavior for p2 → 0

in just one gauge then QCD is confining in the Wilson loop sense; in any other gauge it

need not show this singular behavior. In covariantly gauge fixed QCD, it is of interest to

know the properties of the gluon, ghost, and quark propagators also because they contain

information about the nonperturbative dynamical mechanism by means of which the theory

cuts down the indefinite state space to a positive-definite subspace, containing ‘physical’

states only.

In gravity, the analogous question concerns the status of the transverse gravitons, that

is, the hµν modes which are not ‘pure gauge’ but rather ‘physical’ in the BRST sense. Let

us envisage a universe which, on all its vastly different scales, from the Planck regime to

cosmological distances, is governed by QEG, and let us ask whether a transverse graviton

which it may contain is more similar to a photon (unconfined, freely propagating, exists

as an asymptotic state)4 or to a gluon (confined, no asymptotic state, no Källén-Lehmann

representation with positive ρ)?

3Please note that by no means we are saying here that this behavior must occur, rather only that it

can occur without violating any of the general principles discussed. In fact, detailed analyses of the IR

properties of QCD, employing various independent non-perturbative techniques, indicate that in reality

the picture is far more complex. For recent results concerning the gluon propagator, the properties of the

spectral densities and the positivity properties of Yang-Mills theory we must refer to the literature [58–61].
4To the extent this can make sense as an approximate notion in curved spacetime.
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In its full generality this is a very hard question. The attempt at an answer on the

basis of existing single-metric computations would be that the graviton is more similar to

the gluon than to the photon, a claim that might appear surprising, in particular if one

thinks of astrophysical gravitational waves.

In quantum gravity, where Background Independence adds to the standard principles

of quantum field theory, a particular convenient way to ensure a covariant formalism in

presence of a gauge fixing and a cutoff term is the background field method. Thereby

one introduces a generic background metric ḡµν at intermediate stages of the quantization

in addition to the usual dynamical metric gµν . Consequently, the most general ansatz

for Γk (possibly including matter fields) has to be of ‘bi-metric’ type and thus contains all

possible field monomials that can be constructed from gµν , ḡµν , and the matter fields which

respect all relevant symmetries (diffeomorphisms, (gauge-) symmetries in the matter sector,

etc.) [63, 64]. On the one hand, this affects for instance the mathematical description of the

UV-completion of the theory, where a suitable UV fixed point defines the relation between

the various invariants of background and physical metric. However, on the other hand, the

background is a purely technical artifice that does not affect the observables. Those are

obtained from the physical sector of Γk=0 ≡ Γ that mus respect Background Independence,

i.e. which is independent of the auxiliary background field in the IR limit. Hence, ḡµν
— even though crucial in the construction of an exact RG flow at all intermediate scales

k — becomes redundant when invoking fully intact split-symmetry in the IR (k = 0).

A technical simplification in the RG computations consists of neglecting the background

invariants in the ansatz for the non-gauge part of the EAA, giving rise to the aforementioned

single-metric approximation. Since the gauge fixing and the cutoff action still rely explicitly

on ḡµν , the r.h.s. of the FRGE generates invariants depending on the background field and

thus remain unresolved. Hence, the reliability of the single-metric approximation has to

be tested by comparison of the class of solutions, in particular the UV completion with

its more general bi-metric counterparts. Thus, from a physical perspective, the ultimate

theory (physical sector of Γk=0, on-shell S-matrix elements, for example) is not ‘bi-metric’

in the sense that two independent metric tensors would play a role individually. There is

only one physical metric; the background metric at intermediate stages of the quantization

is only a technical artifice. Fully intact split-symmetry in the physical sector, for vanishing

IR cutoff, is precisely the statement that ḡµν has become redundant and no observable

depends on it.

The purpose of the present paper is to go beyond the single-metric approximation and

investigate the crucial sign of the anomalous dimension ηN using differently truncated func-

tional RG flows of asymptotically safe metric gravity, i.e. QEG. In particular we explore the

corresponding predictions of two ‘bi-metric truncations’ of theory space [63, 64]. They have

been studied recently in ref. [65], henceforth denoted [I], and in ref. [66] which in the sequel

is referred to as [II], respectively. They employ a similar truncation ansatz for Γk[g, ḡ],

namely two separate Einstein-Hilbert terms for the dynamical and the background metric

gµν and ḡµν , respectively. The calculations in [I] and [II] differ, however, with respect to the

gauge fixing-conditions and -parameters they use, as well as the field parameterization they

employ. In [I] the ‘geometric’ or ‘anharmonic’ gauge fixing [65, 67–70] is used, with gauge
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fixing parameter α = 0, while [II] relies on the harmonic gauge and α = 1. Furthermore,

in [I], the functional flow equation and in particular its mode suppression operator Rk was

formulated in terms of a transverse-traceless (TT) decomposed field basis for hµν , no such

decomposition was necessary in [II]. It is to be expected that these differences of the coarse

graining schemes employed should have only a minor impact on the RG flow and leave its

essential qualitative features unchanged.

The rest of this paper is organized as follows. In section 2 we present a detailed

analysis of the two bi-metric calculations [I], [II] and a comparison of their respective RG

flows with the well-known one based on the single-metric Einstein-Hilbert truncation. We

demonstrate that the former imply a positive anomalous dimension, hence a ‘photon-like’

behavior of gravitons in the semi-classical regime. There is no obvious physical reason or

qualitative argument that would explain the sign flip of η in going from the single- to the bi-

metric truncation. Therefore, detailed quantitatively precise calculations are particularly

important here.

Section 3 is devoted to metric fluctuations outside this regime. Their precise propa-

gation properties near, but close to the Planck scale remain unknown for the time being.

We argue that, in this range of covariant momenta, they behave as a form of gravitating,

but non-propagating ‘dark matter’. Possible implications for the early Universe are also

discussed. Section 4 contains a brief summary.

2 Anomalous dimension in single- and bi-metric truncations

Our approach to the quantization of gravity assumes that the fundamental degrees of

freedom mediating the gravitational interaction are carried by the spacetime metric.

It heavily relies upon the Effective Average Action (EAA), a k-dependent functional

Γk

[
gµν , ḡµν , ξ

µ, ξ̄µ
]
which, in the case of QEG, depends on the dynamical metric gµν ,

the background metric ḡµν , and the diffeomorphism ghost ξµ and anti-ghost ξ̄µ, respec-

tively. We employ the background field method to deal with the key requirement of Back-

ground Independence, and are thus led to the task of quantizing the metric fluctuations

hµν ≡ gµν − ḡµν in all fixed but arbitrary backgrounds simultaneously.5

For all truncations of theory space studied in this paper the corresponding ansatz for

the EAA has the same general structure, namely

Γk

[
g, ḡ, ξ, ξ̄

]
= Γgrav

k [g, ḡ] + Γgf
k [g, ḡ] + Γgh

k

[
g, ḡ, ξ, ξ̄

]
. (2.1)

Concretely we consider the Einstein-Hilbert truncation, both in its familiar single-metric

form [4, 5] and a more advanced bi-metric variant thereof [65, 66]. In the single-metric

5In this paper we are dealing with pure gravity. If one includes matter fields a general truncation ansatz

for Γk contains all possible field monomials that can be constructed from gµν , ḡµν , and the matter fields

that respect the full set of imposed symmetries. At the fundamental level (k → ∞) the fixed point condition

will fix the precise combination in which gµν and ḡµν occur; in the final theory (k → 0) instead it is, again,

split-symmetry that forces one of the two metrics to become irrelevant or more precisely, ‘invisible’ by the

physical observables.
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truncation the gravitational (‘grav’) part of the ansatz has the form

Γgrav
k [g, ḡ] = − 1

16πGsm
k

∫
ddx

√
g
(
R(g)− 2Λsm

)
. (2.2)

It contains two running coupling constants, Newton’s constant Gsm
k and the cosmological

constant Λsm
k . (The superscript ‘sm’ stands for single-metric.)

For the most general bi-metric refinement of this truncation one should in principle

include the infinitely many invariants which one can construct from the metrics gµν and

ḡµν that reduce to (2.2) when both metrics are identified, g = ḡ. Here, we follow earlier

work in refs. [65] and [66], from now on referred to as [I], [II], respectively, and retain for

technical simplicity only four such invariants, namely two independent Einstein-Hilbert

actions for g and ḡ, respectively:

Γgrav
k [g, ḡ] = − 1

16πGDyn
k

∫
ddx

√
g
(
R(g)− 2ΛDyn

k

)

− 1

16πGB
k

∫
ddx

√
ḡ
(
R(ḡ)− 2ΛB

k

)
. (2.3)

This family of actions comprises 4 running coupling constants, the dynamical (‘Dyn’)

Newton and cosmological constants as well as their background (‘B’) counterparts.

An equivalent and sometimes more useful description of the action (2.3) is obtained

by expanding Γgrav
k [g, ḡ] in powers of the fluctuation field hµν = gµν − ḡµν . We have, up to

terms of second order in hµν :

Γgrav
k [h; ḡ] = − 1

16πG
(0)
k

∫
ddx

√
ḡ
(
R(ḡ)− 2Λ

(0)
k

)

− 1

16πG
(1)
k

∫
ddx

√
ḡ
[
− Ḡµν − Λ

(1)
k ḡµν

]
hµν

− 1

2

∫
ddx

√
ḡ hµν Γ

grav (2)
k [ḡ, ḡ] hρσ +O

(
h3

)
. (2.4)

This expansion in powers of hµν is referred to as the ‘level representation’ of the EAA,

and a term is said to belong to level-(p) if it contains p factors of hµν , for p = 0, 1, 2, · · · .
The level-(p) couplings G

(p)
k , Λ

(p)
k , by definition, correspond to invariants that are of order

(hµν)
p. Their relation to the ‘Dyn’ and ‘B’ couplings that were used in eq. (2.3) is given

by, for p = 0,

1

G
(0)
k

=
1

GB
k

+
1

GDyn
k

,
Λ
(0)
k

G
(0)
k

=
ΛB
k

GB
k

+
ΛDyn
k

GDyn
k

, (2.5)

and G
(p)
k = GDyn

k , Λ
(p)
k = ΛDyn

k at all higher levels p ≥ 1.

Note that the couplings at level-(1) are precisely those which enter the field equation for

self-consistent backgrounds, δΓk/δhµν |h=0 = 0, while those at level-(2) and levels-(3, 4, · · · )
determine the propagator and the vertices of the hµν-self-interactions, respectively. In the

present truncation the latter roles are played by the same coupling namely G
(1)
k = G

(2)
k =

– 8 –
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· · · ≡ GDyn
k , and likewise Λ

(1)
k = Λ

(2)
k = · · · ≡ ΛDyn

k . However, it goes beyond a single-

metric truncation as it resolves the differences between level-(0) and level-(1).6 Single-

metric calculations retain only terms of order (hµν)
0, i.e. of level-(0), and then postulate

that the RG running of the couplings at the higher levels is well approximated by that at

level-(0). (See [66] for a detailed discussion.)

The gauge fixing and the ghost terms Γgf
k and Γgh

k in (2.1) are determined by the gauge

fixing function

Fαβ
µ [ḡ]hµν ≡

(
δβµ ḡ

αγD̄γ −̟ḡαβD̄µ

)
hµν (2.6)

which involves a free parameter, ̟, whose RG running is neglected here. Special cases in-

clude the harmonic gauge (̟ = 1/2) and the geometric, or ‘anharmonic’ gauge (̟ = 1/d).

In addition there appears the gauge parameter α in the gauge fixing action whose k-

dependence will be neglected as well:

Γgf
k [g, ḡ] =

1

32παG
Dyn/sm
k

∫
ddx

√
ḡ ḡµν

[
Fαβ
µ [ḡ] (gαβ − ḡαβ)

][
Fρσ
ν [ḡ] (gρσ − ḡρσ)

]
. (2.7)

Specifically, the two gauge fixing parameters were chosen as (̟ = 1/2, α = 1), (̟ = 1/d,

α → 0), and (̟ = 1/2, α = 1) in the single-metric truncation of [4], the ‘TT-decomposed’7

bi-metric calculation of [I], and the ‘Ω-deformed’8 bi-metric analysis in [II], respectively.

When the full ansatz is inserted into the functional renormalization group equation

(FRGE) we obtain a coupled system of RG differential equations which, when expressed

in terms of dimensionless couplings,9 has the following structure:

∂tg
Dyn/sm
k =

[
d− 2 + ηDyn/sm

(
g
Dyn/sm
k , λ

Dyn/sm
k

)]
g
Dyn/sm
k (2.8a)

∂tλ
Dyn/sm
k = β

Dyn/sm
λ

(
g
Dyn/sm
k , λ

Dyn/sm
k

)
(2.8b)

∂tg
(0)
k =

[
d− 2 + η(0)

(
gDyn
k , λDyn

k , g
(0)
k

)]
g
(0)
k (2.8c)

∂tλ
(0)
k = β

(0)
λ

(
gDyn
k , λDyn

k , g
(0)
k , λ

(0)
k

)
. (2.8d)

The two equations (2.8a) and eq. (2.8b) constitute the single-metric system, while the

bi-metric system is described by the full set of all 4 differential equations.

6For structurally different calculations disentangling background and fluctuation fields see [71–75].
7The Hessian of Γk in the Einstein-Hilbert truncation contains uncontracted derivative operators such

as D̄µD̄ν . In [I] a transverse-traceless (TT) decomposition of the fluctuation field hµν was employed to

deal with this complication. The problematic operators act on the component fields as fully contracted

Laplacian ḡµνD̄µD̄ν then, and heat kernel methods can be applied to evaluate the functional traces due to

the various irreducible fields.
8In [II], Ω denotes a conformal parameter introduced as a tool to distinguish between dynamical and

background contributions. The freedom in choosing a gauge parameter α was exploited to reduce the

functional trace on the r.h.s. of the FRGE to a function of the Laplacian D̄2 alone, which then could be

computed using standard heat kernels again.
9The dimensionless couplings, gIk and λI

k, are related to the dimensionful ones, GI
k and ΛI

k, appearing in

the truncation ansatz, by GI
k = k2−dgIk and ΛI

k = k2λI
k, respectively.

– 9 –
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Since the above equations are partially decoupled, solutions k 7→
(
gDyn
k , λDyn

k , g
(0)
k , λ

(0)
k

)

can be obtained from (2.8) in a hierarchical fashion:
(
gDyn
k , λDyn

k

)
⇒ g

(0)
k ⇒ λ

(0)
k . Notice

that the explicit form of the beta-functions to be used is different for the three truncations

we are going to consider here; they can be found in [4], [I], and [II], respectively.

In the sequel, we mostly focus on the Newton couplings GI
k and their non-canonical

RG running which is described by the respective anomalous dimension k∂k lnG
I
k ≡ ηI . In

all truncations considered here its general structure is

ηI =
BI

1(λ) g
I

1−BI
2(λ) g

I
for I ∈ {Dyn, B, (0), sm} . (2.9)

The level- and background-ηI ’s are related by η(0)/g(0) = ηB/gB + ηDyn/gDyn.

In the sequel we employ the language of levels and always present the couplings of

the hµν-independent invariants, denoted by a superscript (0), together with the higher

level couplings which are collectively denoted by ‘Dyn’, standing for (p), p ≥ 1. (The ‘B’

couplings could be obtained from (2.5) if needed.)

In the following subsections we analyze the anomalous dimensions related to the various

versions of Newton’s constant. We begin with the single-metric case and then proceed to

the two bi-metric calculations [I] and [II].

Unless stated otherwise, we always assume 4 spacetime dimensions (d = 4) in the rest

of this paper, and we employ the optimized cutoff shape function [76].

2.1 Single-metric truncation

In the single-metric Einstein-Hilbert truncation the RG running of Newton’s constant is

governed by

ηsm(gsm, λsm) =
Bsm

1 (λsm) gsm

1−Bsm
2 (λsm) gsm

. (2.10)

The function Bsm
1 (λsm) in the numerator of eq. (2.10) is given by

Bsm
1 (λsm) = − 1

3π

{
− 5Φ1

1 (−2λsm) + 18Φ2
2 (−2λsm) + 4Φ1

1 (0) + 6Φ2
2 (0)

}
(2.11)

and Bsm
2 (λsm) in the denominator reads

Bsm
2 (λsm) =

1

6π

{
− 5Φ̃1

1 (−2λsm) + 18Φ̃2
2 (−2λsm)

}
. (2.12)

Here Φ and Φ̃ are the standard threshold functions introduced in [4] which depend on the

details of the cutoff scheme, its ‘shape function’ R(0) in particular.

We are interested in the sign of ηsm in dependence on gsm and λsm, the two coordinates

on theory space. As can be seen from the plot in figure 1a, in the single-metric truncation,

the anomalous dimension ηsm is negative in the entire physically relevant region of the

gsm-λsm theory space. This is a well-known fact, already mentioned in the Introduction,

and has been confirmed also by all single-metric truncations with more than the
∫ √

g and∫ √
gR terms in the ansatz that were analyzed so far [10, 11, 16, 17, 68–70, 77–86].
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Figure 1. The phase-portrait of the single-metric Einstein-Hilbert truncation. The shaded areas

in the left diagram indicate regions in the (gsm, λsm)-plane of positive anomalous dimension ηsm. In

the single-metric approximation, ηsm is seen to be negative everywhere on the physically accessible

part of theory space. The contour plot of the right diagram shows the lines of constant ηsm values

(‘iso-η’ lines).

In the semi-classical regime10 where 0 < gsm, λsm ≪ 1 the term Bsm
2 (λsm)gsm in the

denominator on the r.h.s. of (2.10) is negligible, hence the negative sign of ηsm is entirely

due to the negative sign of Bsm
1 (λsm) that occurs for small arguments λsm ≪ 1. Here it is

a reliable approximation to set ηsm ≈ Bsm
1 (λsm)gsm.

It is instructive to expand the function Bsm
1 for small values of the (dimensionless)

cosmological constant:

Bsm
1 (λsm) =

1

3π

[
Φ1
1 (0)− 24Φ2

2 (0)
]
− 26

3π
λsm +O

(
(λsm)2

)
. (2.13)

This linear approximation confirms the negative values of Bsm
1 in the semi-classical regime:

its λsm-independent term Bsm
1 (0) is known to be negative for any admissible cutoff [4], and

the term linear in the cosmological constant is negative, too, when λsm > 0.

Notice that the slope of the linear function (2.13) is universal, i.e. cutoff scheme inde-

pendent. Every choice of the shape function R(0) used in the threshold functions Φ and Φ̃

yields the same slope, −26/3π, which is negative and thus favors an anomalous dimension

which is negative, too. The constant term in (2.13) is cutoff scheme dependent, however its

negative sign is not. Hence, starting from Bsm
1 (0) < 0, the function Bsm

1 (λsm), and there-

fore also ηsm(gsm, λsm), decreases with increasing values of λsm, and in fact stays negative

throughout the relevant part of theory space (λsm < 1/2).

10To be precise, we consider a ‘type IIIa’ trajectory here, which, by definition, has a positive cosmological

constant in the IR, see [5].
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2.2 The (TT-based) bi-metric calculation [I]

Turning to truncations of bi-metric type now, let us consider the approach followed in [I]

first. In the dynamical sector the dependence of the corresponding anomalous dimension

ηDyn(gDyn, λDyn) =
BDyn

1 (λDyn) gDyn

1−BDyn
2 (λDyn) gDyn

(2.14)

on the cosmological constant λDyn is described by the numerator function,

BDyn
1

(
λDyn

)
=

1

6π

{
25Φ2

2

(
−2λDyn

)
+Φ2

2

(
−4

3λ
Dyn

)
− 80Φ3

3

(
−2λDyn

)

− 3Φ2
2 (0) + 28Φ3

3 (0) + 72Φ4
4 (0)

}
(2.15)

while the denominator contribution in eq. (2.14) contains

BDyn
2

(
λDyn

)
= − 1

12π

{
25 Φ̃2

2

(
−2λDyn

)
+ Φ̃2

2

(
−4

3λ
Dyn

)
− 80 Φ̃3

3

(
−2λDyn

)}
. (2.16)

The beta-functions of the level-(0) and the background-sector are sensitive to the dy-

namical couplings as well. In particular the sign of the anomalous dimension η(0), pertaining

to the level-(0) Newton constant g(0), is strongly dependent on the dynamical cosmological

constant, λDyn. Explicitly,

η(0)
(
gDyn, λDyn, g(0)

)
=

1

12π

[
10 q11

(
−2λDyn

)
+ 2 q11

(
−4

3
λDyn

)
− 40 q22

(
−2λDyn

)

− 8Φ1
1 (0)− 13Φ2

2 (0)

]
g(0) (2.17)

where qpn (w) ≡ Φp
n (w)− ηDyn

2 Φ̃p
n (w) involves ηDyn ≡ ηDyn(gDyn, λDyn).

In figures 2a and 2b we display the (gDyn, λDyn) and (g(0), λ(0)) phase portraits for the

dynamical and the level-(0) couplings, respectively. For the latter, the overall picture is

essentially the same as for the single-metric truncations: the anomalous dimension η(0) is

negative everywhere on theory space (where g(0) > 0), in particular in the semi-classical

regime. However, the dynamical (gDyn, λDyn)-flow reveals a novel aspect of the bi-metric

truncation: the anomalous dimension ηDyn is positive for λDyn smaller than a certain critical

value λDyn
crit > 0, and turns negative only when λDyn > λDyn

crit .

While this conclusion is drawn on the basis of the complete formula (2.9) including

the denominator, the sign of ηDyn coincides with the sign of BDyn
1 since BDyn

2 gDyn ≪ 1 in

the entire region of interest, so that ηDyn ≈ BDyn
1

(
λDyn

)
gDyn is a good approximation. As

a consequence, the domains where ηDyn > 0 and ηDyn < 0, respectively, are separated by

a straight line on the (gDyn, λDyn)-plane located at λDyn = λDyn
crit with BDyn

1 (λDyn
crit ) = 0.

The sign flip of BDyn
1 can be demonstrated analytically by expanding BDyn

1 in powers

of the cosmological constant:

BDyn
1

(
λDyn

)
=

1

6π

[
23Φ2

2 (0) + 72Φ4
4 (0)− 72Φ3

3 (0)
]
− 43

9π
λDyn +O

((
λDyn

)2)
. (2.18)
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Figure 2. The phase portraits on the
(
gDyn, λDyn

)
- and the

(
g(0), λ(0)

)
-plane, respectively, ob-

tained using the bi-metric results of [I]. The shaded (white) areas are regions of positive (negative)

anomalous dimension ηDyn and η(0), respectively. While the dynamical anomalous dimension ηDyn

exhibits regions of physical interest where it is positive, η(0) does not.

Again, the slope of this linear function is found to be both universal and negative, −43/9π

in this case. The difference in comparison with the single-metric truncation lies in the

constant term BDyn
1 (0): according to the bi-metric calculation it is positive for all plausible

cutoff schemes, in sharp contradistinction to Bsm
1 (0) < 0 in the single-metric case.

For the example of the optimized shape function we have BDyn
1 (0) = +35/36π, yielding

the critical cosmological constant λDyn
crit |opt.cutoff ≈ 0.2. The quadratic terms ∝

(
λDyn

)2
in

BDyn
1 correct this result to about λDyn

crit |opt.cutoff ≈ 0.1 which is then stable under the addition

of still higher orders and coincides with the exact value.

So we may conclude that the dynamical anomalous dimension ηDyn is positive in the

semi-classical regime where 0 < gDyn, λDyn ≪ 1 and becomes negative for λDyn > λDyn
crit ≈

0.1. This is also seen in figure 3 which shows the lines of constant ηDyn values on the(
gDyn, λDyn

)
plane. Recall that the NGFP, for instance, is located on the curve with

ηDyn = −2.

To verify that the novel feature of a positive ηDyn in the semi-classical regime is

independent of the cutoff-scheme chosen, we have checked the corresponding condition

BDyn
1 (0) > 0 for the one-parameter family of exponential shape functions R(0)(y) =

sy [exp(sy)− 1]−1, for example [5, 15, 16, 87]. Its threshold functions at vanishing ar-

gument can be evaluated exactly:

BDyn
1 (0) =

1

6π(s− 1)3

[
− (7s− 3)(s− 1) +

(
9 + s(14s− 19)

)
ln(s)

]
. (2.19)

This result for the s-dependence, plotted in figure 4, is indeed reassuring: even though the

value of BDyn
1 (0) decreases for increasing ‘shape parameter’ s, it stays always positive. This

yields a critical value λDyn
crit which is positive, too. Thus, the bi-metric calculation [I], very

robustly, predicts a semi-classical regime with a positive value of the dynamical anomalous

dimension ηDyn.
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Figure 3. The contour plot shows the lines of constant anomalous dimension ηDyn implied by the

bi-metric calculation [I]. The shaded regions correspond to ηDyn > 0. Note the sign flip of ηDyn at

a non-zero critical value of the cosmological constant, λDyn
crit > 0.
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Figure 4. The constant BDyn
1 (0) as obtained in [I] for different values of the shape parameter s

characterizing the exponential shape functions. While cutoff scheme dependent, its sign is always

positive, implying the existence of a critical cosmological constant λDyn
crit > 0 such that ηDyn > 0 for

λDyn < λDyn
crit .

2.3 The (‘Ω-deformed’) bi-metric calculation [II]

A different bi-metric approach that is more closely related to the single-metric computa-

tion in [4] was developed in [II] recently. While it employs the same truncation ansatz,

namely two separate Einstein-Hilbert actions for gµν and ḡµν , the gauge fixing and the field

parametrization chosen are different from the calculation [I]. In order to explore whether

the novel properties displayed by [I] are actually due to its bi-metric character, and to what

extent gauge fixing and field parametrization issues play a role possibly, we shall now repeat

the analysis of the previous subsection, this time using the beta-functions obtained in [II].
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Figure 5. The phase portraits for the dynamical and the level-(0) sector according to the beta-

functions of [II]. As can be seen from the shading the dynamical RG flow exhibits a transition from

negative to positive anomalous dimensions at λDyn
crit > 0, while its level-(0) counterpart is negative

everywhere in the physically relevant part of theory space.

The property at stake is the λDyn-dependence of ηDyn. It has the structure (2.14)

again, but with seemingly rather different functions in the numerator and denominator:

BDyn
1

(
λDyn

)
=

1

π

{
23
3 Φ2

2

(
−2λDyn

)
− 24Φ3

3

(
−2λDyn

)
− 2

3Φ
2
2 (0) + 8Φ3

3 (0)
}

(2.20a)

BDyn
2

(
λDyn

)
= − 1

2π

{
23
3 Φ̃2

2

(
−2λDyn

)
− 24 Φ̃3

3

(
−2λDyn

) }
. (2.20b)

The level-(0) sector is governed by the following anomalous dimension η(0):

η(0)
(
gDyn, λDyn, g(0)

)
=

2

π

[
5

6
q11

(
−2λDyn

)
− 3 q22

(
−2λDyn

)
− 2

3Φ
1
1 (0)−Φ2

2 (0)

]
g(0). (2.21)

The resulting phase-portraits for the dynamical and level-(0) sectors are depicted in

figure 5. Only in case of the dynamical anomalous dimension ηDyn do the shaded areas,

indicating regions of positive anomalous dimension, appear in the physically relevant part

of the phase diagram. For the level-(0) sector we obtain a negative value of η(0) everywhere.

The contour plot over the (gDyn, λDyn) plane showing the lines of constant ηDyn is displayed

in figure 6.

Comparing the diagrams in figures 5 and 6 to their analogs of the calculation [I], in

figures 2 and 3, we find perfect agreement at the qualitative level between the two bi-metric

approaches [I] and [II], respectively. However, the results differ significantly from their

single-metric counterparts in figure 1.

As the semi-classical regime is of special importance let us expand BDyn
1

(
λDyn

)
in the

vicinity of λDyn = 0 again:

BDyn
1

(
λDyn

)
=

1

π

[
7Φ2

2 (0)− 16Φ3
3 (0)

]
− 26

3π
λDyn +O

((
λDyn

)2)
. (2.22)

– 15 –



J
H
E
P
1
2
(
2
0
1
4
)
0
2
5

-4

-3.6

-2.4
-2

-1.2
-0.8

-0.4

0

0

0.2

0.2

0.4

0.4 0.8 1

-0.1 0.0 0.1 0.2 0.3

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

λDyn
crit

gDyn

λDyn

Figure 6. The contour plot shows the lines of constant anomalous dimension ηDyn implied by

the bi-metric calculation [II]. The shaded regions correspond to ηDyn > 0. Consistent with the

calculation in [I], ηDyn is found to change its sign on a straight line λDyn = λDyn
crit with λDyn

crit > 0. In

the semi-classical regime, ηDyn is seen to be positive.

Eq. (2.22) confirms the picture implied by the previous bi-metric calculation [I]: a universal,

negative slope (which in this case happens to coincide with the single-metric value, −26/3π)

along with a universally positive constant term, BDyn
1 (0). Together they give rise to a region

in which ηDyn > 0.

The cutoff-scheme dependence of BDyn
1 (0) was again checked by evaluating BDyn

1 (0) for

the optimized and the s-family of exponential shape-functions, for instance. The optimized

cutoff yields BDyn
1 (0) = 5/6π. The linear approximation (2.22) corresponds to the critical

value λDyn
crit ≈ 0.096 in this case; it coincides almost perfectly with the corresponding exact

value from the full non-linear equation: λDyn
crit ≈ 0.064. For the exponential shape-functions

the constant term in (2.22) evaluates to BDyn
1 (0) = 4−4s+ln(s)+3s ln(s)

π(s−1)2
which is positive for

all admissible values11 of s, as shown in figure 7.

Thus, the second set of bi-metric results fully confirms all conclusions drawn in the

previous subsection on the basis of the RG equations obtained in [I].

2.4 Summary: significance of the cosmological constant

We investigated the possibility of a positive anomalous dimension (ηDyn or ηsm) in the semi-

classical regime of three different truncations. In the Introduction we discussed already that

while at negative ηI near the NGFP is the very hallmark of Asymptotic Safety, there is

no general reason that would forbid ηI to be positive in other parts of theory space, the

semi-classical regime in particular. While a transition to a positive ηI was not observed in

any single-metric truncation, we found that both bi-metric calculations which we analyzed

11It is known that for quantitative reliability the shape parameter s ∈ (0,∞) should not be chosen too

small, s & 0.5, say [5, 15, 16].
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Figure 7. The value of BDyn
1 (0) according to the bi-metric calculation [II] is shown for different

choices of the family parameter s characterizing the exponential cutoff shape functions.

do indeed show that ηDyn is actually positive on a large portion of theory space, namely

the half plane −∞ < λDyn < λDyn
crit . Here λDyn

crit is a strictly positive critical cosmological

constant, necessarily smaller than the NGFP coordinate λDyn
∗ .

The region in theory space with a negative ηDyn, which is indispensable for a non-

Gaussian fixed point and the non-perturbative renormalizability of QEG, crucially owes

its existence to the negative, universal slope of BI
1(λ) at λ = 0. It occurs in all three

truncations, including the single-metric one, and indicates an anti-screening component in

the beta-function of gDyn. In the ‘sm’ case the intercept Bsm
1 (0) is negative as well, and so

Bsm
1 (λ) is negative for all λ. In both bi-metric truncations BDyn

1 (0) is positive, however,

and this gives rise to a window λDyn ∈
(
−∞, λDyn

crit

)
with a certain λDyn

crit > 0 in which

BDyn
1 (λ) is positive.

In the semi-classical regime, the linear (in gDyn) relationship ηDyn ≈ BDyn
1 (λ)gDyn

always turned out to be an excellent approximation. Hence, for a positive Newton constant

(which we always assume) the anomalous dimension is positive in the window λDyn ∈(
−∞, λDyn

crit

)
. The precise value of λDyn

crit depends on the cutoff shape function; generically

it is of the order 10−1 or 10−2, say.

The main message is summarized in figure 8 which depicts the exact (i.e., all-order) λ-

dependence of BI
1 . The single- and bi-metric functions all decrease with increasing λ. But

while the ‘sm’ function Bsm
1 is negative everywhere, both of the dynamical bi-metric func-

tions are non-negative in the vicinity of λ = 0, implying a positive dynamical anomalous

dimension there: ηDyn
(
gDyn, λDyn

)
> 0 for all gDyn > 0 and −∞ < λDyn < λDyn

crit .

2.5 From anti-screening to screening and back

Recalling the definition ηDyn ≡ k∂k lnG
Dyn
k , it follows from the above that along every RG

trajectory running on the half space λDyn < λDyn
crit the dynamical Newton constant GDyn

k

increases with increasing scale k. Stated differently, the gravitational interaction shows a

screening behavior there. This is in stark contrast to its anti-screening character in the

NGFP regime.
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Figure 8. The λ-dependence of BI

1(λ) for the two bi-metric truncations [I] and [II], as well as

the single-metric approximation (sm). Notice that the latter has not only a negative slope but also

a negative intercept Bsm
1 (0) < 0, while both bi-metric functions are positive in the semi-classical

regime of not too large dimensionless cosmological constant.

For the example of a bi-metric trajectory which is of type IIIa in the ‘Dyn’ projec-

tion [66] the situation is depicted schematically in figure 9. The trajectory k 7→
(
gDyn
k , λDyn

k

)

emanates from the NGFP at ‘k = ∞’, then leaves the asymptotic scaling regime for

k ≈ mPl, but stays in the half-space with ηDyn > 0 as long as k is larger than a cer-

tain critical scale kUV
crit at which the running cosmological constant λDyn

k drops below λDyn
crit .

As k decreases further below kUV
crit, the cosmological constant continues to decrease until

the turning point T is reached, beyond which the (dimensionless!) λDyn
k now increases for

decreasing k. Ultimately, it will re-enter the half-space with ηDyn < 0, namely at a second

critical scale, kIRcrit. So, by definition,

λDyn
k |k=kIRcrit

= λDyn
crit = λDyn

k |k=kUV
crit

with kIRcrit < kUV
crit . (2.23)

As it is already well-known for the type IIIa trajectories in the single-metric trunca-

tion [5, 48, 49], the bi-metric trajectories of this type, too, can have a long classical regime

where the (dimensionful!) Newton- and cosmological constant are approximately constant.

This requires tuning the turning point T very close to the Gaussian fixed point, the origin

(0, 0) in figure 9. The point T is passed at k = kT with kIRcrit ≪ kT ≪ kUV
crit where the two

critical scales are far apart then.

For example, the ‘RG trajectory realized in Nature’, that is, the specific single-metric

(gsmk , λsm
k )- or bi-metric

(
gDyn
k , λDyn

k

)
-trajectory whose parameters are matched against the

measured values of G and Λ [48, 49] is well-known to be highly fine-tuned, with turning

point coordinates as tiny as gT ≈ λT ≈ 10−60. Following the discussion in [48, 49] it is

easy to see that, for this trajectory, and for a λDyn
crit value of, say, 10−2, the UV critical

scale is about kUV
crit ≈ mPl/10, while the one in the IR is slightly above the present Hubble

parameter, kIRcrit ≈ 10H0. Newton’s constant reaches its maximum at k = kUV
crit; it is about

2% larger there than at laboratory scales.
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Figure 9. Schematic behavior of a bi-metric type IIIa trajectory on the (gDyn, λDyn)-projection of

theory space. The dashed line separates the half spaces with ηDyn > 0 and ηDyn < 0, respectively.

The part of the trajectory located above (below) the turning point T is referred to as the trajectory’s

UV (IR) branch.

3 Interpretation and applications

The ‘dynamical’ anomalous dimension ηDyn governs the running of that particular version

of Newton’s constant which controls the strength of the gravitational self-interaction and

the coupling of gravity to matter. We found gravitational screening (rather than anti-

screening, as predicted by the single-metric truncations) in the semi-classical regime, that

is, GDyn
k grows with k as long as λDyn

k < λDyn
crit . The strong renormalization effects associated

with Asymptotic Safety, the formation of a fixed point, anti-screening, and large negative

values of ηDyn, are confined to the half-space with λDyn > λDyn
crit instead.

In the following two subsections we discuss a number of possible implications of these

findings. In subsection 3.1 we interpret the sign change of ηDyn in terms of a dark matter

description, and in subsection 3.2 we briefly comment on an application in cosmology.

3.1 The dark matter interpretation

(A) Physical significance of the dimensionless cosmological constant. For the

interpretation of the above results it is helpful to recall that, upon going on-shell, the

value of the dimensionful cosmological constant ΛDyn
k ≡ k2λDyn

k determines the curvature

of spacetime when it is explored with an experiment, or a ‘microscope’ of resolving power12

ℓ ∝ 1/k. The radius of curvature of spacetime is of the order rc ∝
(
ΛDyn
k

)
−1/2

then, and

the dimensionless cosmological constant is approximately the (squared) ratio of the two

distance scales involved:

λDyn
k ≈

(
ℓ

rc

)2

. (3.1)

Thus we see that the sign-flip of ηDyn is controlled by the background curvature: on self-

consistent backgrounds [42] which are only weakly curved on the scale of the microscope,

12This estimate could be made more precise using the method of the ‘cutoff modes’, see refs. [88, 89].
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ℓ ≪ rc, we have λDyn
k ≪ 1, therefore ηDyn > 0, and so we observe a screening behavior

of the gravitational interaction. Conversely, when the spacetime is strongly curved on

the scale of the microscope (i.e. the scale set by the modes just being integrated out at

this k) the ratio ℓ/rc approaches unity, implying λDyn
k > λDyn

crit and, as a result, strong

anti-screening effects.

(B) Propagating gravitons in the semi-classical regime. The positive ηDyn in the

semi-classical regime resolves the puzzle raised in the Introduction: on a nearly flat back-

ground spacetime the dynamics of the hµν fluctuations is such that the interactions get

weaker at large distance, and the corresponding Green’s function is short ranged. The pos-

itive ηDyn causes no conflict with the existence of a Källen-Lehmann representation with a

positive spectral density, and the EAA may be seen as describing an effective field theory

very similar to those on Minkowski space. It describes weakly interacting gravitons and,

in the classical limit, gravitational waves. In the opposite extreme when the curvature

is large on the scale set by k there is no description of the hµν-dynamics in terms of a

Minkowski space-like effective field theory. The propagator ∝ 1/
(
−D̄2

)1−ηDyn/2
is very

different from the one on flat space then, both because of the background curvature and

of the large negative ηDyn which renders it long ranged. In this regime the hµν-dynamics

is anti-screening and results in the formation of a non-trivial RG fixed point.

This general picture points in a similar direction as the mechanism of the ‘paramagnetic

dominance’ found in [41] which likewise emphasizes the importance of the background

curvature for Asymptotic Safety.

The positive sign of ηDyn near the Gaussian fixed point is furthermore consistent

with the perturbative calculations on a flat background13 performed by Bjerrum-Bohr,

Donoghue, and Holstein [90].

The screening behavior in the semi-classical regime is also consistent with the first

analyses of the ‘lines of constant physics’ [91, 92] found by numerical simulations within

the CDT approach [93].

(C) Strong curvature regime: ‘physical’, gravitating, and (non-)propagating

hµν modes. An important issue about which we can only speculate at this point is the

properties of the metric fluctuations in the regime where λDyn ' λDyn
crit . There, the field

hµν still carries ‘physical’, in the sense of ‘non-gauge’ excitations which, however, admit

no description as ‘particles’ approximately governed by an effective field theory similar to

those on Minkowski space. This would not be surprising from an on-shell perspective as

now the background is curved on a scale comparable to the physics considered. However,

it is not completely trivial that the quantum fluctuations driving the RG flow14 reflect this

transition, too, since those are far off-shell in general.

All we can say about the hµν quantum field in this regime is that it is likely to carry

‘physical’ excitations which, due to the non-linearity of the theory, interact gravitationally.

We do not know the precise propagation properties of those excitations, however. They

13Provided the latter are restricted to the vacuum-polarization diagrams, i.e. those related to ηDyn.
14By contributing to the functional trace on the r.h.s. of the FRGE.
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might, or might not behave like a curved space version of the graviton, as propagating little

ripples on a strongly curved background.

What comes to mind here is the analogy to transverse gluons in QCD, at the tran-

sition from the asymptotic freedom to the confinement regime. In either regime they are

‘physical’, i.e. ‘non-gauge’ excitations, but only in the former regime they behave similar

to propagating particles, while they are confined in the latter.

Also the unparticles which were proposed by Georgi in a different context [94, 95] are

examples of such perfectly ‘physical’ field excitations which admit no particle interpretation,

not even on flat space.

(D) The hµν propagator by RG improvement. The physics of the hµν excitations

in the strong curvature regime could be explored by computing their n-point functions

δnΓ0[h; ḡ]/δh
n|h=0 from the standard effective action Γ0 = limk→0 Γk on a self-consistent,

in general curved background ḡ ≡ ḡsc. Particularly important is the inverse propagator

G−1 ∝ δ2Γ0[h; ḡ
sc]/δh2|h=0. It describes the properties of both the ‘radiative’ modes carried

by hµν , and the ‘Coulombic’ modes. The latter determine in particular the response of the

hµν field to an externally prescribed (static) source Tµν , the source-field relationship having

the symbolic structure G−1h = T .

The calculation of G is a very hard problem, not only because of the much more general

truncation ansatz it requires, but also because we do not yet know any realistic candidate

for a consistent background ḡsck in the domain of interest [96, 97]. Clearly a technically

simple background like ḡµν = δµν is excluded here since a flat background is far from

consistent when λDyn is large.

Despite these difficulties we can try to get a rough first impression of this domain

if we restrict our attention to the hµν propagator in a regime of covariant momenta in

which ηDyn ≡ η is approximately k-independent. Then, by a standard argument [98], RG

improvement of the 2-point function suggests that the inverse propagator in Γ0 equals

G−1 ∝
(
−D̄2

)1−η/2
. In general this is a complicated operator with a non-local integral

kernel. Let us consider the corresponding source-field relation,

L−η
(
−D̄2

)1−η/2
φ = −4πGρ (3.2)

with a now scale-independent Newton constant G, and a length parameter L included

for dimensional reasons. Here we suppress the tensor structure and employ a notation

reminiscent of the Newtonian limit which we shall take later on only; the following argument

is fully relativistic still.

(E) Non-locality mimicks dark matter. For a generic real, i.e. non-integer value

of η the l.h.s. of eq. (3.2) involves a highly non-local operator acting on φ. In order to

understand how the solutions of this equation differ from the classical ones, let us act with

the operator
(
− L2D̄2

)η/2
on both sides of (3.2). Leaving domain issues aside this yields

an equation similar to (3.2), but now with η = 0 and a modified source instead:

D̄2φ = 4πGρ̃ (3.3a)

ρ̃ ≡
(
−L2D̄2

)η/2
ρ . (3.3b)
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We see that the modifications caused by a non-zero anomalous dimension can be shifted

from the differential operator acting on the gravitational field to the source function. In

the Newtonian limit, for instance, eq. (3.3a) has the interpretation of the classical Poisson

equation for the graviational potential φ generated by the mass density ρ̃. However, the

density function ρ̃ does not coincide with the mass distribution that has actually been

externally prescribed, namely ρ. The RG effects are encoded in the way the ‘bare’ mass

distribution ρ gets ‘dressed’ by quantum effects which turn it into the ‘renormalized’ ρ̃.

Being more explicit, the operator application in (3.3b) amounts to the convolution of

ρ with a non-local integral kernel:15

ρ̃(x) =

∫
ddx′

√
ḡ (x′)Kη

(
x, x′

)
ρ
(
x′
)

(3.4a)

Kη(x, x
′) ≡ 〈x|

(
−L2D̄2

)η/2 |x′〉 . (3.4b)

Note that the kernel Kη, and therefore ρ̃, still depend on the background ḡµν .

While in general x and x′ are 4-dimensional coordinates they reduce to 3D space

coordinates if we invoke the Newtonian limit where ρ, ρ̃, and φ are time independent. In

fact, to gain a rough, but qualitatively correct intuition for the ‘dressing’ ρ 7→ ρ̃, it suffices

to consider the Newtonian limit, an approximately flat background in particular, but to

maintain a non-zero value of η. Then, with ḡµν = ηµν , eq. (3.3a) boils down to the time

independent Poisson equation ∇2φ = 4πGρ̃, and the kernel Kη(x,x
′) ≡ Kη(|x − x′|) is

easily evaluated in the plane wave eigenbasis of the Laplacian on flat space, ∇2:

Kη(r) =

∫
d3p

(2π)3
(
L2p2

)η/2
eip·(x−x

′) , r ≡ |x− x′| . (3.5)

Focusing on the simplest case, η ∈ [−2,−1], this integral yields,16 at r 6= 0,

Kη(r) = −
[
4πΓ(−1− η) cos

(
π
2 η

)]
−1 Lη

r3+η
. (3.6)

Now, even if the ‘bare’ ρ(x) is due to a point mass, for example, ρ(x) = Mδ(x), the

‘renormalized’ or ‘dressed’ mass distribution amounts to an extended, smeared out cloud

with a density profile ρ̃(x) = MKη(|x|). If (3.6) applies, ρ̃ has support also away from

x = 0, falling off according to the power law

ρ̃(r) ∝ 1/r3+η (r > 0) . (3.7)

If η is negative, the ρ̃ distribution is the more extended the larger is |η|.
15If needed, the non-integer power of D̄2 can be expressed by an appropriate integral representation. For

a general discussion of fractional powers of the Laplacian and d’Alembertian and their Green’s functions,

see [99, 100].
16For other values of η we must introduce explicit distance or momentum cutoffs into the integral (3.5) in

order to take account of the fact that the approximation G−1 ∝
(

D̄2
)1−η/2

with a constant value of η is valid

only in a restricted regime. Being interested in qualitative effects only we shall not do this here. One also

has to be careful about delta-function singularities at the origin; in particular we have K0(x,x
′) = δ(x−x

′),

as it should be.
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While strictly speaking (3.7) is valid only for η ∈ [−2,−1], it highlights the main

impact a negative η has on gravity, also beyond the Newtonian limit: if one sticks to

the classical form of the field equation (here: Poisson’s equation) the gravitational field

is sourced not only by the energy momentum tensor of the true matter (here: ρ) but in

addition by a fictitious energy-momentum-, and in particular mass-distribution (ρ̃) which

is obtained by a non-local integral transformation applied to the true, or ‘bare’, source.

In the simplest case the integral transformation is linear and assumes the form (3.4a).

Where it applies, the ‘fictitious’ matter traces the ‘genuine’ one, the latter sources the

former. Hence it seems indeed appropriate to regard the transition from ρ to ρ̃ as due to

the ‘dressing’ of the bare source by quantum effects, similar to the dressing of electrons in

QED by clouds of virtual particles surrounding them. It is quite clear then, in particular in

a massless theory, that the dressing of point sources results in spatially extended, non-local

structures.

(F) Modified gravity in astrophysics: a digression. Applying this discussion to the

realm of astrophysics, to galaxies or clusters of galaxies, one is tempted to interpret the

fictitious matter contained in ρ̃, over and above the true one, as the long sought-for dark

matter, and to identify ρ with the actually observed ‘luminous’ matter.

To avoid any misunderstanding we emphasize that the presently available RG flows

do not (yet?) reliably predict large negative anomalous dimension (η ≈ −1, say) on

astrophysical scales.17 All we can say for the time being is that the mathematical structure

of the field equations we encounter here is potentially relevant to the astrophysical dark

matter problem, but clearly much more work will be needed to settle the issue.

The much more direct reason why the mechanism of non-local gravity mimicking dark

matter is relevant to Asymptotic Safety is that on a type IIIa trajectory large negative η’s

occur in two regimes: not only at astrophysical or cosmological scales, k . kIRcrit, but also

near the Planck regime, k & kUV
crit.

As it is shown schematically in figure 9, the trajectories of type IIIa, like the one that

could perhaps apply to the real Universe, have two sections with a sufficiently large λDyn

to make ηDyn negative, one on the UV-, the other on the IR-branch. The main difference

between the branches is their typical value of gDyn: it is much smaller on the IR-branch

than on the UV-branch. As a result, on the IR-branch |ηDyn| = |BDyn
1

(
λDyn

)
gDyn| assumes

values of order unity, say, only when λDyn is increased much further beyond λDyn
crit than this

would be necessary on the UV-branch. This distinction is best seen in the contour plots

(‘iso-η-lines’) of figures 3 and 6. Since the Einstein-Hilbert truncation becomes unreliable

near λDyn = 1/2, it can deal with the large negative η’s on the UV-branch only.

After the above precautionary remark it is nevertheless interesting to note that on the

astrophysical side an integral transform like (3.4a), connecting luminous to dark matter

in real galaxies, has indeed been proposed long ago on a purely phenomenological basis:

it is at the heart of the Tohline-Kuhn modified-gravity approach [101–103]. Recently this

approach has attracted attention also because it was found to emerge naturally from a

certain classical, fully relativistic, and non-local extension of General Relativity [104–106].

17See, however, ref. [48].
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Above we saw that quantum gravity effects can modify Einstein’s equations in precisely

the Tohline-Kuhn style. The similarity between the two theories becomes most explicit for

η = −1 which leads to the integral kernel

K−1(x,x
′) =

1

2π2 L

1

|x− x′|2 . (3.8)

This is exactly the one which appears also in the Tohline-Kuhn framework.

Using this kernel in eq. (3.4a), a point mass with ρ(x) = Mδ(x) is seen to surround

itself with a spherical ‘dark matter halo’ whose radial density profile is given by ρ̃(r) =

M/(2π2Lr2). By virtue of ∇2φ = 4πGρ̃, this dark matter distribution generates the

logarithmic potential φ(r) = (2GM/πL) ln(r). In the Newtonian limit, it is well known to

yield a perfectly flat rotation curve, that is, a test particle on a circular orbit has a velocity

which is independent of its radius,18 v2 = 2GM/πL.

(G) Non-local constitutive relations as a QEG vacuum effect. Recently the

Tohline-Kuhn framework turned out to describe the Newtonian limit of a fully relativistic

generalization of General Relativity which allows the incorporation of non-locality at a

phenomenological, purely classical level [104–106, 110]. This theory, proposed by Hehl and

Mashhoon, relies on the observation that the teleparallel equivalent of General Relativ-

ity, a special gauge theory of the translation group, is amenable to generalization through

the introduction of a non-trivial ‘constitutive relation’ similar to the constitutive relations

between (E,B) and (D,H) in electrodynamics.

Because of memory effects, such relations are non-local typically. They make their

appearance both in the classical electrodynamics of matter, and in vacuum Quantum Elec-

trodynamics where loop effects are well known to give rise to a complicated relationship

between E and D, say, which is both non-linear and non-local [111]. As for quantum grav-

ity, it was pointed out [41, 112] that QEG, like QED, has a non-trivial vacuum structure

with a non-linear relationship between the gravitational analogs of the E and D fields.

From this perspective it is quite natural that the source-field relation of quantum gravity,

in a regime with large negative η, turns out not only non-linear, but also non-local.

In this sense, a phenomenological theory like the one in [104–106], as far as its general

structure is concerned, may well be regarded as an effective field theory description of the

QEG vacuum in the large-η regime.

In fact, in QEG and the theory of refs. [104–106] the size of the new effects is deter-

mined by essentially the same control parameter. In [104–106] the degree of non-locality

is governed by the ratio ̺ ≡ Lacc/Lphen, where Lphen denotes the length scale of the

phenomenon under consideration, and Lacc is the acceleration length of the observer. In-

terestingly, ̺−2 ≡ (Lphen/Lacc)
2 is basically the same as the dimensionless cosmological

constant λk = Λk/k
2 which controls the size of η and the non-local effects in QEG. There,

18From the idealized case of a point particle where v2 ∝ M it might appear that this approach has

difficulties reproducing the Tully-Fisher law for spiral galaxies [107] which favors v4 ∝ M . However, the

detailed studies on the basis of fits to realistic galaxy data reported in [108, 109] seem not to encounter

such difficulties.
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ℓ ≈ k−1 characterizes the length scale of the physical process under consideration and so

it takes the place of Lphen, while the radius of curvature, rc, may be identified with Lacc.
19

(H) Planck scale non-locality as ‘dark matter’. At this point of the discussion we

switch back from the IR to the UV regime. As we emphasized already the beta-functions

considered in the present paper, where they are reliable, yield only tiny values for η on

astrophysical scales. So here we focus on the dark matter interpretation which applies

to the UV branch of the ‘RG trajectory realized in Nature’, see figure 9. Of course, the

UV-branch exists not only for the trajectories of type IIIa but for all asymptotically safe

ones. Along any of them, for k near the Planck scale, but still above kUV
crit, the anomalous

dimension is large and negative since the trajectory just left the NGFP regime where

ηDyn ≈ ηDyn
∗ = −2.

It is thus plausible to re-apply the above discussion of astrophysical dark matter which

is mimicked by non-locality in the ultraviolet. The situation would then be as follows.

When we approach the UV regime, above a certain scale kUV
crit located about one or two

orders of magnitude below the Planck scale, non-local effects start becoming essential.

Now, the regime in question, kUV
crit . k . mPl, is exactly the one for which we concluded

already that the hµν excitations cannot be described there by an effective field theory

of the conventional local form; in particular their propagation properties are not easily

established, and we conjectured that there are indeed no propagating gravitons above kUV
crit.

Assuming this picture is correct it suggests the interpretation of the physical, but

non-propagating hµν modes as a type of Planckian dark matter that admits an effective

description in terms of a (fully relativistic!) Hehl-Mashoon-type theory [104–106]. In this

scenario the modes of the metric fluctuations with covariant momenta above kUV
crit do not

propagate, but are still physical (in the sense of ‘non-gauge’). They interact gravitationally

with matter and among themselves, they can condense to form spatially extended struc-

tures, and they dress ordinary localized energy-momentum distributions by ‘dark matter

halos’ which are approximately described by a Tohline-Kuhn-type integral transform.

This is the antagonism between gravitons and dark matter the title of this paper is

alluding to: the semi-classical modes of the fluctuation field have a particle interpretation,

describe massless gravitons or essentially classical gravitational waves, while those with

larger momenta are equally physical, gravitate, but do not propagate presumably.

To visualize this situation it helps to recall the example of the transverse gluon modes

in QCD: those with momenta well above the confinement scale propagate approximately

particle-like, the others are confined, and they form the homogeneous gluon condensate

characteristic of the QCD vacuum state.

3.2 Primordial density perturbations from the NGFP regime

The conjectured absence of propagating gravitons in a certain range of momenta can also

be relevant to cosmology presumably, for example in the context of the cosmological mi-

crowave background radiation (CMBR). In refs. [49, 113, 114] an Asymptotic Safety-based

alternative to the standard inflationary paradigm has been proposed in which the source

19In cosmology, for instance, one has indeed Lacc ∼ H−1 ∼ Λ−1/2 ∼ rc.
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of the primordial density perturbations, responsible for later structure formation, are the

quantum fluctuations of geometry itself which occur during the Planck epoch.20 Within

QEG the fluctuations in this regime are governed by the NGFP, and so they could provide

a perfect window to the very physics of Asymptotic Safety.

It has been argued that when the Universe was in the Planck-, or NGFP-regime the

scale-free form of the hµν-propagator ∝ 1/D4 gave rise to a kind of cosmic ‘critical phe-

nomenon’ which displays metric fluctuations on all length scales [49, 113, 114, 117]. The

scale-free nature of all physics at the fixed point renders the fluctuation spectrum scale-free

automatically. Towards the end of the Planck era, the RG trajectory leaves the asymp-

totic scaling regime of the NGFP, the fluctuations ‘freeze out’, and thus prepare the initial

state for the subsequent classical evolution. They lead to a Harrison-Zeldovich like CMBR

spectrum with a spectral index of ns = 1 plus small corrections [49, 113, 114, 117].

Here the absence of propagating gravitational waves at high scales could come into play

as follows. At the end of the Planck epoch the geometry fluctuations get imprinted on the

(by then essentially classical) spacetime metric and the matter fields. The imprints then

evolve classically, and ultimately, at decoupling, get encoded in the CMBR. Now, a priori

the frozen-in geometry perturbations present at the end of the Planck era (k ≈ mpl) would

affect the scalar and the radiative (‘tensor’) parts of the metric alike. If, however, there

do not yet exist physical radiative excitations at this scale, or they are suppressed, then

one has a natural reason to expect that in real Nature the CMBR tensor-to-scalar-ratio

should be smaller than unity. The power in the tensor modes is suppressed relative to the

scalar ones since by the time the Universe leaves the fixed point regime gravitational waves

cannot propagate yet, the relevant scales being in the range mPl > k > kUV
crit.

For the time being this is a somewhat speculative argument of course. However, it is

reassuring to see that it points in exactly the same direction as the observational data on

the tensor-to-scalar-ratio [118, 119].

4 Summary

Since the early investigations of the Einstein-Hilbert truncation it was clear that a subset

of its RG trajectories contain a long classical regime at low scales in which Gk and Λk are

constant to a very good approximation; from these single-metric calculations it appeared,

however, that in the adjacent semi-classical regime at slightly larger scales the Newton

constant decreases immediately, thus rendering the anomalous dimension η ≡ k∂k lnGk

negative. Even though at the endpoint of the separatrix, for example, we have Λ = 0

and so the effective field equations admit Minkowski space as a solution, the quantized

metric fluctuations on this background, the gravitons, would have unexpected properties,

being more similar to gluons than to photons. However, in the present paper we provided

evidence from two independent bi-metric analyses which indicate that this is actually not

the case. Between the strictly classical (η = 0) and the fixed point regime (η < 0) there

exists an intermediate interval of scales with a positive anomalous dimension. Those RG

trajectories which have a positive cosmological constant in the classical domain possess

20For a different approach to asymptotically safe inflation see [115] and [116].
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two regimes displaying a negative anomalous dimension, one at Planckian, and the other

on cosmological scales. At least in the former the existence of propagating gravitons seems

questionable, and we proposed a natural interpretation of the pertinent physical, non-

propagating, but gravitating hµν excitations as a form of Planckian ‘dark matter’.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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