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Abstract

Hydrogen generated in hydrothermal and fault systems has recently received considerable

attention as a potential energy source for hydrogen-based microbial activity such as

methanogenesis. Laboratory experiments that have reproduced conditions for the serpenti-

nization of ultramafic rocks such as peridotite and komatiite have clarified the chemical and

petrological processes of H2 production. In a frictional experimental study, we recently

showed that abundant H2 can also be generated in a simulated fault system. This result

suggests that microbial ecosystems might exist in subseafloor fault systems. Here we

review the experimental constraints on hydrogen production in hydrothermal and fault

systems.
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8.1 Introduction

The discovery of chemolithoautotrophic microbial

ecosystems in the modern ocean has suggested that hydro-

thermal fluids enriched in H2 fuel H2-driven primary

producers such as hyperthermophilic hydrogenotrophic

methanogens (Cannat et al. 1997; Takai et al. 2004; Kelley

et al. 2005) . Moreover, multidisciplinary studies have

indicated that an H2-driven chemolithoautotrophic ecosys-

tem may have supported the earliest life on Earth (Russell

and Hall 1997; Sleep et al. 2004; Kelley et al. 2005; Canfield

et al. 2006; Takai et al. 2006). H2-rich hydrothermal fluids

are generated by the serpentinization of Mg- and Fe-rich

ultramafic rocks, which are igneous and meta-igneous
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rocks consisting mainly (>90 %) of mafic minerals with

high magnesium and iron contents. These rocks have a

very low silica content (<45 %), MgO generally more than

18 %, high FeO, and low potassium. The Earth’s mantle is

composed of ultramafic rocks. The production of hydrogen

by the serpentinization of ultramafic rocks is a central tenet

of the hypothesis that life first emerged on Earth in an H2-

rich hydrothermal environment (Russell et al. 2010).

In the modern ocean, the basement rocks of the oceanic

crust are generally composed of mid-ocean ridge basalt

(MORB). Along slow-spreading ridges such as the North

Atlantic Ridge and the Southwest Indian Ridge, volcanic

activity is low and severely serpentinized peridotites (peri-

dotite: ultramafic rocks composed of olivine and pyroxene)

are exposed along transform faults (e.g., Miyashiro et al.

1969; Aumento and Loubat 1971; Cannat 1993). Hydrogen-

enriched hydrothermal fluids are common in such peridotite-

dominated slow-spreading ridge settings (Kelley et al. 2001;

Früh-Green et al. 2004). Since the first discovery of natural

peridotite-hosted hydrothermal vents with abundant H2 at

Logachev field on the Mid-Atlantic Ridge in 1995 (Krasnov

et al. 1995), other peridotite-hosted and -associated hydro-

thermal vents have been found, namely, the Rainbow,

Nibelungen, Lost City, and Achaze fields on the Mid-

Atlantic Ridge (Charlou et al. 1998, 2002, 2008; Douville

et al. 2002; Kelley et al. 2005; Melchert et al. 2008) and the

Kairei field on the Central Indian Ridge (Van Dover et al.

2001). A pronounced feature of peridotite-hosted systems is

the presence of hydrothermal solutions enriched not only in

H2 but also in CH4 and other hydrocarbons (Charlou et al.

2002). Measured H2 concentrations in these fluids range

from 2.5 to 16 mmol/kg, with the highest concentrations

reported at steady-state, unsedimented mid-ocean ridge

hydrothermal vents. The generated H2 supports ecosystems,

including hyperthermophilic subsurface lithoautotrophic

ecosystems (HyperSLiME) (Takai et al. 2004; Nealson

et al. 2005), in which methanogens utilize H2 and CO2 and

produce methane as a metabolic product.

Several petrographical (Cressey 1979) and theoretical

(Wetzel and Shock 2000; Sleep et al. 2004) studies have

examined the H2-generating geochemical and mineralogical

reactions associated with the serpentinization of ocean-floor

ultramafic rocks, and experimental investigations (Berndt

et al. 1996; Allen and Seyfried 2003; Seyfried et al. 2007)

have significantly increased our understanding of the

mechanisms of H2 production during serpentinization. In

the present paper, we focus on these experimental results,

because it is generally difficult to directly observe chemical

processes in subseafloor environments. Thermodynamic

modeling of seawater–peridotite reactions is also an impor-

tant tool, both for understanding the experimental results and

for inferring the natural serpentinization processes (Klein

et al. 2009; McCollom and Bach 2009). McCollom and

Bach (2009) examined the effect of temperature on the

mineral assemblage and fluid composition produced by

serpentinization of harzburgite (a peridotite consisting

mainly of olivine and orthopyroxene) (Fig. 8.1). They

reported that at temperatures below 315 �C, the

serpentinized rock was composed of typical serpentinite

minerals, such as serpentine, brucite, magnetite, and minor

secondary clinopyroxene. With increasing temperature, the

amount of magnetite increased, and consequently, the con-

centration of H2 generated by serpentinization also increased

with temperature up to ~360 mmol/kg. Above 315 �C, how-
ever, olivine became stable and coexisted in equilibrium

with other secondary minerals and fluid, and above 390 �C
it remained almost completely unaltered. Therefore, the

amount of Fe converted to magnetite decreased as the tem-

perature increased above 315 �C, with the result that the H2

concentration in the fluid was lower at these higher

temperatures. Contrary to expectation, theoretical modeling

of these water–rock interactions does not always produce

results that are quantitatively consistent with the experimen-

tal results. Therefore, further investigation is needed to
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Fig. 8.1 Predicted alteration mineralogy and fluid composition during

hydrothermal alteration of harzburgite over a range of temperatures at

a 1:1 water:rock ratio, modified from McCollom and Bach (2009).

(a) Equilibrium mineral composition: amount of each mineral per

kilogram of harzburgite reacted. (b) H2 concentration in the fluid
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clarify the reasons for the discrepancy between theoretical

and experimental results.

Another extreme environment where H2 may be abundant

is found in natural fault systems. Wakita et al. (1980) first

reported high concentrations of H2 (up to 3 % v/v) in soil gas

from sites in the Yamasaki fault zone, southwestern Japan,

and Wiersberg and Erzinger (2008) reported high

concentrations of H2 in drilling cores obtained near micro-

earthquake hypocenters along the San Andreas fault in

California. These observations led to the hypothesis that

methanogenic ecosystems might also be found in deep

fault systems below the seafloor. To examine whether

fault-driven H2 generation can produce enough H2 to main-

tain a chemolithoautotrophic microbial ecosystem, we

conducted high-velocity sliding experiments using velocities

and displacements typical of natural earthquakes (Hirose

et al. 2011, 2012).

Thus, both hydrothermal and frictional experimental

systems can be effectively used to elucidate physicochemi-

cal processes in natural systems. In this chapter, we review

experiments, performed both as part of Project TAIGA

(Trans-crustal Advection and In-situ bio-geochemical pro-

cesses of Global sub-seafloor Aquifer) and by other groups,

examining the generation of hydrogen by water/rock

interactions at high temperature and pressure, including

both reactions between water and komatiite, an Archean

volcanic ultramafic rock, and those in frictional fault

systems.

8.2 Constraints on H2 Production During
Experimental Hydrothermal Alteration
of Ultramafic Rocks

Peridotite exposed on slow-spreading ridge systems is

often severely serpentinized as a result of hydration due

to long-term reaction with seawater (Ildefonse et al. 2007;

Morishita et al. 2009; Nakamura et al. 2009). Isotopic

investigations have shown that such serpentinized

peridotites, similar to altered MORB, are the products of

high-temperature and -pressure reactions between perido-

tite and seawater (Wenner and Taylor 1971, 1973; Sakai

and Tsutsumi 1978). Hydrothermal alteration of peridotite

was studied experimentally (Seyfried and Dibble 1980;

Hajash and Chandler 1981; Janecky and Seyfried 1986)

even before the discovery of natural peridotite-hosted

hydrothermal vents at Logachev field (Krasnov et al.

1995). Reactions between peridotite and seawater under

high temperature and pressure have also been examined

in batch-type experiments (see Chap. 7). Under high tem-

perature and pressure, the oxidation of ferrous ion [Fe(II)]

in primary minerals such as olivine and pyroxene to Fe(III)

in secondary minerals such as magnetite reduces water and

releases H2 gas:

2 FeOð Þmineral þ H2O ! Fe2O3ð Þmineral þ H2 ð8:1Þ
where (FeO)rock denotes the ferrous constituent of a primary

silicate mineral such as olivine and (Fe2O3)rock denotes the

ferric constituent of an secondary alteration mineral such as

magnetite. The serpentinization of olivine (Fo90) generates

H2 as follows:

Mg1:8Fe0:2SiO4
Olivine Fo90ð Þ

þ 1:37H2O ! 0:5Mg3Si2O5 OHð Þ4
Serpentine

þ 0:3Mg OHð Þ2
Brucite

þ 0:067Fe3O4
Magnetite

þ 0:067H2

ð8:2Þ

In this reaction, olivine supplies Fe(II), and hydrogen and

magnetite, which contains Fe(II) and Fe(III) in equal

amounts, are produced. Note that Eq. (8.2) is a simplified

formula provided to illustrate the generation of H2 by

serpentinization; in natural systems, the produced serpentine

and brucite commonly contain Fe as well.

Janeckey and Seyfried (1986) experimentally

investigated the serpentinization of harzburgite at 300 �C
and 50 MPa, but they did not measure hydrogen continu-

ously during their experiment. Instead, they collected

samples for hydrogen measurement only twice, after

10 months and 2 years. In both samples, they found high

concentrations of H2 (0.1 and 0.33 mmol/kg), but because

they did not measure H2 in other fluid samples collected

during the experiment, the H2 generation reaction cannot

be unambiguously interpreted. Using a similar experimental

apparatus, McCollom and Seewald (2001) assessed the

potential of olivine serpentinization to reduce CO2 and pro-

duce hydrocarbons. In their experiments, they reacted pow-

dered olivine with a 0.5 M NaCl solution at 300 �C and

35 MPa and obtained abundant H2 (concentration > 70

mmol/kg, Fig. 8.2) after 700 h.

Allen and Seyfried (2003) reacted olivine,

orthopyroxene, and clinopyroxene, the major constituent

minerals in peridotite, with a NaCl–MgCl2 solution at

400 �C and 50 MPa to assess the potential of these minerals

to produce H2. They used olivine (Fo89), orthopyroxene

(En85), and clinopyroxene (Di89) both individually and in

combination to constrain the chemical processes of

ultramafic-hosted hydrothermal systems in mid-ocean

ridges. The olivine alteration rate was slow, as indicated by

the absence of hydrous alteration products, whereas

reactions including pyroxenes were rapid, resulting in sig-

nificant increases in dissolved H2 as well as in Ca, SiO2,

and Fe (Fig. 8.3), and in the formation of SiO2-rich second-

ary minerals such as talc, tremolite, and magnetite

(Fig. 8.3; McCollom and Bach 2009). High pH and low Fe
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concentrations are theoretically predicted under the assump-

tion of full equilibrium at 400 �C and 50 MPa in the MgO-

CaO-FeO-Fe2O3-SiO2-Na2O-H2O-HCl system (Allen and

Seyfried 2003). In their laboratory experiments, however,

Allen and Seyfried (2003) reported that when the initial

olivine:pyroxene ratio was 3:1 (the typical mineral

composition of abyssal peridotite), pH remained low and

Fe concentrations remained high. Moreover, the pH also

remained relatively low in their experiments that included

orthopyroxene and clinopyroxene, a result that may have

been caused by talc–fluid and talc–tremolite–fluid equilibria,

respectively.

Allen and Seyfried (2003) suggested that the reactions

occurring in ultramafic rock-hosted hydrothermal systems

such as the Rainbow system on the Mid-Atlantic Ridge may

be very similar to those observed in these experiments,

because of the similarity of the experimental conditions to

the temperature and chemistry conditions of the vent fluid, in

which concentrations of SiO2, Ca, H2, and Fe are relatively

high (Charlou et al. 1998, 2002). In fact, Fe concentrations in

the Rainbow system, which are the highest of any vent

system yet discovered, imply a relatively low pH in the

subseafloor reaction zone. The findings of Allen and

Seyfried (2003) are very important because the experimental

results together with the observed Rainbow fluid chemistry

suggest that pyroxene dissolution is the dominant reaction in

the Rainbow hydrothermal system, even though abundant

olivine is present in the reaction zone. To better constrain the

temporal evolution of the hydrothermal alteration of ultra-

mafic rocks in subseafloor reaction zones, experimental data
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obtained under various conditions should be compared with

thermodynamic simulation results.

The experiments just described were conducted at high

temperatures (300 �C or higher), but actual reaction zone

temperatures in ultramafic rocks are likely to be variable. For

example, in the Lost City hydrothermal field on the Mid-

Atlantic Ridge, H2 is abundant, the pH is high, and the

reactions occur at moderately low temperature. When

Seyfried et al. (2007) experimentally constrained hydrogen

production at the low temperature of 200 �C and 50 MPa,

they found that changes in the concentrations of Ca, Mg, and

Si in the reacted fluid agreed quantitatively with those

predicted theoretically by a reaction pathway model of

seawater–lherzolite interaction (fluid:rock mass ratio, 1:1)

at 200 �C and 50 MPa. However, the time variations of pH,

dissolved chloride, and H2 monitored during their experi-

ment did not agree with the theoretically predicted results

(Fig. 8.4). Dissolved H2 increased in a series of abrupt steps,

and reached a maximum concentration that was only about

20 % of the theoretically predicted concentration. Interest-

ingly, serpentine, the most abundant alteration mineral,

contained both ferric and ferrous iron, and magnetite was

present only in trace amounts. They therefore inferred that

the low rate of H2 generation, which was lower than that

estimated on the basis of predicted serpentinization rates,

was due to the production of diverse Fe-bearing alteration

minerals.

In a recent experiment, Mayhew et al. (2013) reacted

ultramafic and mafic rocks such as peridotite and minerals

such as pyroxene, olivine, and magnetite with an anoxic

fluid at 55 �C and 100 �C, temperatures that are habitable

for (hyper)thermophilic microbes. Their synchrotron-based

X-ray analysis results showed that the amount of H2 pro-

duced was strongly dependent on whether spinel phases such

as magnetite were present, and they observed Fe(III)-oxide

products on the surface of the spinels. They proposed, there-

fore, that Fe(II) and water adsorbed on the surface of spinels

reacted together under kinetic control to produce H2 at low

temperatures.

8.3 Experimental H2 Generation During
Komatiite Alteration: Simulation
of an Archean Hydrothermal System

The experiments described in Sect. 8.2 showed by

simulating peridotite–seawater systems that abundant H2 is

generated in a modern slow-spreading ridge by the serpenti-

nization of peridotite. Sufficiently high concentrations of H2

occur in the vent fluids of these systems to sustain an eco-

system based on H2-driven chemolithoautotrophic primary

producers such as methanogens. Moreover, an H2-driven

ecosystem is the most probable candidate habitat for the

earliest life on Earth (Russell and Hall 1997; Sleep et al.

2004; Kelley et al. 2005; Takai et al. 2006; Canfield et al.

2006). On this basis, it has been hypothesized that hydro-

thermal fluids with H2, sufficiently abundant to sustain

methanogens, existed in the early Earth (Takai et al. 2006).

In contrast to the modern ocean, in the Hadean and early

Archean ocean, peridotite was probably scarce beneath the

crust of the ocean floor, because at that time the oceanic

crust may have been two to three times the thickness of the

modern oceanic crust (Ohta et al. 1996; Moores 2002; Takai

et al. 2006). In this tectonic setting, komatiite, a distinctive

ultramafic volcanic rock, was most likely the main compo-

nent of ultramafic rocks on the floor of Hadean and Archean

oceans. In fact, komatiite is common in Archean greenstone

belts, whereas it is less common in Proterozoic successions

and quite rare in Phanerozoic strata (Condie 2005). We

therefore hypothesized that komatiite was the dominant

ultramafic rock in the early history of the Earth (Yoshizaki

et al. 2009) and that the interaction of komatiite with fluid at

high temperature produced abundant H2. To test this hypoth-

esis, we examined whether we could reproduce a hydrother-

mal environment habitable for early life by experimentally

reacting komatiite with water.

Modern komatiite in exposed Archean rocks has already

been severely altered, so komatiite in its present form could

not be used for our experiments. Therefore, we synthesized

komatiite glass by dehydrating and remelting serpentinized

komatiite collected from the Komati Formation, Barberton

Greenstone Belt, South Africa, and then reacted the

synthesized komatiitic glass with an NaCl solution at

300 �C and 50 MPa (Yoshizaki et al. 2009).
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The concentration of produced H2 reached 2.4 mmol/kg after

1500 h (Fig. 8.5) (Yoshizaki et al. 2009). This concentration

is comparable to concentrations obtained by hydration of

peridotitic rocks (see Sect. 8.2). These results suggest that

hydrothermal alteration of komatiite in the Hadean and early

Archean may have provided sufficient H2 to fuel microbial

ecosystems in the vicinity of hydrothermal vents.

8.4 Mechanoradical H2 Generation During
Simulated Faulting

As we have described, hydrothermal alteration of peridotites

and komatiites can produce abundant H2 in subseafloor

settings. Other potential sites of H2 generation are active

fault systems. Earthquake or fault-related H2 generation

was first found by gas monitoring along the active Yamasaki

fault, southwestern Japan (Wakita et al. 1980), and more

recently H2 generation has been inferred from drill cores

obtained near microearthquake hypocenters along the San

Andreas fault in California (Wiersberg and Erzinger 2008).

Kita et al. (1982) suggested that H2 may be generated in fault

systems by the following reaction, expressed in terms of

mechanoradicals on fresh surfaces of silicate minerals and

water molecules:

2 � Sið Þ: þ 2H2O ! 2 � SiOHð Þ þ H2 ð8:3Þ

Experiments in which a ball mill was used to crush rocks

had previously reproduced possible mechanoradical

reactions during faulting (Kita et al. 1982; Kameda et al.

2004), but no quantitative investigations of the generation

of H2 in an active fault system have been carried out. To

examine whether a natural fault system can produce

enough H2 to sustain a microbial methanogen-based eco-

system, we performed high-velocity sliding experiments

that reproduced slip velocities and displacements typical

of natural earthquakes and then quantitatively estimated the

concentrations of H2 produced (Hirose et al. 2011). To

collect the generated gas samples, we placed a reaction

cell around the rock specimen in a high-velocity frictional

experiment system (see Chap. 7 in this volume). The results

showed that H2 generation increases with frictional work

(i.e., earthquake magnitude) (Fig. 8.6). Therefore, the

earthquake-derived H2 flux in nature can be estimated by

establishing the correlation between H2 production and

earthquake magnitude (Hirose et al. 2011, 2012). More-

over, an H2 fluid concentration higher than 1.1 mmol/kg

can be achieved in a fault zone after even a small-

magnitude earthquake (Hirose et al. 2011, 2012). This

concentration of H2 is potentially high enough to sustain

a methanogen-based ecosystem, we can expect to find

diverse microbial ecosystems in deep fault systems. Thus,

such fault systems may also have provided habitable zones

for early life on Earth.
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8.5 Concluding Remarks and Future
Perspectives

In modern oceans, H2-rich hydrothermal fluids (i.e., H2

concentrations from a few to a few tens mmol/kg) have

been observed in ultramafic rock-hosted systems. Such

concentrations are sufficiently high to sustain H2-based

lithoautotrophic microbial ecosystems, including phylogen-

etically ancient microbes (Takai et al. 2006). In this regard,

the experiments simulating H2 generation described here

have improved our understanding of not only geochemical

and biological interactions driven by serpentinization in

modern oceans but also the potential habitability of

Hadean/Archean komatiite hydrothermal systems, in which

life might have originated. Additionally, the results of fric-

tion experiments suggest the intriguing idea that H2

generated in a fault system might also sustain

lithoautotrophic microbial ecosystems. Such fault system

ecosystems may also have existed on the early Earth. To

verify the fault zone model, we anticipate the results of

microbial investigations of fault systems performed using

fresh drill cores. It should be emphasized, however, that

there are certain basic difficulties associated with the

described hydrothermal experiments. For example, as

described in Sect. 8.2, some results from experimental

hydrothermal reactions conflict with both natural

observations and theoretical calculations. The discrepancies

may reflect mainly inappropriate initial experimental

conditions or inaccurate thermodynamic data. Thus, future

experiments must correct these problems.
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