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1 Introduction

Anomalies are the intrinsic properties of quantum field theory and they play an important

role in various branches of physical phenomenon. Recently, it has been observed that the

hydrodynamics, in presence of anomalies (gravitation or gauge or both), modifies nontriv-

ially [1]–[25]. Normally the hydrodynamics of a system is governed by certain constitutive

relations, like energy-momentum tensor, current expressed in terms of the fluid variables.

These are constructed in such a way that the theory comes out to be compatible with

the local version of the second law of thermodynamics, which tells that the production of

entropy must be positive. Usually they are found by derivative expansion method. We

showed that in (1 + 1) dimensions, the constitutive relations can be obtained exactly in

presence of both gravitational and gauge anomalies where perturbative approach is not

needed [20, 21]. The chiral theory leads to the stress-tensor which is identical to the ideal

(chiral) fluid in form. Of course, these results agree with the derivative expansion method

in absence of gauge fields.

One of the important observations in the context of anomalous fluid tells that the

anomalies contribute to the response parameters at two orders of derivatives of fluid vari-

ables less in the constitutive relations [14]. It has been argued that such feature is very

general and happens in any spacetime dimensions [13]. For instance, in (1+ 1) dimensions

the response parameters, enter at zeroth order, are proportional to the anomaly coefficients

appearing in the terms which are second order derivatives of fluid variables [14, 22]. Simi-

larly, in (1+3) dimensional case the same occurs among the first order and the third order

terms [14, 15]. It turns out that these constraints are geometric rather than algebraic and

the proportionality constant is quite universal, independent of spacetime dimensions.

Recently, in establishing these universal relations the role of the vacuum condition for

the quantum field theory in curved spacetimes has been illuminated by me [22]. I showed

that for (1 + 1) dimensional fluid, in presence of both diffeomorphism and trace anomalies

(gravitational), the Israel-Hartle-Hawking vacuum is the relevant boundary condition to

obtain this general feature. The intriguing fact of the analysis is that it enlightens the

importance of vacuum conditions in hydrodynamics paradigm, like the role played by the
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Unruh vacuum in the context of Hawking radiation [26–28]. This was not emphasised in

the earlier discussions. Moreover, the whole computation is technically simple. My idea

has also been followed to find the corrections to these constraints in presence of U(1) gauge

anomaly in two dimensions [23]. The important outcome is that one obtains the explicit

expression for the gauge contribution which was failed to determine in the earlier analysis.

It may be emphasised that to have better understandings on the roles of vacuums, one

needs to look for the validity of the method in higher dimensions. The present manuscript

precisely addresses this issue. In this short paper, I will extend my analysis in (1+3) dimen-

sional case in presence of mixed anomalies; i.e. the theory has a mixture of gravitational

and U(1) gauge contributions in the anomaly equations. Unfortunately, four dimensional

equations can not be solved exactly to find the constitutive relations (i.e. stress-tensor and

current) like those in the two spacetime dimensions [20–22]. So one needs the perturba-

tive approach. This has been precisely done in [14, 15] by derivative expansion method.

The expressions are available up to third order. Here I shall borrow them and show that

imposition of the Israel-Hartle-Hawking vacuum on the components of energy-momentum

tensor in null coordinates leads to identical connection:

c̃4d = −8π2cm , (1.1)

where c̃4d is the response parameter while cm is the anomaly coefficient. In the below, I

shall present the main analysis to derive the above result.

The organization of the paper is as follows. In section 2 the expressions for the anoma-

lous constitutive relations in four dimensions will be given up to third order in derivatives

of the fluid variables. Next section will discuss the derivation of the required relation by

using the relevant vacuum condition. Finally, I shall conclude in section 4.

2 Constitutive relations: summary of the results

In this section, I shall give a brief summary of the expressions for the stress-tensor and the

current in presence of mixed anomalies without the details. These will be used in the next

section to obtain the main result of the paper.

In (1+3) dimensions the covariant form of the anomaly equations, in presence of both

the gravity and U(1) gauge fields, are [14],

∇aJ
a =

1

4
ǫabcd

[

3cAFabFcd + cmRi
jabR

j
icd

]

; (2.1)

∇bT
ab = F a

bJ
b + 2cm∇b

[

1

4
ǫijmnFijR

ab
mn

]

, (2.2)

where cA is the U(1)3 triangle anomaly coefficient while cm is the mixed (i.e. U(1) and

gravitational) anomaly coefficient. Note that gravitational and gauge anomalies are mixed

up and they are distributed symmetrically in the anomaly for current. The above equations

can not be solved exactly to find the corresponding constitutive relations for the current

(Ja) and energy-momentum tensor (T ab) like in (1+1) dimensional theory. Of course, it is

possible to find them up to some orders in derivative of the fluid variables by the derivative
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expansion method. In literature, the results up to third order derivative in fluid variables

are available [14]. In absence of the exact expressions we will restrict our discussions within

the third order derivative. The current and the stress-tensor can be found out by varying

the generating function. This has been done in [14]. Let me just summarize the main

results below. The expressions of these quantities are [14]

Ja = Ja
(0) + Ja

(A); (2.3)

T ab = T ab
(0) + T ab

(A); (2.4)

where

Ja
(0) = Nua + νa; (2.5)

T ab
(0) = Euaub + P∆ab + uaqb + ubqa + τab; (2.6)

Ja
(A) = NAu

a + νaA; (2.7)

T ab
(A) = EAuaub + PA∆

ab + uaqbA + ubqaA + τabA . (2.8)

In the above ua is the fluid velocity satisfies the normalization uau
a = −1 and the individual

expressions for each term on the right hand side are as follows:

P = P − ζ∇au
a; E = −P + µ

∂P

∂µ
+ T

∂P

∂T
; N =

∂P

∂µ
;

νa = c̃4dT
2ωa + σ∆ab

(

Eb − T∇b

µ

T

)

;

qa = c̃4dT
2Ba + 2c̃4dµT

2ωa;

τab = −ησab , (2.9)

and

NA = 0; EA = 3PA = 2cmωa(µv
a
2,1 − va2,2) + 4cmBa(v

a
2,1 − Ωabab);

νaA = −6cAµB
a − 3cAµ

2ωa − 4cmtab2 ωb −
4

3
cm

(

s2,1 −
9

2
ω2

)

ωa;

qaA = −3cAµ
2Ba − 2cAµ

3ωa − 2cm

(

ΦabBb + (ω2/4− a2)Ba
)

−2µcm

(

ṽa3+tab2 ωb+
1

3

(

s2,1−
3

2
ω2

)

ωa

)

+cm

(

∆abEc∇cωa+2ωaEba
b−Eaabω

b
)

;

τabA = 4µcm

(

t̃ab3 −W c〈ab〉ducωd + 2ω〈av
b〉
2,1

)

+ 2cmω〈av
b〉
2,2 + 4cmω〈aΩb〉cEc

+4cmB〈av
b〉
2,1 + 2cmǫijk〈auiEj

(

2t
b〉
2k −Rkl∆

b〉l
)

− 2cm∇〈aF b〉cωc

+4cma〈aǫb〉ijkuiBjωk. (2.10)

The definitions of the several symbols are

Ba =
1

2
ǫabcdubFcd; ωa = ǫabcdub∇cud; Ea = Fabu

b; ∆ab = gab + uaub;

σab = ∆ac∆bd(∇cud +∇duc)−
1

3
∆ab∇cu

c , (2.11)
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and

Ωab =
1

2
∆ac∆bd(∇cud −∇duc); tab2 = W acdbucud;

s2,1 = R+ 6Rabu
aub − 6a2; s2,2 = ua∇bF

ab;

va2,1 = ∆abRbcu
c − 2Ωabab; va2,2 = ∆ab∇cFbc;

ṽa3 = ǫabcdub(∇cRdi)u
i + a(b∆c)a∇bωc + ωaa2;

t̃ab3 = ∆c〈aǫb〉dijud(∇iRjc + 2ait2jc); Φab = Rabcdu
cud , (2.12)

where we denote V 〈ab〉 = ∆ac∆bdV(cd) − 1
3∆

ab∆ijV
ij and (ab) represents the symmetric

combination. aa = ub∇bua is the acceleration perpendicular to ua. Here ζ and η are bulk

and shear viscosities, respectively. These hideous expressions have been written in a much

more compact and enlightening way in [16] in terms of “spin chemical potential”. In this

paper, I shall stick to the above forms.

3 Vacuum state and the relation

This section will contain the main discussion of this paper. Here the role of Israel-Hartle-

Hawking vacuum condition will be enlightened for deriving the algebraic relation (1.1).

For that first the null-null components of the stress-tensor will be found out from the

expressions given in the preceding section and then I shall proceed towards the goal.

Note that the above expressions are very clumsy. So to proceed further let us consider a

simple situation where the (1+ 3) dimensional background metric is static and spherically

symmetric, in which case all the components of the stress-tensor take simple forms. In

Schwarzschild like coordinates it is in the following form:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2). (3.1)

The above metric has a timelike Killing vector whose vanishing of the norm gives the

location of the Killing horizon. This is given by f(r = r0) = f(r0) = 0. For our future

purpose we define the null coordinates as u = t−r∗; v = t+r∗ where the tortoise coordinate

r∗ is given by dr∗ = dr/f(r). The relation between the components of stress-tensor in the

both coordinates are

Tuu =
f2

4

(

T tt +
2

f
T tr +

1

f2
T rr

)

;

Tvv =
f2

4

(

T tt − 2

f
T tr +

1

f2
T rr

)

;

Tuv =
f2

4

(

T tt − 1

f2
T rr

)

. (3.2)

Next the components of T ab, given by (2.6) and (2.8), will be evaluated for the metric (3.1).

For that choose the comoving frame in which the components of velocity vector turn out
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to be

ua =

(

1√
f
, 0, 0, 0

)

; ua = (−
√

f, 0, 0, 0). (3.3)

Then all the components of ωa vanish. The non-vanishing component of the acceleration

is ar = f ′/(2f) and hence the norm is a2 = f ′2/(4f) where the prime is the derivative with

respect to r-coordinate. Using all these one can show that

T tt
(0) = E(ut)2; T tr

(0) = utBr c̃4dT
2; T rr

(0) = fP , (3.4)

and

T tt
(A) = EA(ut)2; T tr

(A) = utBr

(

−3cAµ
2 − cmf ′′ + cm

f ′2

2f

)

; T rr
(A) = fPA. (3.5)

Substituting the above results in (3.2) and using Br = −utFθφ, we obtain the required

components of stress-tensor in null coordinates as

Tuu =
1

4

[

f (E + P + EA + PA) + 2Fθφ

(

c̃4dT
2
0 − 3fcAµ

2 − cmff ′′ + cm
f ′2

2

)]

;

Tvv =
1

4

[

f (E + P + EA + PA)− 2Fθφ

(

c̃4dT
2
0 − 3fcAµ

2 − cmff ′′ + cm
f ′2

2

)]

;

Tuv =
f

4
(E − P + EA − PA) , (3.6)

where the relation between T and equilibrium temperature T0, given by T = T0/
√
f , has

been used.

After obtaining the components, next step is to find the relation between the response

parameter c̃4d and the anomaly coefficient cm. This will be done by imposing the Israel-

Hartle-Hawking vacuum condition. Before going into this discussion let me introduce the

applicability of the three different quantum states [29] which are relevant for the met-

ric (3.1). (i) Boulware vacuum: this vacuum is defined in such a way that both the in and

out modes have positive frequency with respect to the Killing time in the Schwarzschild like

coordinates. Therefore in the asymptotic limit r → ∞, it is Minkowskian and hence the

components of energy-momentum tensor in Schwarzschild like coordinates must vanish for

this limit. On the other hand, near the horizon Tab is divergent. This state is usually used

to describe the vacuum polarization around a static star whose radius is larger than that

of the horizon. (ii) Unruh vacuum: here the positive frequency in modes are chosen with

respect to the Schwarzschild timelike Killing vector while the positive frequency out modes

are defined with respect to the Kruskal U coordinate. The Kruskal U and V coordinates

are related to the null coordinates by the relations: κU = − exp[−κu] and κV = exp[κv],

respectively where κ = f ′(r0)/2 is the surface gravity and so TUU = Tuu/(κU)2 and

TV V = Tuu/(κV )2. This implies that the vacuum is Minkowskian in the r → ∞ limit

and so there is no ingoing flux; i.e. Tvv = 0. On the other hand TUU must be regular near

the horizon which implies Tuu = 0 in the limit r → r0. This state is suitable for the evapo-

ration of a black hole. (iii) Israel-Hartle-Hawking vacuum: in this state the in modes have

– 5 –
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positive frequency with respect to the Kruskal V coordinate and out modes are positive

frequency with respect to U . Therefore both TV V and TUU are regular near the horizon.

Then Tvv and Tuu both must vanish in the limit r → r0. This state describes a black hole

system is in thermal equilibrium with the surroundings. In the present context, since the

fluid is at thermal equilibrium with the black hole, the natural vacuum, one may think,

is the Israel-Hartle-Hawking state. We shall show below that this will give the required

relation.

As explained in the above, the definition of the Israel-Hartle-Hawking boundary con-

dition leads to the vanishing of Tuu and Tvv near the Killing horizon [29]. Since in the near

horizon limit (i.e. r → r0), the quantities E ,P, EA,PA, Fθφ, µ all are finite, imposition of

the condition Tuu(r → r0) = 0 yields

c̃4dT
2
0 = −cm

f ′2(r0)

2
. (3.7)

Now the equilibrium temperature, in this case, is given by T0 = f ′(r0)/(4π) and hence the

above reduces to (1.1). Similarly, from Tvv component we obtain the same relation. This

was also obtained earlier in [14, 15] by studying the Euclidean partition function on a cone.

Before concluding, let me mention that in the above no use of the current has been done.

For completeness, let us now find the components of the current in null coordinates and

see how they behave under the Israel-Hartle-Hawking boundary condition on the current

(Ju → 0 and Jv → 0 in the limit r → r0) or if one can extract more information about the

fluids. The computation gives the form of the components as follows:

Ju = −1

2

[

√

f
∂P

∂µ
− 6cAFθφ

√

fµ2

]

;

Jv = −1

2

[

√

f
∂P

∂µ
+ 6cAFθφ

√

fµ2

]

. (3.8)

Note that they vanish near the horizon. So the vacuum condition is satisfied trivially and

we do not have any new information from the expression for current. Also remember that

the gravitational contributions in the diffeomorphism anomalies appear only in the even

dimensional theory, like in 2n spacetime dimensions where n = 1, 2, 3, . . . . For 2D case, we

have a purely gravitational part whereas in 4D we have a mixture of both gravity and gauge

contributions. It has been shown that the response parameter is related with the coefficient

of the pure gravitational anomaly in 2D whereas, for the present case, it is connected to

the mixed anomaly coefficient. Interestingly, in both cases, I have shown that these can be

achieved by imposing the regularity condition of the stress-tensor in Kruskal coordinates

near the horizon; i.e. by imposing the Israel-Hartle-Hawking vacuum. Moreover the relation

is quite general in structure. Since in anomaly equations the pure gravitational part always

appears in 2j with j = 1, 3, 5, . . . spacetime dimensions whereas mixed anomaly comes in 2k

with k = 2, 4, 6, . . . dimensions, we expect the similar connection will happen in other even

dimensional theories like in 2D and 4D when one will use the same regularity condition.

More explicitly it may be noted that in 2D and 4D theories, the anomaly polynomials,

which lead to the respective anomaly equations, contain the first Pontryagin class [14, 16]
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and the response parameters are related to the coefficients of this function. Furthermore,

it has been already shown in [16] that the anomaly polynomials in higher even dimensions

are given by the higher Pontryagin class. Therefore, in these higher dimensional cases

the response parameter will again be related to the coefficients of Pontryagin class. The

explicit expressions, of course, will be obtained when one will write the stress-tensor and

the current and use the regularity conditions on them near the horizon. This I leave for

future work.

4 Conclusions

In this brief report, the earlier analysis [22] for (1 + 1) dimensional anomalous fluid has

been extended to (1 + 3) dimensions case. The theory for the present case has both the

gravitational as well as U(1) gauge contributions which are mixed in the anomaly equations.

I showed that the Israel-Hartle-Hawking vacuum is the relevant vacuum condition in the

context of anomalous hydrodynamics. Use of it on the constitutive relations gave us the

correct anomalous contribution to the response parameter in the first order derivative term.

It is worth to mention that the other two vacua (Boulware and Unruh) which are

asymptotically Minkowski in the r → ∞ limit, do not describe a fluid at thermal equilib-

rium with the black hole and hence they are not suitable to discuss the present situation.

Whereas, the Israel-Hartle-Hawking is a natural choice to describe this equilibrium sys-

tem. Interestingly, this gives the correct relation as obtained earlier by using the Euclidean

partition function approach [14, 16].

One may note that the approach works well in both two and four dimensional theo-

ries. The analysis gives a strong evidence that the Israel-Hartle-Hawking vacuum plays a

significant role in anomalous fluid dynamics. Also, due to the simplicity of the method,

one can apply to any arbitrary dimensional theory. Incidentally, it has been argued in

my earlier work [22] for two dimensional case that such an approach is quite similar to

derivation of Cardy formula. In other words the Cardy formula played a role in the fixing

of the relations in the derivative expansion approach as well in the vacuum approach. That

is an important point to justify the reason that the results from these approaches agree,

having a common origin as the Cardy formula. Hope in future, I will be able to explore

more on this topic and give a deep understating over the importance of vacuum states.

The investigations in these directions are in progress.
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