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ABSTRACT 

Decompression sickness (DCS), as diagnosed by reversal of symptoms with 

recompression, has never been reported in aquatic breath-hold diving vertebrates despite 

the occurrence of tissue gas tensions sufficient for bubble formation and injury in 

terrestrial animals. Similarly to diving mammals, sea turtles manage gas exchange and 

decompression through anatomical, physiological and behavioral adaptations. In the 

former group, DCS-like lesions have been observed on necropsies following behavioral 

disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught 

animals. In sea turtles, in spite of abundant literature on diving physiology and bycatch 

interference, this is the first report for DCS-like symptoms and lesions. We diagnose a 

clinico-pathological condition consistent with DCS in 29 gas embolized loggerhead sea 

turtles (Caretta caretta) from a sample of 67. Fifty-nine were recovered alive and 8 

recently dead following bycatch in trawls and gillnets of local fisheries from the east 

coast of Spain. Gas embolization and distribution in vital organs, was evaluated through 

conventional radiography, computed tomography and ultrasound. Additionally, positive 

response following repressurization was clinically observed in 2 live affected turtles. 

Gas embolism was also evidenced post-mortem in corpses and tissues as described in 

cetaceans and human divers. Compositional gas analysis of intravascular bubbles was 

consistent with DCS. Definitive diagnosis of DCS in sea turtles opens a new era for 

research in sea turtle diving physiology, conservation and bycatch impact mitigation, as 

well as for comparative studies in other air-breathing marine vertebrates and human 

diving. 

 

Key words: decompression sickness, the bends, gas bubbles, sea turtles, bycatch, 

hyperbaric treatment, gas embolism, breath-hold divers. 
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INTRODUCTION 

Decompression sickness (DCS) is a clinical diagnosis encompassing a wide range 

of manifestations related to formation of gas bubbles within supersaturated tissues after 

decompression (Francis & Mitchell 2003). In human divers, the effects  range from 

trivial to fatal, and most often involve neurological and musculoskeletal symptoms 

(Francis & Simon 2003, Vann et al. 2011), including severe pain. In an analysis of 1,070 

central nervous system DCS cases, 77% involved the spinal cord (Francis et al. 1988). 

A wide range of symptoms are caused directly or secondarily by the mechanical, 

embolic, and biochemical effects of intra- and extravascular bubbles (Vann et al. 2011). 

Direct effects include the distortion of tissues and vascular obstructions. Secondary 

effects include endothelial damage, capillary leakage, plasma extravasation, and 

hemoconcentration (Vann et al. 2011). Definitive diagnosis of DCS is difficult and only 

confirmed by successful recompression treatment in a hyperbaric chamber (Ferrigno & 

Lundgren 2003). 

Breath-hold diving vertebrates, including marine mammals and sea turtles, 

classically are considered to be protected against DCS through anatomical, 

physiological and behavioral adaptations (Berkson 1967, Rothschild & Martin 1987, 

Burggren 1988, Lutcavage & Lutz 1997, Piantadosi & Thalmann 2004, Fossette et al. 

2010, Castellini 2012). However, an acute and systemic gas and fat embolic syndrome 

similar to DCS in human divers was described in beaked whales that stranded in 

temporal and spatial association with military exercises involving high-powered sonar 

(Jepson et al. 2003, Fernandez et al. 2005). Since this first report, there has been 

accumulating evidence demonstrating the presence of gas bubbles in diving marine 

mammals (Jepson et al. 2005, Bernaldo de Quirós et al. 2012, Dennison et al. 2012), 

including dysbaric osteonecrosis (Moore & Early 2004) and gas embolism in bycaught 
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animals (Moore et al. 2009).  Although these findings have challenged our 

understanding of diving physiology in these species, conclusive clinical data (i.e. 

diagnosis and therapy) supporting the occurrence of DCS are lacking due to the 

complexity of working with wild marine mammals. 

 Sea turtles are among the longest and deepest marine air-breathing diving 

vertebrates (Byles 1988, Sakamoto et al. 1990, Houghton et al. 2008). They may spend 

over 90% of time submerged in apnea (Lutcavage & Lutz 1997) and efficiently use 

oxygen through cardiovascular adjustments, similar to other air-breathing vertebrates 

(Rothschild & Martin 1987, Burggren 1988, Southwood et al. 1999, Southwood 2013).  

In addition, osteonecrosis-type lesions, being  one of the few long-term lesions 

observable after certain episodes of DCS, have been described in monosaurs and sea 

turtle fossils from the Cretaceous Age but are very rarely described in animals younger 

than the Miocene Age (Rothschild & Martin 1987). This suggests that more recent taxa 

have evolved physiological and behavioral adaptations to mitigate hyperbaric conditions 

like DCS. 

Bycatch is a well-documented, worldwide problem resulting in considerable 

mortality of non-targeted species (Lewison et al. 2004a). Over the past decades, there 

has been a dramatic global decline in sea turtle populations with six of seven species 

currently categorized as vulnerable, endangered, or critically endangered by the IUCN 

Red List (IUCN.www.iucnredlist.org (accessed 14 January 2014)). Fishery bycatch is 

recognized as the greatest threat to their conservation (Wallace et al. 2010) and is 

considered a moderate or high threat for more than three-fourths of all sea turtle 

Regional Management Units globally (Wallace et al. 2011, Lewison et al. 2013). 

Approximately 85,000 sea turtles were reported incidentally captured worldwide from 

1990 through 2008, but true total bycatch is estimated to be at least two orders of 
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magnitude higher (Wallace et al. 2010). Total numbers of global bycaught sea turtles 

(Lewison et al. 2004b, Hamann et al. 2010, Wallace et al. 2010) and resulting mortality 

(Lutcavage & Lutz 1997, Epperly et al. 2002, Hamann et al. 2010) remain unclear.  

Primary limitations in bycatch estimates are the lack of reliable comprehensive 

information on total fisheries effort, bycatch in small scale fisheries (Wallace et al. 2010, 

Casale 2011), and the rate of survivorship of released animals (Chaloupka et al. 2004, 

Mangel et al. 2011). The rate of survivorship following interaction is considered to be 

one of the main obstacles to understanding the true impact of fisheries on sea turtle 

populations (Lewison et al. 2013). Consideration of causes of sea turtle mortality 

resulting from fisheries interaction largely have focused on the effects of drowning and 

direct trauma from gear (Poiner & Harris 1996, Gerosa & Casale 1999, Casale 2011, 

Lewison et al. 2013). The present work describes a previously undescribed condition 

that can compromise post-release survivorship of incidentally captured sea turtles.    

In this study, 67 loggerhead turtles (59 alive, 8 dead) bycaught in trawls and 

gillnets at depths ranging from 10 to 75m, were evaluated by intensive clinical and 

pathological examination. Gas embolism (GE) was a consistent finding in a large 

proportion of live and dead animals. Clinical signs, diagnostic imaging, gross and 

histological observations and response to recompression and controlled decompression 

treatment definitively demonstrate that marine air-breathing vertebrates can suffer from 

DCS. These findings offer a new paradigm to consider in many different aspects of sea 

turtle research, conservation and management, including basic patho-physiological 

aspects of diving adaptations, implications on post-capture survivorship estimates, 

bycatch impact mitigation strategies and devices, clinical treatment of affected turtles, 

as well as potential additional risks associated with intentional capture of diving turtles. 
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MATERIAL AND METHODS 

Animal acquisition 

All sea turtles included in this project were under the authority of the 

“Consellería de Infraestructuras, Territorio y Medio Ambiente” of Valencia 

Community Regional Government in collaborative official agreement with the 

Oceanografic Aquarium of the “Ciudad de las Artes y las Ciencias of Valencia” for 

animal rehabilitation and posterior release, and for the postmortem examination 

of dead individuals. 

In 2011, an active campaign involving fishermen from the Valencian coast of Spain 

was established to collect all (live and dead) sea turtles incidentally captured by gillnets 

and trawling so that bycaught animals could be medically evaluated. During the period 

from January 1, 2011 to January 2, 2014, a total of 67 bycaught loggerhead turtles 

(Caretta caretta) were received. Eleven turtles arrived dead and 56 arrived alive. 

An additional five of 56 live turtles died within 72h. All live animals received 

comprehensive clinical examination. Examination of all dead turtles included 

necropsy and histopathology.  

For all cases, the date of capture, fishing depth, and sea surface temperature at 

the originating port were documented (SeaTemperature. www.seatemperature.org 

(accessed 14 Jan 2014)). Any comments from fishermen related to the condition and 

behavior of turtles upon capture were also noted. 

 

  Clinical diagnosis 

http://www.seatemperature.org/
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 All live bycaught turtles were examined within the first 24 hrs (average 12 hrs).  

Evaluation included routine general veterinary physical and neurological examination, 

hematology and biochemistry, followed by imaging studies.   

Blood was collected from the dorsal cervical sinus with a 5ml syringe and 21G 

40mm hypodermic needle (Henry Schein Inc, Melville NY, USA) and transferred to 

2ml lithium heparin tubes (Aquisel®, Barcelona, Spain) for immediate analysis 

(maximum elapsed time of one hour). Analysis included automated hematology with an 

Abbott Celldyn 3700SL hemocytometer  (Abbott Laboratories Illinois, USA), standard 

manual hematocrit determination and cytological study including manual differential 

count, and complete biochemistry and electrolyte panel using an Olympus AU400 

autoanalyzer (Mishima Olympus CO, LTD, Shizuoka-ken, Japan).  

Diagnostic imaging studies included the following: 

- Plain radiographic evaluation with a Philips Practix 400 unit (Philips Medical 

Systems, , Hamburg, Germany,)  and a Kodak Direct View Classic CR System 

(Carestream Health, INC. Rochester, New York, USA) with 35x43cm Kodak 

cassettes (Kodak PQ Storage Phosphor Screen Regular, and 100 Microns, 

Carestream Health, INC. Rochester, New York, USA) in dorsal-ventral (DV), 

cranial-caudal (CC), and lateral-lateral (LL) projections. Focal distances varied 

between 1-1.5m, using average exposure values between 75-120kV and 7,2-20 

mAs depending on projections and animal size. Digital images were processed 

afterwards through the Kodak Acquisition Software (Onyx-RAD Diagnostic 

Viewer, Rochester, New York, USA) for better visualization and image 

interpretation. Some dead bycaught turtles were also radiographed.    

- Ultrasonographic general examination was conducted using a General Electric 

Logiq E Vet ultrasound machine with commercial linear, phase-array, and 
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microconvex probes (models 12LRS (GE Healthcare, Japan Corporation, 

Tokyo, Japan), 3S (GE Medical Systems CO, LTD, Jiangsu, China) and 8CRS 

(GE Medical Systems CO, LTD, Jiangsu, China)), respectively.  

- Selected individuals with DCS compatible signs were examined by computed 

tomography (CT) using a Toshiba Aquilion 16 CT unit (Toshiba Medical 

Systems, Nasu, Japan).  Acquisition parameters through the whole body 

exploration of the turtle were 5mm slice thickness and 5mm slice interval, with 

0.5mm retro-recon acquisition under lung and mediastinal algorithms. Images 

were post processed with Osirix software version 3.3.1 (Pixmeo, Geneva, 

Switzerland) and Philips Brilliance Workspace CT software (Koninklijke 

Philips, Netherlands). A 3D air volume was recreated through volumetric 

segmented reconstruction (volume rendering).  

      Based on imaging findings upon arrival at the rehabilitation center and/or post 

mortem examinations, the severity of gas embolism was scored based on total amount 

of intravascular gas observed and the distribution (Table 1):  

-Mild embolism: small amount of gas was only evident at the kidney region on 

ultrasound and LL radiographic projection.  

-Moderate embolism: larger volume of gas was present in kidney region, being 

clearly evident in ultrasound, LL and also even DV radiographic projections. 

Other minor vessels in the periphery of the coelom or the liver were also full of 

gas (gas angiograms) on DV radiographs. On ultrasound, occasional free gas 

bubbles could be observed in the lumens of major vessels and cardiac chambers 

(mostly the right atrium).    

- Severe embolism: Gas was evident in kidney, liver, major systemic vessels and 

even cardiac chambers in DV radiographs. Kidney ultrasound images were often 
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impeded by the large amount of gas present in the area. Abundant bubbles in the 

blood stream: gas accumulations were present in most cardiac chambers and 

larger vessels.  

 

Treatment 

 Individuals without clinical signs and mild embolism detected in imaging studies 

did not receive any specific supportive treatment on arrival. Individuals that were 

unresponsive or exhibited neurologic signs, such as stuporous behavior, atonic or single 

retracted extremities, or reduced sensitivity of the skin as detected by pinching with 

forceps, received supportive therapy including normal saline solution (FisioVet® saline 

B. Braun Medical SA, Barcelona, Spain) (10-15ml/kg body weight (bw)) intravenously 

(IV) and/or subcutaneously (SC). Additional drugs commonly used based on severity of 

symptoms included: cardiotonics (atropine 0,1mg/kg bw intramuscularly (IM), 

(Atropine Braun 1mg B. Braun Medical SA, Barcelona, Spain)), respiratory stimulants 

(doxapram chlorhydrate 5-10mg/kg bw IM (Docatone-V® Fort Dodge Veterinaria SA, 

Girona, Spain)), analgesics (meloxicam 0,2 mg/kg IM bw (Metacam® Boehringer 

Ingelheim Vetmedica GmbH, Rhein, Germany), tramadol 5-10mg/kg bw IM (Tramadol 

Normon, Laboratorios Normon SA, Madrid, Spain)), corticoids (dexamethasone 0,5-

1,2mg/kg bw IM, (Fortecortin® 4mg, Merck SL, Madrid, Spain)) and/or supplemental 

oxygen therapy through an endotracheal tube (Rüsch® Uruguay Ltda., Montevideo, 

Uruguay), face mask (Kruuse®, Langueskov, Denmark) or commercial critical care unit 

(Vetario Intensive Care Unit, Brinsea Products Ltd., Sanford, England).   

Recompression with hyperbaric oxygen was applied to two clearly lethargic and 

poorly responsive animals with moderate embolism (one of them with evident paresis 

and retraction of the hind extremities under the shell).  Pressurization was achieved 
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using a power disconnected regular autoclave (Selecta, Presoclave 30, J.P. Selecta SA, 

Barcelona, Spain) modified to work as a hyperbaric chamber by means of a connection 

of a pressurized oxygen cylinder to the draining tube of the autoclave. Animal breathing 

inside the chamber was stimulated with a previous injection of doxapram chlorhydrate 

and needle insertion at the acupuncture GV26 point (Litscher 2010). As there were no 

previous references for reptiles, the most commonly used human recompression-

decompression table was applied (Vann et al. 2011). Briefly,  an initial pressure of 

1.8atm (relative pressure) was applied for 1hr, then decreased to 1atm over the next 

30min, stabilized at 1atm for another 3hrs and finally progressively decreased to surface 

pressure (0atm relative pressure) over 30min.  Pure oxygen was used for the entire 

procedure. Monitoring of the animals inside the chamber was not possible. 

Recompressed-decompressed individuals were reevaluated through simple radiology, 

ultrasound and CT (only one case) before and immediately after treatment. Only turtles 

smaller than 30cm straight-line carapace width were candidates for decompression due 

to the size of the chamber.  Larger individuals were followed clinically for outcome 

without decompression treatment. 

 

Postmortem examination 

 Necropsies were performed within 24 hrs after retrieval from fishing gear (except 

in one case at 36h) or in less than 12hrs following death at the rehabilitation center. 

Systematic sea turtle necropsy procedures were performed (Flint et al. 2009), with extra 

caution to minimize artifactual gas infiltration by traction of tissues and during 

sectioning blood vessels (especially when removing the plastron).  Presence of 

intravascular gas was specifically documented. Samples of skin, muscle, pre-femoral 

fat, liver, spleen, heart, major vessels, brain, intestine, salt glands, plastron, thyroid 
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gland, both kidneys, both lungs, both gonads and any gross lesions were routinely 

collected for histopathology. All tissues were fixed in 10% neutral buffered formalin, 

processed routinely into paraffin blocks for histopathology and stained with 

hematoxylin and eosin (H&E). Histopathological examination was conducted in all 

individuals suspected from DCS. Gas sampling and analysis was performed as 

previously described (Bernaldo de Quirós et al. 2011) in 13 different samples collected 

from the same individual approximately 36 hours post mortem. 

 

Ethical statements 

Animal care was applied within institutional guidelines. In live animals, clinical 

information generated for this study was derived from the regular veterinary procedures 

provided in order to establish an appropriate diagnosis for the application of the best 

feasible treatment. Hyperbaric oxygen treatment was administered with Governmental 

and veterinary medical consent and was decided to be necessary based on fatal outcome 

of similar cases without hyperbaric treatment.  

 

RESULTS 

Sea turtle bycatch was higher during months of the year when the water was 

coldest, particularly from November to March. Regional average monthly water surface 

temperature ranged from 13.4ºC in February up to 26.3ºC in August (SeaTemperature. 

www.seatemperature.org (accessed 14 Jan 2014)) (Table1).   

 

Clinical diagnosis, treatment and outcome 

http://www.seatemperature.org/
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Evidence of gas embolism (GE) was found in 6/18 (33.3%) gillnet and 23/49 

(46.9%) bottom trawl net bycatch cases (43.3% of all incidental captures) from a depth 

range between 10-50 m and 25-75 m, respectively. Summary information for different 

cases is provided in Table 1.  The severity of GE was assessed to be mild in 16 cases, 

moderate in 9 cases and severe in 4 turtles. 

According to the fishermen, clinically abnormal turtles exhibited two clearly 

distinct anomalous behaviors when they surfaced within the fishing gear: comatose or 

initially hyperactive progressing to stuporous with increasing surface time. Some of the 

comatose animals showed aspiration of sea water in the respiratory tract as evidenced 

by an alveolar pattern in radiographs and expelled copious fluid after endotracheal 

intubation for resuscitation. These animals were diagnosed as drownings and generally 

responded well to conventional emergency treatment (Norton 2005). 

Twenty-one loggerheads arrived at the rehabilitation center alive and were 

clinically evaluated.  All individuals presented with good body condition and normal fat 

stores. Eight exhibited normal behavior, four were comatose, and nine turtles were 

hyperactive or developed progressive neurological symptoms, including limb paresis or 

loss of nociception.  The latter group was all caught by trawlers and in some cases 

terminally displayed rigid pressing of the front flippers against the plastron (Fig. 1a and 

1b).  These turtles also exhibited an initially increased hematocrit, positive flotation and 

erratic swimming when returned to water.  Without hyperbaric treatment, neurological 

signs gradually progressed to complete unresponsiveness and death within 72 hrs of 

capture.  Additional animals may have had these signs upon capture and become 

comatose or died before arrival at the rehabilitation center. 

In radiographs, intravascular gas was observed as radiolucency within or 

distending the heart and vessels (Fig. 1c). The lungs were partially collapsed in severely 
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affected individuals as evidenced by reduction in field volume and increased 

radiodensity. In mild cases, latero-lateral projections resulted in the most diagnostic 

radiographs, providing higher sensitivity than dorso-ventral views for gas visualization 

within the renal vessels.  

Gas bubbles were detected by ultrasound as hyperechoic spots, typically with 

comet tail artifacts. In all affected individuals, renal ultrasound revealed the presence of 

gas inside the parenchyma and kidney vessels (Fig. 1d). Cardiac ultrasound 

demonstrated a much higher prevalence of bubbles in the right atrium compared with 

the left, similar to the pattern observed in scuba divers (Francis & Simon 2003).  

CT imaging techniques were used in 11 cases to confirm the presence and 

distribution of GE (Fig. 1 and 2a, 2b, 2c). Embolism was confirmed within the kidneys, 

liver, heart, spleen, and central nervous system (Fig. 2a and 2b). In simple CT slices, 

gas was revealed inside different regional vessels as hypoattenuated (black) compared 

to surrounding tissues. As in radiographs, the lungs of severe cases were 

hyperattenuated (whiter) and expansion reduced due to partial collapse. Notably, 

midline-sagittal multiplanar reconstructed CT images demonstrated gas within the 

vertebral canal and central nervous system (Fig. 2c) that was not seen by ultrasound or 

in radiographs. Gas within or surrounding the nervous system was apparent even in mild 

cases (Fig. 2c). These findings were observed to be compatible with life even without 

treatment, although subsequent renal and/or neurological damage or temporal functional 

impairment could not be discarded.  

Five out of 49 (10.2%) bycatch trawl animals were active while presenting 

moderate to severe GE at the arrival to the rehabilitation center. More animals could 

have surfaced on board with similar symptoms dying before arrival at the rehab center. 

All these cases of GE resulted in death within 48-72 h post-capture if not treated with a 
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hyperbaric protocol while severe cases were generally lethal in the first 6-8 h, thereby 

reducing the chances for hyperbaric treatment.  Two of these animals survived following 

a hyperbaric oxygen treatment (Table 1). After treatment neurological signs resolved 

and the sea turtles recovered normal activity. Post-treatment radiographs and CT 

confirmed the dissipation of most of the intravascular gas and re-expansion of the lungs 

(Fig. 2d and 2e). After two months under observation, both were considered clinically 

healthy and were reintroduced into the Mediterranean Sea. 

  

Pathological diagnosis  

Complete necropsies were performed on a total of 16 deceased bycaught 

loggerheads (8 dead on the gear, 3 dead during transport and 5 dead at the rehabilitation 

center).  Gas embolism was found in 13 turtles (81%), which included 8 out of the 11 

that arrived dead and the 5 that died following admission. In severe cases, gas was found 

within the median abdominal, mesenteric, gastric, pancreatic, hepatic and renal veins, 

as well as within the post cava and other major vessels (Fig. 3). The atria (especially the 

right atrium) and the sinus venosus were distended by gas (Fig. 3). In very severe cases 

the spleen was gas dilated. Grossly, the kidneys had multifocally extensive red areas 

consistent with marked congestion. Segmental congestion of the intestinal mucosa was 

also present. The lungs of some animals were partially collapsed with cranial pulmonary 

emphysema. Various amounts of fluid within the respiratory tract were evident in some 

individuals. Other gross findings included coelomic transudate in individuals with 

severe GE and partially digested contents within the stomach and intestine in most 

turtles. In moderate cases, GE were not as obvious as observed by imaging and required 

careful examination.  Gas was most visible within mesenteric and renal vessels, as well 
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as the postcava and sinus venosuson.  In one mild case with concurrent radiographic 

evidence of drowning, GE could not be found macroscopically in any explored tissue. 

Histopathological findings included moderate to severe multisystemic congestion 

with the presence of intravascular gas bubbles in multiple organs including the lung, 

liver, kidney, and heart (Fig. 3).  In addition, perivascular edema and hemorrhages, 

varying in extent and severity were also present in different tissues. Acute, multifocal, 

myocardial necrosis with vacuolar degeneration of myocytes, alveolar edema, diffuse 

microvacuolar hepatocellular degeneration, sinusoidal edema, and intrahepatocyte 

hyaline globules were frequently evident.  

Gas composition analysis in one case confirmed that the main component was 

nitrogen (75.3 ± 0.9% μmol), followed by carbon dioxide (18.6 ± 2.0% μmol) and 

oxygen (6.0 ± 1.3% μmol). 

 

DISCUSSION 

Differential diagnoses 

Alternative differential diagnoses for GE, including traumatic or artifactual intrusion 

and putrefaction, were ruled out based on clear demonstration of antemortem occurrence 

in live turtles and absence of any apparent traumatic injuries or surgical procedures.  

Pulmonary barotrauma could cause arterial air embolism (Vann et al. 2011);  however, 

the physical requirements for barotrauma are not met in bycaught turtles. Turtles are 

breath hold divers, meaning that the internal pressure in the ediculi (homologous to 

mammalian alveoli) at the beginning and at the end of the dive would be the same or 

even lower at the end of the dive due to oxygen consumption. Thus, overexpansion of 

the lungs is very unlikely. In addition, gas was mainly found in the venous side of the 
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circulation (as in DCS) instead of in the arterial side.  In addition, necropsied turtles 

were in a good state of preservation and systemic GE was consistent with pathological 

findings described in DCS in human divers and in stranded beaked whales (Knight 1996, 

Francis & Simon 2003, Jepson et al. 2003, Fernandez et al. 2005). Also, hydrogen, a 

putrefaction marker, was not detected in the gas samples collected during necropsy 

(Bernaldo de Quirós et al. 2013a). Furthermore,  decompression-related GE is the only 

process that is reversed by a hyperbaric treatment (Vann et al. 2011).  Dissipation of GE 

and clinical response fulfill human criteria for medical diagnosis of DCS (Paulev 1965, 

Vann et al. 2011).   

 

Key facts for the finding of GE in sea turtles 

 To the best of the authors’ knowledge, no report of live or dead wild sea turtles 

suffering from acute GE has been previously presented. Most of the literature and 

research done until present, considers this possibility as highly improbable based on 

different anatomo-physiological adaptations, including relatively small and collapsible 

lungs (Berkson 1967) and confinement of lung gas to non-respiratory, cartilage-

reinforced airways during deep dives (Kooyman 1973, Lutcavage et al. 1989, Lutcavage 

& Lutz 1997). The metabolic adaptations and physiological mechanisms underlying 

their diving capacity have been the subject of intense interest for many years, including 

early studies on forced submergence response in laboratory settings (Berkson 1966) and 

more recent physiological investigations based on sophisticated remote-monitoring 

technologies in free-swimming sea turtles (Hochscheid et al. 2007, Southwood 2013). 

Berkson (1967) pressurized green turtles to different depths in a hyperbaric 

chamber demonstrating tolerance to over 100 minutes of forced submergence at 18-
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25ºC. Two animals compressed to 18.7atm died several hours after compression (one 

fast compression and the other in progressive steps) and then fast decompression with 

numerous gas emboli observed in capillaries of the cervical fascia and right atrium. 

Death was attributed to gas emboli in the brain after emergence. The study concluded 

that equilibrium conditions with full nitrogen solubilization were never attained even 

during a prolonged deep dive (at different depths), providing some kind of underlying 

protective mechanism, but, in certain extreme circumstances, enough nitrogen could 

enter the blood to render the green turtle susceptible to gas emboli in the brain and death 

after emergence. Our findings with wild individuals under field conditions are 

significantly different. We observed dramatic lesions, with not only bubbles but actually 

several milliliters of gas in wild animals entrapped at much shallower depths compared 

to Berkson's studies. The explanation of this disparity remains uncertain, but could be 

attributed to different factors, including animal species, time of forced submergence, 

water temperature, movement capabilities when submerged (Berkson’s animals in the 

chamber were fastened to a board with very restricted in movement inside the chamber) 

and the previous diving profile of exposed individuals. Situations in which wild sea 

turtles are forcibly submerged due to entrapment in fishing gear suggest that behavioral 

and physiological responses are drastically different from what has been recorded under 

controlled laboratory conditions (Berkson 1966, Lutz & Bentley 1985, Lutz & 

Dunbarcooper 1987, Harms et al. 2003, Stabenau & Vietti 2003, Snoddy et al. 2009, 

Southwood 2013). 

Multiple studies reveal that entanglement in fishing gear has significant effects on 

the physiology of sea turtles (Lutz & Dunbarcooper 1987, Harms et al. 2003, Stabenau 

& Vietti 2003, Snoddy et al. 2009, Snoddy & Southwood Williard 2010) but have never 

described DCS. Various factors may have contributed to the discovery in the current 
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study, including close collaboration with fishermen allowing access to alive and fresh 

dead bycaught animals, capacity for intensive medical evaluation following capture, 

availability of modern imaging technology and familiarity with diving animals and 

pathology related to GE.  In addition, local oceanic conditions and type of fisheries could 

be unique relative to the circumstances of previous studies. 

 

DCS findings in other marine air-breathing vertebrates: comparative 

physiology  

 Similarly to the present description in sea turtles, DCS had not been suspected 

in marine animals until GE consistent with DCS was described in beaked whales that 

mass stranded in close temporal and spatial association with military exercises using 

high-intensity mid-frequency active sonar, as well as in single stranded cetaceans in the 

UK coast (Jepson et al. 2003, Fernandez et al. 2005, Jepson et al. 2005, Fernández et al. 

2013). Over the last decade, there has been an increasing body of evidence showing that 

marine mammals may suffer from acute and chronic GE, including the description of 

gas bubbles forming in tissues of fatally bycaught marine mammals trapped in nets at 

depth and rapidly brought to the surface (Jepson et al. 2003, Moore & Early 2004, 

Fernandez et al. 2005, Jepson et al. 2005, Moore et al. 2009, Bernaldo de Quirós et al. 

2011, Bernaldo de Quirós et al. 2012, Bernaldo de Quirós et al. 2013b). In a recent study 

of gas composition of bubbles in bycaught dolphins, the authors concluded that nitrogen 

rich bubbles were formed by off gassing of supersaturated tissues (Bernaldo de Quirós 

et al. 2013b). These findings provide new evidence of nitrogen accumulation in breath-

hold diving taxa despite anatomical and physiological adaptations. However, all marine 

mammal examples were already dead upon discovery, thus a definitive diagnosis of 

DCS could not be clinically established. Sea turtles afford a new opportunity for 
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studying this condition due to their amazing capacity for anoxia tolerance (Berkson 

1966, Lutz & Bentley 1985, Lutcavage & Lutz 1997, Southwood 2013) and relative 

ease of handling, treatment and transport compared to marine mammals.     

 

Hypothetical patho-physiological mechanism 

The causal relationship between breath-hold diving in humans and DCS is 

increasingly being accepted due to the growing number of cases of DCS-like symptoms 

(Schipke et al. 2006). The pathophysiology of this condition in bycaught sea turtles is 

unknown. 

  Turtles have three muscular cardiac chambers, two atria and one ventricle, which 

allows some intraventricular mixing of systemic and pulmonary blood flow (Shelton & 

Burggren 1976, Hicks & Wang 1996, Wang et al. 2001). All sea turtles also have 

vascular adaptations for shunting during diving, including muscular sphincters within 

the pulmonary arteries and an anastomosis between the left and right aorta (White 1976, 

Wyneken et al. 2013). Cardiac shunting in sea turtles may confer some advantages under 

certain physiological conditions, such as diving (Hicks & Wang 1996), but could also 

risk bypass of gas bubbles from the pulmonary to systemic circulation (Germonpre et 

al. 1998, Harrah et al. 2008, Vann et al. 2011).  

Different studies correlate exercise with breathing frequency, pulmonary blood 

flow and heart rate in green turtles (Butler et al. 1984, West et al. 1992, Southwood 

2013). Exacerbated muscular activity leading to lactic acid built up is induced in free-

swimming bycaught turtles, even under very short forced submersion episodes (Lutz & 

Dunbarcooper 1987, Stabenau et al. 1991, Stabenau & Vietti 2003). Additionally, heart 

rate and pulmonary blood flow in turtles often increase immediately before breathing 
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starts, which is suggestive of central mechanisms based on elevated sympathetic tone.  

This effect could also be induced by catecholamine release during fight-or-flight 

response resulting from capture (White & Ross 1966, Shelton & Burggren 1976, West 

et al. 1992, Wang & Hicks 1996, Wang et al. 2001).  

We hypothesize that entrapped, submerged turtles develop DCS due to increased 

activity and catecholamine-induced sympathetic induction/parasympathetic inhibition.  

These processes disrupt the normal physiological and protective vagal diving reflex that 

minimizes blood flow through air filled pressurized lungs during diving. This 

hypothesis is supported by observed disruption of the dive response in struggling green 

sea turtles that are forcibly submerged (Berkson 1966).  

Although speculative, the shunting ability in diving reptiles may not only represent 

a mechanism of regulating metabolism through modulation of oxygen supply to the 

tissue (Wang & Hicks 1996, Wang et al. 1997, Wang et al. 2001), but also could 

minimize nitrogen solubility in blood and subsequent risk of DCS.  Sea turtles and sea 

snakes have the highest shunting capabilities (White 1976, Lillywhite & Donald 1989, 

Wyneken 2009).  If this is the case, the longer the duration of the forced submergence, 

the higher the amount of nitrogen absorbed. As breath-hold divers, bycaught turtles 

cannot eliminate all absorbed gas at depth nor in ascent while the gear is retrieved. 

When the animal is surfaced with the fishing gear, gas bubbles start to form.  We also 

speculate that the spastic retraction of the limbs (Figure 1a) may in part be comparable 

to the bending of limbs in humans. In our experience, it takes several hours or days for 

GE to resolve in turtles with even mild embolism. 

  

Potential contributing factors 
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 Environmental conditions, including water temperature and depth and time of 

immersion, are known to affect risk of DCS in humans and likely are important in sea 

turtles as well (Germonpre et al. 1998, Harrah et al. 2008, Vann et al. 2011).  Tolerance 

of forced submergence in sea turtles is known to be affected by turtle size, turtle activity, 

and water temperature (Lutcavage & Lutz 1991, Stabenau et al. 1991).   

In the present study, the highest rate of bycatch occurred between November and 

March, when most GE cases were encountered. When considered by proportion of 

captured animals with DCS, February, September, and October (average surface 

temperatures 13.4ºC; 24.5ºC, and 22.0ºC, respectively) were the months with highest 

occurrence. Hochscheid et al (2007) reported that Mediterranean loggerhead sea turtles 

increase time of submergence and rest on the bottom during the coldest periods of the 

year. This overwintering behavior could explain the higher trawling capture rates 

observed during winter in our region. However, the implications of temperature remain 

unclear from this study due to limited sample size and bias for presentation of cases 

during colder months.  

Lower body temperatures in sea turtles compared to mammals, has been considered 

a potential protective mechanism against DCS, as body fluids would tolerate a higher 

pressure of gas dissolved without forming bubbles (Fossette et al. 2010). However, 

decrease in temperature would also increase nitrogen solubility at depth proportionally, 

thus increasing the risk of DCS when surfaced compared to mammals. Overwintering 

behavior could thereby increase the risk of DCS upon capture, especially if the turtle 

warms up out of water.  

Regarding the influence of depth, some animals captured by trawlers fishing at over 

60 m depth were full of gas after surfacing while others of similar size, coming from the 

same waters, same fisheries, same depth and during the same season had no detectable 
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gas.  Possible explanations for this disparity are differences in actual depth of capture 

(unknown for trawler captures), the length of time submerged, and individual 

susceptibility to stress.  Large depths do not seem to be required for the development of 

the DCS in sea turtles, as animals entrapped in gill nets as shallow as 10-20m deep 

presented with moderate or severe GE.  One mild case was observed in a turtle bycaught 

by a vessel fishing at 30 m, although all severe cases of GE in trawlers occurred in turtles 

bycaught by nets fishing at over 60m depth.  Based on these findings, even coastal or 

shallow fisheries like bottom trawls used to capture shrimp and other coastal fish 

resulting in high bycatch (Finkbeiner et al. 2011) could  induce DCS in sea turtles.  

Duration of submergence is another consideration.  Berkson (1967) determined 

that submersion time was not a limiting factor to allow nitrogen saturation during diving, 

as the nitrogen tensions in blood reached a maximum and then dropped or leveled off 

well below saturation level. The author suggested that there might be an underlying 

mechanism for compensation. In contrast, our results suggest that time of submersion is 

correlated with severity of GE. Animals entrapped in gillnets (generally set at depths as 

shallow as 10-15m but for an average of 12hrs) tend to show more dramatic embolism 

than similar animals captured in trawlers in the same waters at a significant deeper depth 

(25-70m) but with much shorter operating times (2-6hrs).   

 

 Potential impacts and future research 

The actual contribution of DCS resulting in sea turtle mortality on a global scale is 

unknown; however, it is notable that our observations originated from interaction with 

two gear types of foremost concern with regard to sea turtle bycatch.   Bycaught sea 

turtles that are initially active are usually immediately released and are not considered 
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lethal interactions. Our results show that many turtles could have GE and may 

subsequently die within hours or days post-release.  Mortality following fisheries 

interaction could be much higher than previously estimated.  Accurate data on both  

immediate and post-release mortality data are crucially important for refining the current 

mortality estimates used to govern management decisions with far-reaching 

conservation, economic and social consequences (Southwood 2013). 

The cause of death in comatose and dead net caught turtles should be re-evaluated 

to clarify the percentage of animals dying from DCS instead of drowning or dying from 

both. Current procedures used aboard fishing vessels to revive comatose turtles, while 

useful for drowning, are probably ineffective for DCS.  Although GE can be detected in 

the field (e.g. with on-board portable ultrasound) any mitigation measures should focus 

on prevention and minimization of risk of DCS given that effective treatment is unlikely 

to be practical under most at-sea conditions.   

 

CONCLUSIONS 

The current study demonstrates that bycaught marine turtles can develop and die 

from DCS. Diagnosis was based on clinical signs, detection of intravascular gas by 

imaging and necropsy, gas composition analysis, and successful resolution with 

hyperbaric treatment. To our knowledge, these findings represent the first example of 

DCS in air-breathing marine vertebrates that fulfill all of these medical diagnostic 

criteria, providing new clues for the better understanding of the diving response and 

DCS avoidance in other breath holding diving vertebrates (Piantadosi & Thalmann 

2004).  
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This discovery has significant implications on sea turtle conservation. It would be 

important in light of the present findings to review regional sea turtle bycatch 

intervention protocols worldwide after elucidating the real prevalence of the condition 

based on different fisheries techniques, geographic areas, oceanic conditions, sea turtle 

species and individual characteristics.  
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Table 1. List of bycaught turtles diagnosed with gas embolism, biological, clinical and pathological data.  

Gear type 
Depth range 

(m) 

CCL range 

(cm) 

Temperature 

range (ºC) 
Clinical classification GE Diagnosis Treatment End result 

Gillnet  

(n=6) 
10.5 - 50 30.2 – 41.5 13.4 – 24.5 

2 Comatose 
1 Mild/Moderate None 

Dead 
1 Mild/Drowned Medical 

4 Dead 
3 Moderate 

None 
1 Severe 

Trawl  

(n=23) 
30 - 75 28.6 - 74 13.8 - 25 

8 Normal 8 Mild  Medical  Reintroduced 

9 Hyperactive 

/Neurologic 

2 Mild Medical Reintroduced 

2 Mild/Moderate Medical Reintroduced 

3 Moderate 

Medical (1) Dead  

 Hyperbaric 

& Medical 

(2) 

Reintroduced 

1 Moderate/Severe Medical Dead  

1 Severe Medical Dead 

2 Comatose 2 Mild/Drowned Medical Reintroduced 

4 Dead 

1 Moderate 

None Dead 1 Moderate/Severe 

2 Severe 

Abbreviations: CCL, Curved Carapace Length; Temp, average sea superficial temperature on the month of capture. 
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FIGURES AND LEGENDS 1 

 2 

Figure 1. Sea turtles at reception: signs (a and b) and preliminary detection of 3 

clinical gas (c and d). (a), Case CcGE21 at arrival.  Moderate systemic GE. Note spastic 4 

retraction of the hind limbs under the carapace before recompression therapy. These 5 

signs resolved immediately after hyperbaric oxygen treatment. (b), External aspect of 6 

case CcGE18 with severe systemic GE after a few hours postmortem.  This animal 7 
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arrived alive and did not respond to emergency medical treatment. Note retraction of all 8 

four extremities under the body at rigor mortis. (c), Dorso-ventral digital radiographic 9 

image (technique, 90Kv, 10mAs, 1 m focal distance, right side is to the left of the image) 10 

of case CcGE15 with severe systemic GE. Note the lumen delimitation of right and left 11 

atrium, sinus venosus, and major vessels by the massive presence of intraluminal gas 12 

(evidenced as a radiolucent region). Minor vessels are also clearly visualized in the area 13 

of projection of the liver and kidneys (gas angiograms). (d), Renal ultrasound of patient 14 

CcGE23 with moderate systemic GE. Image obtained with a 12MHz linear probe on the 15 

left prefemoral fossa with a ventrolateral-dorsomedial orientation. Note the presence of 16 

intraluminal gas in renal major vessels as evidenced by hyperechoic spots and comet 17 

tail artifacts (long white arrow). Smaller collections of gas are also clearly visualized 18 

disperse inside the kidney parenchyma (short white arrows). Renal margin (yellow 19 

arrows). Abbreviations: RP = right precava, LP = left precava, RA = right atrium, SV = 20 

sinus venosus, HV = hepatic veins, PC = postcava, H = venous hepatic system , MC = 21 

marginocostal vein, and K = kidney. 22 

  23 
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 24 

Figure 2. Evidence of GE on computed tomography. (a), Transverse image of mid-25 

cranial coelomic region at the level of the heart of case CcGE15 with severe systemic 26 

GE. There is evidence of intraluminal gas (black) inside the heart and major vessels. 27 

Gas is also present within the venous hepatic system and vertebral canal. Lungs are 28 

hyperattenuated (whiter) due to partial collapse. (b), Dorsal oblique view of 3D volume 29 

recreation through volumetric segmented reconstruction (volume rendering) from 30 

patient CcGE15 with severe systemic GE. Note the presence of gas within the different 31 

peripheral and intracoelomic vessels. Lungs contain less gas than normal. The kidneys 32 
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are clearly visualized due to the massive presence of intravascular gas in this region.  33 

(c), Mid-sagittal image of patient CcGE20 with mild systemic GE. Notice the presence 34 

of abnormal gas at the central nervous system, spinal cord and renal and minor hepatic 35 

vessels. (d) and (e), Dorsal views of 3D air volume rendering view of total gas volume 36 

inside the patient CcGE23 with moderate systemic GE before (d) and after (e) oxygen 37 

hyperbaric treatment for recompression. Images were obtained 6 hours apart. All gas in 38 

brighter color and intravascular gas pointed with stars. (d), Notice the delineation of 39 

hepatic veins and renal vessels by the presence of intraluminal gas before treatment. 40 

Lungs expansion is also reduced. (e), Most gas contained in the large vessels has almost 41 

disappeared after hyperbaric treatment indicating gas reabsorption while pulmonary 42 

expansion is back to normal. Few minor vessels still contain gas in the periphery of the 43 

hepatic and renal projection areas. Abbreviations: VC = vertebral canal, L = lung, H = 44 

venous hepatic system, HV = hepatic veins, SV = sinus venosus, RA = right atrium, MC 45 

= marginocostal vein, A = aorta, K = kidney, and SC = spinal cord.      46 

  47 
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 48 

Figure 3. Gross (a-c) and histopathological findings (d-f). (a), Caudo-ventral view of 49 

the heart, dorsal surface, of case CcGE18 with mild/moderate systemic GE. The right 50 

atrium and sinus venosus (amplified) are diffusely distended with a moderate amount of 51 

intracameral, gas bubbles. (b), Left dorso-lateral view of the stomach greater curvature 52 

(after being reflected cranially) and liver of case CcGE14 with moderate systemic GE. 53 

Note that gastric veins from greater curvature and the pyloric vein are diffusely 54 

expanded with variably sized gas bubbles. (c), Small intestine and mesentery of case 55 

CcGE14 (moderate systemic GE). Note that mesenteric veins are diffusely expanded 56 
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with a large amount of variably sized gas bubbles, coalescing at the mesenteric venous 57 

root. (d), Right atrium of case CcGE15 (severe systemic GE). Atrial lumen shows 58 

multifocal to coalescing, variably sized, round to oval, fat-negative gas emboli, 59 

compressing the adjacent myocardium. H&E; 2x. (e), Kidney of case CcGE18 60 

(mild/moderate GE) Interrenicular veins are multifocally occupied by round to oval, 61 

variably sized, fat-negative gas emboli. H&E; 10x. (f), Lung of case CcGE7 (severe 62 

systemic GE). Pulmonary veins show intravascular, variably sized, round to oval, fat-63 

negative gas emboli. H&E; 10x. Abbreviations: V = Ventricle, RA and LA = right and 64 

left atriums, LPV = left precaval vein, P = pericardium, PF = pericardial fluid, SV = 65 

sinus venosus, LLL = liver left lobe, S = stomach, GA = gastric artery, GV = gastric 66 

veins, PY = pylorus, PV = pyloric vein, PA = pancreas, IN = intestines, MA and MV = 67 

Mesenteric arteries and veins. 68 


