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INTRODUCTION 
 
 Vision-based systems consist of a 
sequence of digital images that enable the 
detection and the identification of objects. 
Iris and face recognition are examples of 
vision-based systems applied to security and 
private access control.  Many other 
applications can be found in traffic control, 
search and rescue, border security and aerial 
surveillance. These tasks are already 
accomplished by vision-based robots, which 
are nowadays built with inexpensive 
equipment and have an easy maintenance. 
Several techniques to endow vehicles with 
vision-based control can be found in (Güzel, 
2013; Bertozzi & Broggi, 1997; Tisdale, et 
al., 2009; Carloni, et al., 2013; Yunji, et al., 
2013; Ivancsits & Lee, 2013; Lim, et al., 
2012; Mahony, et al., 2012; Guillet, et al., 
2014; Mcgill & Taylor, 2011). They enable 
object detection, path orientation and 
distance control. Vision-based control 
makes signal reception more robust than 
other vision guidance methods do. For 
instance, GPS (Global Positioning System) 
receives satellite signals with a considerable 
margin of error, besides the fact that such 
signals are sometimes blocked, for example, 
under the water, inside tunnels or inside 
buildings. 

The first mobile robot was built in 
the 70s in Stanford Research Institute. 
Another example of mobile robot, now with 
a video camera for navigation aid, was 
developed in the 80s at Carnegie Mellon 
University (Güzel, 2013).  

Other vehicles have been tested with 
GPS and video cameras. For example, 
aircraft fuselage (Tisdale, et al., 2009; 
Kendoul, et al., 2009), helicopters (Yunji, et 
al., 2013; Ivancsits & Lee, 2013), 
quadmotors (Carloni, et al., 2013; Ivancsits 
& Lee, 2013; Lim, et al., 2012; Mahony, et 
al., 2012; Frew, et al., 2004), road robots 
(Bertozzi & Broggi, 1997; Guillet, et al., 

2014; Neto, et al., 2009) and flying 
simulator games (Neto & Campos, 2009; 
Neto, et al., 2011) use Dubin’s Path 
Waypoints (Dubins, 1957). All these 
vehicles use different approaches of location 
and orientation methods with techniques that 
either focus on the odometer or on the 
accelerometer, or even on the GPS itself. 
These different approaches make unmanned 
vehicles over uncovered areas render 
different mappings. See Güzel, 2013; 
Bertozzi & Broggi, 1997; Tisdale, et al., 
2009; Carloni, et al., 2013; Yunji, et al., 
2013; Ivancsits & Lee, 2013; Lim, et al., 
2012; Mahony, et al., 2012) for an overview. 
Some related to projects aim at a 
geographical image mapping that gives 
relevant data to agricultural activity (Guillet, 
2014; Medeiros, 2008).  

With advanced cameras one can also 
plot 3D maps. In (Eisenbeiss, 2004) the 
author shows an example of 
photogrammetry, in which a helicopter was 
used to obtain some data from a settlement 
of the 13th century A.D. in Peru. By flying 
automatically according to predefined path 
points these data produced a 3D image of 
that settlement. 

In (Sibley, et al., 2010) it is possible 
to see a study of robot location on Mars, 
with an approach of sliding window filter. In 
(Newcombe, et al., 2011) it provides a very 
detailed approach to mapping techniques 
using a Kinect sensor for mapping of the 
indoor scenes. 

In this study it will be performed 
simulations with an indoor model, where 
one video camera attached to a robot guides 
it by image segmentation along a road 
network, represented by black tape over a 
white floor. Hence either GPS or any other 
outdoor equipment cannot be included in our 
tests. Therefore, we resort to mapping 
techniques like orientation by angle and 
travelled distance. 
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MATERIALS AND METHODS 
 

The main goal of this project is the 
elaboration of a strategy to automate the 
mapping of road networks modelled by 
black tape over a white floor (Figure 1). 
Automation is done by an unmanned vehicle 
that travels across the network and is guided 
only through image measurements. In this 
case will be used the LEGO NXT 
Mindstorm vehicle (Figure 1) that drives 
through the path according to one Matlab® 
program, transmitted via Bluetooth. The 
program ensures that our vehicle will never 
come off the trail, and also its coordinates 
will be stored continuously. Moreover, the 
program identifies all the coordinates that 
represent a crossroad. The crossroads and 
the road’s end are the nodes (or vertices) of 
the graph, where the edges are pairs of 
nodes, represented by (x, y).    

 

 
 

Figure 1. Vehicle LEGO NXT over a prototype of 
road network. 
 
 
A. Segmentation of Road Images 
 

The camera calibration is an 
important activity (Keivan & Sibley, 2015). 
In this paper, a low-cost camera (2MP and 
f4.8mm) was fixed on the robot to 8 cm 
from the floor, (Figures 1 and 10). The black 
tape attached over a white floor has 8mm 
wide. According to each captured image the 

vehicle must proceed with the appropriate 
command that keeps the next road stretch 
within the camera range. For this purpose, 
we use Mathematical Morphology (Corke, 
2005; Gonzalez & Woods, 2007; Serra, 
1982; Serra, 1988) to analyze the image and 
then choose a suitable command that will be 
executed by the steering wheel and the 
motor. This algorithm uses the function 
IMGsegm, which give orders to move 
according to the image of the tape pieces 
and their arrangement. Figure 2 shows some 
examples of images and their corresponding 
commands. 

 

 
 
Figure 2. Images of “crossroad” (left), “straight 
route” (middle) and “turn left” (right). 

 
In order to choose the suitable 

command, the image is submitted to a 
segmentation process that follows a 
sequence of functions contained in the 
Matlab® Image processing toolbox. Firstly, 
the image is converted to binary format and 
fits into a square of L x L pixels that will be 
called IMG. Then a square of (L-30) x (L-
30) pixels is removed from the center of 
IMG. What remains are just boundary 
objects, as illustrated in Figure 3.  
 

 
 
Figure 3. Image submitted to the segmentation 
process. 

 
In Figure 3, right side, there are two 

white components, in which aiming from the 
bottom one to the other one determines the 
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direction of the movement. Moreover, the 
inclination between these two components 
determines the intensity of the movement. 
We calibrate the robot rotors using a 
constant time with the command "pause" the 
Matlab® as value 1.5 milliseconds. So we 
do capture a frame, processing the image 
and the PC sends a command via Bluetooth 
for the robot rotors, then wait for these 1.5 
milliseconds. This type of robot movement 
is detailed in (Yano & Zampirolli, 2013).  

 
Function IMGsegm; 
  Receive image imgcaptured; 
  imgSegment=Segment(imgcaptured); 
  Degree=Orientation(imgcaptured); 
  Switch imgSegment 
    Case {“straight route”} 
      Order = “go forward”; 
    Case {“road end”} 
      Order = “road end”; 
    Case {“left route”} 
      Order = “turn left”; 
    Case {“right route”} 
      Order = “turn right”; 
    Case {“crossroad”} 
             Order = “crossroad”; 
 

The cases of three or more 
components (when the robot finds a 
crossroad for example, having more than 
one option to follow the road network) are 
treated by pairwise analyses and it will be 
explained ahead. 
 
 
B. The Function Map 
 

Our function called Map was 
implemented with the same logic used by 
soldiers and scouts when they guide 
themselves in jungles and fields 
(Department of The Army, 2007). For that, 
one only needs to track their travelled 
distance and to use a compass. They are 
instructed to walk a distance in the direction 
of a certain angle referenced by the North 
magnetic pole. When they reach the correct 
point, a new distance has to be walked along 
a new direction. This procedure is simple to 

follow and discards any elaborate 
equipment. For this reason, we chose it in 
order to elaborate our algorithm. 

The two important data (angle and 
distance) are obtained by means of image 
segmentation. Our vehicle starts at a point 
given by (d1, α1) in polar coordinates 
regarding a fixed origin. If it turns and then 
goes to another stop this is counted as (d2, 
α2) with respect to (d1, α1). By repeating the 
process, we shall have (d3, α3) regarding (d2, 
α2) and so forth (Margolis & Yasui, 1995). 

 

 
 
Figure 4. Example of mapping with angles and 
distances. 
 

The example shown in Figure 4 
indicates two positions given by (x1, y1) and 
(x2, y2) in rectangular coordinates. Of 
course, (x1, y1) = (d1*cos(α1), d1*sin(α1)) 
and (x2, y2) = (x1, y1) + (d2*cos(α2), 
d2*sin(α2)). The general recursive formula is 
(xn, yn) = (xn-1, yn-1) + (dn*cos(αn), 
dn*sin(αn)) for a natural number n ≥ 2.   

 
 

C. Vehicle Movement 
  
Whenever the function IMGsegm 

gives an order the function 
LEGO_Movement reads the order and 
activates the steering wheel and the motors 
accordingly. This algorithm not only 
controls the motors but also records the 
vehicle coordinates and its orientation. 

The intensity of the motor rotation is 
defined by the route angle, namely the 
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variable called Degree, so that it works like 
a steering wheel. Large angle variations 
thrust the rotation of the whole vehicle. 

We remark that in the function 
LEGO_Movement there is a special 
function called Map, which is invoked 
whenever Order is equal to “crossroad” 
(when the robot finds a fork or a crossroad, 
having more than one option to follow the 
road network). Those two lines of source 
code do not define the movement itself, 
which will be in fact established by the new 
string stored in Order and the Switch 
command that follows in the sequel.  

 
Function LEGO_Movement; 
  Test Motors, Connection and Camera 
  ANG=0; 
  j=1; X[0]=0; Y[0]=0; % used on Map 
  While (non-stop) 
    Camera capture imgcaptured; 
    Order = IMGsegm(imgcaptured);  
    If Order == “crossroad” 
      Order = Map(imgcaptured); 
    Switch Order 
    Case { “road end” } 
      Invert vehicle direction; 
      ANG = ANG + 180º 
    Case { “turn right” } 
      Move vehicle to right; 
      ANG = ANG - Degree; 
    Case { “turn left” } 
      Move vehicle to left;  
      ANG = ANG + Degree; 
    Case { “go forward” } 
      Move vehicle forward; 
      X[j] = X[j-1] + d*sin(ANG); 
      Y[j] = Y[j-1] + d*cos(ANG); 
 

The function Map records the main 
road coordinates and also makes the 
appropriate decision on which direction will 
be taken whenever the vehicle arrives at a 
crossroad. For example, when choosing a 
direction with the lowest weight stored in an 
adjacency matrix, this will be exemplified in 
the next section. 

The main goal of this paper is the 
implementation of the function Map, which 
defines a graph in which the vertices are the 
centroids of each crossroad and of each road 

end. In the graph edges represent the road 
stretches that connect these centroids. 
 
 
D. The Function of Generating Road 
Network Graph 

  
The following code is the algorithm 

of the function Map: 
Function Map; 
  imgLabel = bwlabel(imgcaptured);    
  regioprops(imgLabel, “centroids”); 
  crossroad = “unknown”;  
  For i = 1 to size(CX) 
    If {X(end),Y(end)}≈{CX(i),CY(i)} 
      crossroad = “known”; 
      stopFor; 
Switch crossroad 
  Case { “unknown” } 
    {CX(j),CY(j)}={X(end),Y(end)}; 
    For h=1 to Ne-1 
      CA(j,h) = ANG + angles(Ne) 
    A = random h; 
    Order = direction(CA(j,A)); 
    CA(j,A) = 0; 
    j = j + 1; 
  Case { “known” } 
    For h = 1 to Ne  
      If CA(i,h) ~= 0; 
        StopFor; 
        Order = direction(CA(i,h)) 
        CA(i,h) = 0; 
 

The mapping coordinates recorded 
by the function LEGO_Movement are used 
to distinguish crossroads between tracked 
and untracked. The tracked crossroads are 
stored in the coordinate vector {CX, CY}. 

When the vehicle arrives at a 
crossroad its current coordinates (X(end), 
Y(end)) are compared with each element in 
{CX, CY}. If sufficiently close coordinate 
numbers are found this means that the 
crossroad has already been tracked. 
Otherwise it has not yet.  

In the latter case both the new 
coordinates and the incident paths are 
recorded in CA. Afterwards the program 
chooses one of the paths at random for the 
vehicle to move on.  
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Figure 5 shows an example of a 
crossroad segmentation in which the final 
image shows four objects. Each one 
indicates the possible paths by means of the 
angles that it makes with the other objects.  

 

 
 
Figure 5. Segmentation process of a crossroad image. 
 

This procedure is implemented as the 
function regionprops, which analyses each 
object and locates its centroid regarding the 
image coordinates. The function bwlabel 
counts the number of isolated objects in the 
binary image. This number is stored in the 
vector Ne. For more information about these 
Matlab functions see www.mathworks.com/ 
products/image. The incident paths of a 
crossroad are identified by their relative 
angles, as illustrated in Figure 6.  

 

 
 
Figure 6. Distinguishing incident paths of a 
crossroad. 

 
The relative angles are defined as the 

sum of the current orientation with each 
necessary turning angle. In this way the 
paths are correctly recognized again no 
matter from which direction the vehicle 
arrives. In order to find the turning angle, 
the crossroad image is submitted to the same 

segmentation process explained beforehand 
(Figure 3).  

The relative angles are listed in the 
vector CA, of which columns represent the 
crossroad counter and each line shows the 
incident paths of the crossroad. If the path 
has already been tracked its value is set as 
zero.  

If the crossroad is tracked, it means 
that CA has recorded the incident paths. So 
the order is defined by the first non-zero 
direction element. 
 
 
EXPERIMENTAL  
 
A. First Experiment 
 
 In this first experiment to create a 
graph from the robot navigation in a row 
simulating a road network, it will be 
considered, in simplified form, only two 
images. The first image has a vertical line, 
or “straight route”. The second image is a 
“crossroad”. These images after 
segmentation are shown in Figure 7 (as the 
images used in the experiments have high 
contrast, this segmentation used a threshold 
80 and a morphological opening with a disk 
of radius 20 pixels in one of the bands 
RGB). 
 

    
 
Figure 7. Images “straight route” (left) and 
“crossroad” (right). 
 

These images of Figure 7 are 
exchanged, as follows, as if the robot were 
"seeing" the image of the “straight route” 
into two consecutive frames, and the third 
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frame is an image of the “crossroad”. The 
starting point is the image of the vertical 
path. As a validation of movements, the 
simulator initially returns the following 
variables:  
 
  ANG = [0    -0.0058] 

X   = [0    -0.0233] 
Y   = [0     3.9999] 
GO AHEAD 

 
The angle -0.0058 is the vertical 

slope of the line shown in Figure 7 (left), 
using the orientation attribute of regionprops 
function of Matlab. The X and Y values 
were calculated as follows: 
 
  X = [X    X(end) + d*sin(ANG(end))] 
  Y = [Y    Y(end) + d*cos(ANG(end))] 

 
where d = 4. This value should be 
calibrated, with the movements of the robot 
rotors. 

The next frame to be processed is 
also the same “straight route” and the 
simulator returns: 
 

ANG = [0    -0.0058    -0.0117] 
X   = [0    -0.0233    -0.0699] 
Y   = [0     3.9999     7.9996] 
GO AHEAD 

 
The angle -0.0117 is calculated with 

the difference (-0.0117=-0.0058-0.0058) of 
the two vertical slopes of the line shown in 
Figure 7 (left). The same occurs in X (-
0.0699=-0.0233-0.0466) and in Y 
(7.9996=3.9999+3.9997). 

The next frame was a “crossroad”, 
we now have the following variables: 
 

### CROSSROAD ### 
FIRST NODE FOUND 
ANG_actual = 0 
 
### CROSSROAD UNKNOWN ### 
CX = [0] 
CY = [0] 
CANG = [-1.527  0.0626  -0.0329  1.5338] 
ANG(end) = 1.5338 
Node_preview = 1 
TURN RIGHT 

 

In this first "crossroad", we define 
the first graph node in the coordinate (0,0) 
of the Cartesian Plane, we have 4 possible 
directions, with the angles stored in CA. In 
this first experiment, we will consider 
always the 4 angle, i.e., the robot will 
always turn to the right. This angle is also 
stored in ANG. 

The next frame is the "straight 
route", and we have the following variables: 
 

ANG = [1.5338    1.5279] 
X   = [0         3.9963] 
Y   = [0         0.1714] 
GO AHEAD 

Again, another frame "straight 
route", we now have the following variables: 
 

ANG = [1.5338    1.5279    1.5221] 
X   = [0         3.9963    7.9916] 
Y   = [0         0.1714    0.3660] 
GO AHEAD 

 
Now another "crossroad" will be 

processed with the following output: 
 

### CROSSROAD ### 
ANG_actual = 1.5221 
ANG(end)   = 1.5221 
CX = 7.9916 
CY = 0.3660 
 
### CROSSROAD UNKNOWN ### 
CX = [0    7.9916] 
CY = [0    0.3660] 
CA = 
   -1.5273    0.0626   -0.0329    1.5338 
   -1.5273    0.0626   -0.0329    1.5338 
ANG(end) = 3.0559 

 
MatrixAdj = 
 
     0     0     0     0     0     0     0     0     0     0 
     1     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
 
Node_preview = 2 
countVERT = 3 
TURN RIGHT 

 
In the latter process, the simulator 

calculates the second node of the graph. So, 
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we can now use an adjacency matrix to store 
the neighbourhood of each node of the 
graph, see the contents of the variable 
MatrixAdj where node 1 is adjacent to the 
node 2 (and vice versa). 

Figure 8 shows this graph with two 
nodes already processed, one at position (0, 
0) and the other at (7.9916, 0.3660), 
calculated by taking the last element of each 
coordinate, or CX = X(end) = 7.9916 and 
CY = Y(end) = 0.3660. 
 

 
 
Figure 8. Graph with 2 nodes in (0, 0) and (7.9916, 
0.3660). 
 

This processing (two frames 
"straight route" and one frame "crossroad") 
are repeated indefinitely. Considering more 
three nodes of the graph, we will have an 
overlap of nodes (within a margin of error), 
so we do not account for new nodes of the 
graph, as shown in Figure 9. 

 

 
 
Figure 9. Graph with 4 nodes. 

 

The adjacency matrix after six 
processing of "crossroad" is shown below: 

 
MatrixAdj = 
 
     0     0     0     1     0     0     0     0     0     0 
     2     0     0     0     0     0     0     0     0     0 
     0     1     0     0     0     0     0     0     0     0 
     0     0     1     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0 

 
 
B. Second Experiment 

 
In this second experiment, the robot 

will be shown driving through a simulation 
of a road network in blocks, steering always 
to the right when a "crossroad" is found. See 
Figure 10. 
 

 
 

Figure 10. Image with the robot in the road. 
 

The graph produced by this second 
experiment is shown in Figure 11. In this 
case it was used to scrolling constant d=1. 

Images, videos and data produced in 
experiments of this paper are available at 
http://vision.ufabc.edu.br/RobotRoad. 
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Figure 11. Another graph with 4 nodes, now with the 
robot in the road. 
 
 
DISCUSSION  

 
The weights in the adjacency matrix 

indicate how often the robot travelled over 
the same edge. 

The adjacency matrixes used in the 
experiments had considered graphs of up to 
10 nodes, the higher the number of 
"crossroad" in the road network, the bigger 
must be the adjacency matrix. 

After several iterations of the robot 
driving through the same edge 
(consequently, same pairs of nodes), it is 
recommended to make an adjustment of the 
coordinates of the nodes, for example, by 
averaging the coordinates in several visits in 
the same "crossroad". 

In the performed experiments in this 
paper, always when the robot arrives in a 
"crossroad" it will turn the rightmost edge or 
leftmost edge, or it will choose a random 
edge. With little change in the algorithm, it 
can be avoided the robot walking the edges 
which it had already visited. Thus, the robot 
will walk on all edges and on all nodes of 
the graph (connected).  

 
 

CONCLUSION  
 

In this paper it was created an 
algorithm to identify important coordinates 

on a road by guiding an unmanned vehicle 
using image processing. The code written in 
Matlab sends orders to a LEGO NXT 
vehicle with an attached camera, from which 
an image segmentation algorithm determines 
the movement. This algorithm ensures that 
the road is kept within the camera range 
while it travels along the road network, and 
another algorithm memorizes the 
coordinates of the crossroads to decide 
which way the vehicle has to take, ensuring 
that not a single path will be left untracked. 
After having implemented these algorithms, 
several tests were performed. The vehicle 
moved according to the expected 
performance and all the crossroad 
coordinates were recorded correctly. 
Therefore, we conclude that our vision-
based strategy and the LEGO NXT kit have 
both succeeded in the indoor modelling.  

Furthermore, an important extension 
of our map creation strategy is another 
algorithm adapted to GPS. This way the 
vehicle could travel much larger distances. 
In future works we intend to apply these 
results to other vehicles, specially to 
medium range aerial vehicles that fly over 
streets, rivers or marks on the ground, and 
use the aforementioned image processing 
algorithm. 
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