
International Journal of Undergraduate Research and Creative International Journal of Undergraduate Research and Creative

Activities Activities

Volume 9 Article 2

February 2017

Generating Road Network Graph with Vision-Based Unmanned Generating Road Network Graph with Vision-Based Unmanned

Vehicle Vehicle

Henrique Yano
Federal University of ABC, henrique.yano@aluno.ufabc.edu.br

Francisco Zampirolli
Federal University of ABC, fzampirolli@ufabc.edu.br

Recommended Citation Recommended Citation
Yano, Henrique and Zampirolli, Francisco (2017) "Generating Road Network Graph with Vision-Based
Unmanned Vehicle," International Journal of Undergraduate Research and Creative Activities: Vol. 9,
Article 2.
DOI: http://dx.doi.org/10.7710/2168-0620.1083

https://commons.pacificu.edu/ijurca
https://commons.pacificu.edu/ijurca
https://commons.pacificu.edu/ijurca/vol9
https://commons.pacificu.edu/ijurca/vol9/iss1/2

Generating Road Network Graph with Vision-Based Unmanned Vehicle Generating Road Network Graph with Vision-Based Unmanned Vehicle

Generating Road Network Graph with Vision-Based Unmanned Vehicle Generating Road Network Graph with Vision-Based Unmanned Vehicle
Peer Review
This work has undergone a double-blind review by a minimum of two faculty members from institutions
of higher learning from around the world. The faculty reviewers have expertise in disciplines closely
related to those represented by this work. If possible, the work was also reviewed by undergraduates in
collaboration with the faculty reviewers.

Abstract Abstract
With the advancement of technology and its cheapness, robotic vehicles have gained a large number of
applications. The spread of their use is growing also because they are getting smaller, lighter and easier
to build. In this paper we present a simple and effective way to map a road network with the help of a
driverless vehicle. Our approach consists of only three parts: vision-segmentation, angle variation and
travelled distance. A video camera attached to a Lego® NXT Mindstorm vehicle guides it by image
segmentation using Matlab® Image processing toolbox, along a road network, in which is represented by
black tape over a white floor. The algorithm makes the vehicle travel all over the road memorizing main
coordinates to identify all crossroads by keeping track of the travelled distance and the current angle. The
crossroads and road’s end are the nodes of the graph. After several simulations have been performed, the
modelling proved to be successful in that small scale approach. Consequently, there are good chances
that driverless cars and UAVs also make use of the strategies to map route networks accordingly. The
algorithm presented in this paper is useful when there is no localization signal such as GPS, for example,
navigation on water, tunnels, inside buildings, among others.

Keywords Keywords
Computer Vision, Unmanned Vehicles, Vehicle Guidance, Route Mapping.

Acknowledgements Acknowledgements
Great acknowledgments to Federal University of ABC, who gave us the necessarily support to this
research.

This research article is available in International Journal of Undergraduate Research and Creative Activities:
https://commons.pacificu.edu/ijurca/vol9/iss1/2

https://commons.pacificu.edu/ijurca/vol9/iss1/2

INTRODUCTION

 Vision-based systems consist of a
sequence of digital images that enable the
detection and the identification of objects.
Iris and face recognition are examples of
vision-based systems applied to security and
private access control. Many other
applications can be found in traffic control,
search and rescue, border security and aerial
surveillance. These tasks are already
accomplished by vision-based robots, which
are nowadays built with inexpensive
equipment and have an easy maintenance.
Several techniques to endow vehicles with
vision-based control can be found in (Güzel,
2013; Bertozzi & Broggi, 1997; Tisdale, et
al., 2009; Carloni, et al., 2013; Yunji, et al.,
2013; Ivancsits & Lee, 2013; Lim, et al.,
2012; Mahony, et al., 2012; Guillet, et al.,
2014; Mcgill & Taylor, 2011). They enable
object detection, path orientation and
distance control. Vision-based control
makes signal reception more robust than
other vision guidance methods do. For
instance, GPS (Global Positioning System)
receives satellite signals with a considerable
margin of error, besides the fact that such
signals are sometimes blocked, for example,
under the water, inside tunnels or inside
buildings.

The first mobile robot was built in
the 70s in Stanford Research Institute.
Another example of mobile robot, now with
a video camera for navigation aid, was
developed in the 80s at Carnegie Mellon
University (Güzel, 2013).

Other vehicles have been tested with
GPS and video cameras. For example,
aircraft fuselage (Tisdale, et al., 2009;
Kendoul, et al., 2009), helicopters (Yunji, et
al., 2013; Ivancsits & Lee, 2013),
quadmotors (Carloni, et al., 2013; Ivancsits
& Lee, 2013; Lim, et al., 2012; Mahony, et
al., 2012; Frew, et al., 2004), road robots
(Bertozzi & Broggi, 1997; Guillet, et al.,

2014; Neto, et al., 2009) and flying
simulator games (Neto & Campos, 2009;
Neto, et al., 2011) use Dubin’s Path
Waypoints (Dubins, 1957). All these
vehicles use different approaches of location
and orientation methods with techniques that
either focus on the odometer or on the
accelerometer, or even on the GPS itself.
These different approaches make unmanned
vehicles over uncovered areas render
different mappings. See Güzel, 2013;
Bertozzi & Broggi, 1997; Tisdale, et al.,
2009; Carloni, et al., 2013; Yunji, et al.,
2013; Ivancsits & Lee, 2013; Lim, et al.,
2012; Mahony, et al., 2012) for an overview.
Some related to projects aim at a
geographical image mapping that gives
relevant data to agricultural activity (Guillet,
2014; Medeiros, 2008).

With advanced cameras one can also
plot 3D maps. In (Eisenbeiss, 2004) the
author shows an example of
photogrammetry, in which a helicopter was
used to obtain some data from a settlement
of the 13th century A.D. in Peru. By flying
automatically according to predefined path
points these data produced a 3D image of
that settlement.

In (Sibley, et al., 2010) it is possible
to see a study of robot location on Mars,
with an approach of sliding window filter. In
(Newcombe, et al., 2011) it provides a very
detailed approach to mapping techniques
using a Kinect sensor for mapping of the
indoor scenes.

In this study it will be performed
simulations with an indoor model, where
one video camera attached to a robot guides
it by image segmentation along a road
network, represented by black tape over a
white floor. Hence either GPS or any other
outdoor equipment cannot be included in our
tests. Therefore, we resort to mapping
techniques like orientation by angle and
travelled distance.

1

Yano and Zampirolli: Generating Graph with with Vision-Based Unmanned Vehicle

DOI: http://dx.doi.org/10.7710/2168-0620.1083

MATERIALS AND METHODS

The main goal of this project is the
elaboration of a strategy to automate the
mapping of road networks modelled by
black tape over a white floor (Figure 1).
Automation is done by an unmanned vehicle
that travels across the network and is guided
only through image measurements. In this
case will be used the LEGO NXT
Mindstorm vehicle (Figure 1) that drives
through the path according to one Matlab®
program, transmitted via Bluetooth. The
program ensures that our vehicle will never
come off the trail, and also its coordinates
will be stored continuously. Moreover, the
program identifies all the coordinates that
represent a crossroad. The crossroads and
the road’s end are the nodes (or vertices) of
the graph, where the edges are pairs of
nodes, represented by (x, y).

Figure 1. Vehicle LEGO NXT over a prototype of
road network.

A. Segmentation of Road Images

The camera calibration is an
important activity (Keivan & Sibley, 2015).
In this paper, a low-cost camera (2MP and
f4.8mm) was fixed on the robot to 8 cm
from the floor, (Figures 1 and 10). The black
tape attached over a white floor has 8mm
wide. According to each captured image the

vehicle must proceed with the appropriate
command that keeps the next road stretch
within the camera range. For this purpose,
we use Mathematical Morphology (Corke,
2005; Gonzalez & Woods, 2007; Serra,
1982; Serra, 1988) to analyze the image and
then choose a suitable command that will be
executed by the steering wheel and the
motor. This algorithm uses the function
IMGsegm, which give orders to move
according to the image of the tape pieces
and their arrangement. Figure 2 shows some
examples of images and their corresponding
commands.

Figure 2. Images of “crossroad” (left), “straight
route” (middle) and “turn left” (right).

In order to choose the suitable

command, the image is submitted to a
segmentation process that follows a
sequence of functions contained in the
Matlab® Image processing toolbox. Firstly,
the image is converted to binary format and
fits into a square of L x L pixels that will be
called IMG. Then a square of (L-30) x (L-
30) pixels is removed from the center of
IMG. What remains are just boundary
objects, as illustrated in Figure 3.

Figure 3. Image submitted to the segmentation
process.

In Figure 3, right side, there are two

white components, in which aiming from the
bottom one to the other one determines the

2

International Journal of Undergraduate Research and Creative Activities, Vol. 9 [2017], Art. 2

DOI: http://dx.doi.org/10.7710/2168-0620.1083

direction of the movement. Moreover, the
inclination between these two components
determines the intensity of the movement.
We calibrate the robot rotors using a
constant time with the command "pause" the
Matlab® as value 1.5 milliseconds. So we
do capture a frame, processing the image
and the PC sends a command via Bluetooth
for the robot rotors, then wait for these 1.5
milliseconds. This type of robot movement
is detailed in (Yano & Zampirolli, 2013).

Function IMGsegm;
 Receive image imgcaptured;
 imgSegment=Segment(imgcaptured);
 Degree=Orientation(imgcaptured);
 Switch imgSegment
 Case {“straight route”}
 Order = “go forward”;
 Case {“road end”}
 Order = “road end”;
 Case {“left route”}
 Order = “turn left”;
 Case {“right route”}
 Order = “turn right”;
 Case {“crossroad”}
 Order = “crossroad”;

The cases of three or more
components (when the robot finds a
crossroad for example, having more than
one option to follow the road network) are
treated by pairwise analyses and it will be
explained ahead.

B. The Function Map

Our function called Map was
implemented with the same logic used by
soldiers and scouts when they guide
themselves in jungles and fields
(Department of The Army, 2007). For that,
one only needs to track their travelled
distance and to use a compass. They are
instructed to walk a distance in the direction
of a certain angle referenced by the North
magnetic pole. When they reach the correct
point, a new distance has to be walked along
a new direction. This procedure is simple to

follow and discards any elaborate
equipment. For this reason, we chose it in
order to elaborate our algorithm.

The two important data (angle and
distance) are obtained by means of image
segmentation. Our vehicle starts at a point
given by (d1, α1) in polar coordinates
regarding a fixed origin. If it turns and then
goes to another stop this is counted as (d2,
α2) with respect to (d1, α1). By repeating the
process, we shall have (d3, α3) regarding (d2,
α2) and so forth (Margolis & Yasui, 1995).

Figure 4. Example of mapping with angles and
distances.

The example shown in Figure 4
indicates two positions given by (x1, y1) and
(x2, y2) in rectangular coordinates. Of
course, (x1, y1) = (d1*cos(α1), d1*sin(α1))
and (x2, y2) = (x1, y1) + (d2*cos(α2),
d2*sin(α2)). The general recursive formula is
(xn, yn) = (xn-1, yn-1) + (dn*cos(αn),
dn*sin(αn)) for a natural number n ≥ 2.

C. Vehicle Movement

Whenever the function IMGsegm

gives an order the function
LEGO_Movement reads the order and
activates the steering wheel and the motors
accordingly. This algorithm not only
controls the motors but also records the
vehicle coordinates and its orientation.

The intensity of the motor rotation is
defined by the route angle, namely the

3

Yano and Zampirolli: Generating Graph with with Vision-Based Unmanned Vehicle

DOI: http://dx.doi.org/10.7710/2168-0620.1083

variable called Degree, so that it works like
a steering wheel. Large angle variations
thrust the rotation of the whole vehicle.

We remark that in the function
LEGO_Movement there is a special
function called Map, which is invoked
whenever Order is equal to “crossroad”
(when the robot finds a fork or a crossroad,
having more than one option to follow the
road network). Those two lines of source
code do not define the movement itself,
which will be in fact established by the new
string stored in Order and the Switch
command that follows in the sequel.

Function LEGO_Movement;
 Test Motors, Connection and Camera
 ANG=0;
 j=1; X[0]=0; Y[0]=0; % used on Map
 While (non-stop)
 Camera capture imgcaptured;
 Order = IMGsegm(imgcaptured);
 If Order == “crossroad”
 Order = Map(imgcaptured);
 Switch Order
 Case { “road end” }
 Invert vehicle direction;
 ANG = ANG + 180º
 Case { “turn right” }
 Move vehicle to right;
 ANG = ANG - Degree;
 Case { “turn left” }
 Move vehicle to left;
 ANG = ANG + Degree;
 Case { “go forward” }
 Move vehicle forward;
 X[j] = X[j-1] + d*sin(ANG);
 Y[j] = Y[j-1] + d*cos(ANG);

The function Map records the main
road coordinates and also makes the
appropriate decision on which direction will
be taken whenever the vehicle arrives at a
crossroad. For example, when choosing a
direction with the lowest weight stored in an
adjacency matrix, this will be exemplified in
the next section.

The main goal of this paper is the
implementation of the function Map, which
defines a graph in which the vertices are the
centroids of each crossroad and of each road

end. In the graph edges represent the road
stretches that connect these centroids.

D. The Function of Generating Road
Network Graph

The following code is the algorithm

of the function Map:
Function Map;
 imgLabel = bwlabel(imgcaptured);
 regioprops(imgLabel, “centroids”);
 crossroad = “unknown”;
 For i = 1 to size(CX)
 If {X(end),Y(end)}≈{CX(i),CY(i)}
 crossroad = “known”;
 stopFor;
Switch crossroad
 Case { “unknown” }
 {CX(j),CY(j)}={X(end),Y(end)};
 For h=1 to Ne-1
 CA(j,h) = ANG + angles(Ne)
 A = random h;
 Order = direction(CA(j,A));
 CA(j,A) = 0;
 j = j + 1;
 Case { “known” }
 For h = 1 to Ne
 If CA(i,h) ~= 0;
 StopFor;
 Order = direction(CA(i,h))
 CA(i,h) = 0;

The mapping coordinates recorded
by the function LEGO_Movement are used
to distinguish crossroads between tracked
and untracked. The tracked crossroads are
stored in the coordinate vector {CX, CY}.

When the vehicle arrives at a
crossroad its current coordinates (X(end),
Y(end)) are compared with each element in
{CX, CY}. If sufficiently close coordinate
numbers are found this means that the
crossroad has already been tracked.
Otherwise it has not yet.

In the latter case both the new
coordinates and the incident paths are
recorded in CA. Afterwards the program
chooses one of the paths at random for the
vehicle to move on.

4

International Journal of Undergraduate Research and Creative Activities, Vol. 9 [2017], Art. 2

DOI: http://dx.doi.org/10.7710/2168-0620.1083

Figure 5 shows an example of a
crossroad segmentation in which the final
image shows four objects. Each one
indicates the possible paths by means of the
angles that it makes with the other objects.

Figure 5. Segmentation process of a crossroad image.

This procedure is implemented as the
function regionprops, which analyses each
object and locates its centroid regarding the
image coordinates. The function bwlabel
counts the number of isolated objects in the
binary image. This number is stored in the
vector Ne. For more information about these
Matlab functions see www.mathworks.com/
products/image. The incident paths of a
crossroad are identified by their relative
angles, as illustrated in Figure 6.

Figure 6. Distinguishing incident paths of a
crossroad.

The relative angles are defined as the

sum of the current orientation with each
necessary turning angle. In this way the
paths are correctly recognized again no
matter from which direction the vehicle
arrives. In order to find the turning angle,
the crossroad image is submitted to the same

segmentation process explained beforehand
(Figure 3).

The relative angles are listed in the
vector CA, of which columns represent the
crossroad counter and each line shows the
incident paths of the crossroad. If the path
has already been tracked its value is set as
zero.

If the crossroad is tracked, it means
that CA has recorded the incident paths. So
the order is defined by the first non-zero
direction element.

EXPERIMENTAL

A. First Experiment

 In this first experiment to create a
graph from the robot navigation in a row
simulating a road network, it will be
considered, in simplified form, only two
images. The first image has a vertical line,
or “straight route”. The second image is a
“crossroad”. These images after
segmentation are shown in Figure 7 (as the
images used in the experiments have high
contrast, this segmentation used a threshold
80 and a morphological opening with a disk
of radius 20 pixels in one of the bands
RGB).

Figure 7. Images “straight route” (left) and
“crossroad” (right).

These images of Figure 7 are
exchanged, as follows, as if the robot were
"seeing" the image of the “straight route”
into two consecutive frames, and the third

5

Yano and Zampirolli: Generating Graph with with Vision-Based Unmanned Vehicle

DOI: http://dx.doi.org/10.7710/2168-0620.1083

frame is an image of the “crossroad”. The
starting point is the image of the vertical
path. As a validation of movements, the
simulator initially returns the following
variables:

 ANG = [0 -0.0058]

X = [0 -0.0233]
Y = [0 3.9999]
GO AHEAD

The angle -0.0058 is the vertical

slope of the line shown in Figure 7 (left),
using the orientation attribute of regionprops
function of Matlab. The X and Y values
were calculated as follows:

 X = [X X(end) + d*sin(ANG(end))]
 Y = [Y Y(end) + d*cos(ANG(end))]

where d = 4. This value should be
calibrated, with the movements of the robot
rotors.

The next frame to be processed is
also the same “straight route” and the
simulator returns:

ANG = [0 -0.0058 -0.0117]
X = [0 -0.0233 -0.0699]
Y = [0 3.9999 7.9996]
GO AHEAD

The angle -0.0117 is calculated with

the difference (-0.0117=-0.0058-0.0058) of
the two vertical slopes of the line shown in
Figure 7 (left). The same occurs in X (-
0.0699=-0.0233-0.0466) and in Y
(7.9996=3.9999+3.9997).

The next frame was a “crossroad”,
we now have the following variables:

CROSSROAD ###
FIRST NODE FOUND
ANG_actual = 0

CROSSROAD UNKNOWN ###
CX = [0]
CY = [0]
CANG = [-1.527 0.0626 -0.0329 1.5338]
ANG(end) = 1.5338
Node_preview = 1
TURN RIGHT

In this first "crossroad", we define
the first graph node in the coordinate (0,0)
of the Cartesian Plane, we have 4 possible
directions, with the angles stored in CA. In
this first experiment, we will consider
always the 4 angle, i.e., the robot will
always turn to the right. This angle is also
stored in ANG.

The next frame is the "straight
route", and we have the following variables:

ANG = [1.5338 1.5279]
X = [0 3.9963]
Y = [0 0.1714]
GO AHEAD

Again, another frame "straight
route", we now have the following variables:

ANG = [1.5338 1.5279 1.5221]
X = [0 3.9963 7.9916]
Y = [0 0.1714 0.3660]
GO AHEAD

Now another "crossroad" will be

processed with the following output:

CROSSROAD ###
ANG_actual = 1.5221
ANG(end) = 1.5221
CX = 7.9916
CY = 0.3660

CROSSROAD UNKNOWN ###
CX = [0 7.9916]
CY = [0 0.3660]
CA =
 -1.5273 0.0626 -0.0329 1.5338
 -1.5273 0.0626 -0.0329 1.5338
ANG(end) = 3.0559

MatrixAdj =

 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

Node_preview = 2
countVERT = 3
TURN RIGHT

In the latter process, the simulator

calculates the second node of the graph. So,

6

International Journal of Undergraduate Research and Creative Activities, Vol. 9 [2017], Art. 2

DOI: http://dx.doi.org/10.7710/2168-0620.1083

we can now use an adjacency matrix to store
the neighbourhood of each node of the
graph, see the contents of the variable
MatrixAdj where node 1 is adjacent to the
node 2 (and vice versa).

Figure 8 shows this graph with two
nodes already processed, one at position (0,
0) and the other at (7.9916, 0.3660),
calculated by taking the last element of each
coordinate, or CX = X(end) = 7.9916 and
CY = Y(end) = 0.3660.

Figure 8. Graph with 2 nodes in (0, 0) and (7.9916,
0.3660).

This processing (two frames
"straight route" and one frame "crossroad")
are repeated indefinitely. Considering more
three nodes of the graph, we will have an
overlap of nodes (within a margin of error),
so we do not account for new nodes of the
graph, as shown in Figure 9.

Figure 9. Graph with 4 nodes.

The adjacency matrix after six
processing of "crossroad" is shown below:

MatrixAdj =

 0 0 0 1 0 0 0 0 0 0
 2 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

B. Second Experiment

In this second experiment, the robot

will be shown driving through a simulation
of a road network in blocks, steering always
to the right when a "crossroad" is found. See
Figure 10.

Figure 10. Image with the robot in the road.

The graph produced by this second
experiment is shown in Figure 11. In this
case it was used to scrolling constant d=1.

Images, videos and data produced in
experiments of this paper are available at
http://vision.ufabc.edu.br/RobotRoad.

7

Yano and Zampirolli: Generating Graph with with Vision-Based Unmanned Vehicle

DOI: http://dx.doi.org/10.7710/2168-0620.1083

Figure 11. Another graph with 4 nodes, now with the
robot in the road.

DISCUSSION

The weights in the adjacency matrix

indicate how often the robot travelled over
the same edge.

The adjacency matrixes used in the
experiments had considered graphs of up to
10 nodes, the higher the number of
"crossroad" in the road network, the bigger
must be the adjacency matrix.

After several iterations of the robot
driving through the same edge
(consequently, same pairs of nodes), it is
recommended to make an adjustment of the
coordinates of the nodes, for example, by
averaging the coordinates in several visits in
the same "crossroad".

In the performed experiments in this
paper, always when the robot arrives in a
"crossroad" it will turn the rightmost edge or
leftmost edge, or it will choose a random
edge. With little change in the algorithm, it
can be avoided the robot walking the edges
which it had already visited. Thus, the robot
will walk on all edges and on all nodes of
the graph (connected).

CONCLUSION

In this paper it was created an
algorithm to identify important coordinates

on a road by guiding an unmanned vehicle
using image processing. The code written in
Matlab sends orders to a LEGO NXT
vehicle with an attached camera, from which
an image segmentation algorithm determines
the movement. This algorithm ensures that
the road is kept within the camera range
while it travels along the road network, and
another algorithm memorizes the
coordinates of the crossroads to decide
which way the vehicle has to take, ensuring
that not a single path will be left untracked.
After having implemented these algorithms,
several tests were performed. The vehicle
moved according to the expected
performance and all the crossroad
coordinates were recorded correctly.
Therefore, we conclude that our vision-
based strategy and the LEGO NXT kit have
both succeeded in the indoor modelling.

Furthermore, an important extension
of our map creation strategy is another
algorithm adapted to GPS. This way the
vehicle could travel much larger distances.
In future works we intend to apply these
results to other vehicles, specially to
medium range aerial vehicles that fly over
streets, rivers or marks on the ground, and
use the aforementioned image processing
algorithm.

REFERENCES

Bertozzi, M. and Broggi, A. (1997). Vision-

based vehicle guidance. Computer, Vol.
30, no. 7, 49-55.

Carloni, R., et al. (2013). Robot Vision:
Obstacle-Avoidance Techniques for
Unmanned Aerial Vehicles. Robotics &
Automation Magazine, IEEE, Vol. 20,
no. 4, 22-31.

Corke, P. I. (2005). The Machine Vision
Toolbox: a MATLAB toolbox for vision
and vision-based control. Robotics &

8

International Journal of Undergraduate Research and Creative Activities, Vol. 9 [2017], Art. 2

DOI: http://dx.doi.org/10.7710/2168-0620.1083

Automation Magazine, IEEE, Vol. 12,
no. 4, 16-25.

Department of The Army, (2007). The
Soldier's Guide: The Complete Guide to
U.S. Army Traditions, Training, Duties,
and Responsibilities. Skyhorse
Publishing.

Dubins, L. E. (1957). On curves of minimal
length with a constraint on average
curvature and with prescribed initial and
terminal positions and tangent. American
Journal of Mathematics, Vol. 79, 497-
516.

Eisenbeiss, H. (2004). A Mini Unmanned
Aerial Vehicle (UAV): System
Overview and Image Acquisition.
International Workshop on Processing
and Visualization Using High-
Resolution Imagery, Pitsaulok, Thailand.

Frew, E., et al. (2004). Vision base droad-
following using a small autonomous
aircraft. Aerospace Conference.
Proceedings, IEEE 5: 3006-3015.

Gonzalez, R. C. and Woods, R. E. (2007).
Digital Image Processing. Prentice Hall;
3 ed.

Guillet, A., el al. (2014). Adaptable Robot
Formation Control: Adaptive and
Predictive Formation Control of
Autonomous Vehicles. Robotics &
Automation Magazine, IEEE, Vol. 21,
no. 1, 28-39.

Güzel, M. S. (2013). Autonomous vehicle
navigation using vision and maples
strategies: a survey. Advances in
Mechanical Engineering.

Ivancsits, C. and Lee, M. R. (2013). Visual
navigation system for small unmanned
aerial vehicles. Sensor Review, Vol. 33
no. 3, 267-291.

Keivan, N. and Sibley, G. (2015). Online
SLAM with any-time self-calibration
and automatic change detection.
Robotics and Automation (ICRA), IEEE
International Conference on. IEEE,
2015.

Kendoul, F., et al. (2009). An adaptive
vision-based autopilot for mini flying
machines guidance, navigation and
control. Autonomous Robots, Vol. 27,
no. 3, 165-188.

Lim, H., et al. (2012). Build Your Own
Quadrotor: Open-Source Projects on
Unmanned Aerial Vehicles. Robotics &
Automation Magazine, IEEE, Vol. 19,
no. 3, 33-45.

Mahony, R., et al. (2012). Multirotor Aerial
Vehicles: Modeling, Estimation, and
Control of Quadrotor. Robotics &
Automation Magazine, IEEE, Vol. 19,
no. 3, 20-32.

Margolis, D. and Yasui, Y. (1995).
Automatic lateral guidance control
system. U.S. Patent No. 5,390,118.

Mcgill, K. and Taylor, S. (2011). Robot
algorithms for localization of multiple
emission sources. ACM Computer
Survey, Vol. 43, no. 3, Article 15.

Medeiros, F. A., et al. (2008). On the use of
unmanned aerial vehicle for acquisition
of georrefecend image data. Ciência
Rural, Vol. 38, no. 8, 2375-2378.

Neto, A. A. and Campos, M. F. M. (2009).
On the Generation of Feasible Paths for
Aerial Robots with Limited Climb
Angle. International Conference on
Robotics and Automation. Kobe, Japan.
Proceedings. IEEE 5: 2872-2877.

Neto, A. A., et al. (2009). Adaptive
complementary filtering algorithm for
mobile robot localization. Journal of the
Brazilian Computer Society, Vol. 15, no.
3.

Neto, A. A., et al. (2011). Nonholonomic
Path Planning Optimization for Dubins’
Vehicles. International Conference on
Robotics and Automation. Shanghai,
China. IEEE 4208 –4213.

Newcombe, R. A., et al. (2011).
KinectFusion: Real-time dense surface
mapping and tracking. Mixed and

9

Yano and Zampirolli: Generating Graph with with Vision-Based Unmanned Vehicle

DOI: http://dx.doi.org/10.7710/2168-0620.1083

augmented reality (ISMAR)10th IEEE
international symposium on. IEEE.

Serra, J. (1982). Image analysis and
mathematical morphology. London:
Academic Press.

Serra, J. (1988). Image analysis and
mathematical morphology – Vol. II:
theoretical advances. London: Academic
Press.

Sibley, G., et al. (2010). Sliding window
filter with application to planetary
landing. Journal of Field Robotics, Vol.
27, no. 5, 587-608.

Tisdale, J. et al. (2009). Autonomous UAV
path planning and estimation. Robotics
& Automation Magazine, IEEE, Vol.16,
no. 2, 35-42.

Yano, H. H. and Zampirolli, F. A. (2013).
Image processing in unmanned vehicles:
Identification of cases of a road to help
vehicle guidance. IX Workshop de
Visão Computacional.

Yunji, Z., et al. (2013). Improved Vision-
Based Algorithm for Unmanned Aerial
Vehicles Autonomous Landing. Journal
of Multimedia, Vol. 8, no. 2, 90-97.

10

International Journal of Undergraduate Research and Creative Activities, Vol. 9 [2017], Art. 2

DOI: http://dx.doi.org/10.7710/2168-0620.1083

	Generating Road Network Graph with Vision-Based Unmanned Vehicle
	Recommended Citation

	Generating Road Network Graph with Vision-Based Unmanned Vehicle
	Generating Road Network Graph with Vision-Based Unmanned Vehicle
	Peer Review

	Abstract
	Keywords
	Acknowledgements

	Generating Road Network Graph with Vision-Based Unmanned Vehicle

