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ABSTRACT 

Deep concrete beams are characterized by small shear-span-to-depth ratios and high shear 

resistance. Owing to their high strength, they are used as transfer girders in buildings, cap beams 

in bridges, and pile caps in foundations. It is also characteristic of deep beams that they develop 

complex deformation patterns and cannot be modelled based on the plane-sections-remain-

plane hypothesis. This thesis focuses on modelling the complex shear behavior of fiber-

reinforced concrete (FRC) deep beams. While deep beams are typically reinforced only with 

steel bars in the form of flexural and shear reinforcement, experimental studies have shown that 

the addition of steel fibers in the concrete can enhance their shear behavior. 

The main aim of this thesis is to study a five-spring model for deep beams with conventional 

reinforcement proposed by Mihaylov et al. (2015), and to extend this model to deep beams with 

FRC. The five-spring model uses only two kinematic parameters to describe the deformations 

in deep beams. The extended model captures the complete load-displacement response of FRC 

beams by accounting for three effects associated with the steel fibers: 1) tension in the fibers 

crossing the shear cracks; 2) enhanced ductility of the critical compressed zones in deep beams; 

and 3) tension stiffening effect on the flexural reinforcement. To account for these three local 

effects, existing models from the literature are studied, compared, and validated. Each of the 

models is implemented in a Matlab code and is validated with relevant material tests. It is shown 

that the most suitable models for the modelling of the three effects were proposed by Lee et al. 

(2013), Ou et al. (2012) and Lee et al. (2013). Once these models were validated, they were 

implemented in the global framework provided by the five-spring model for deep beams.  

The extended five-spring model is validated against a database of tests of FRC deep beams 

collected from the literature. It is shown that the predicted shear strengths are in good agreement 

with the measured values. The validated model is then used to perform a parametric study 

focused on the effects of the shear-span-to-depth (a/d) ratio, shear and longitudinal 

reinforcement ratios, as well as fiber volumetric ratio on the shear behavior of deep beams. 

Increased shear resistance was observed for increasing the shear and longitudinal 

reinforcements, as well as increasing the fiber volumetric ratio. By increasing a/d ratio, the 

shear strength decreased. At last, the effectiveness of shear reinforcement was compared with 

the fiber reinforcement for different a/d ratios. It is concluded that the fiber reinforcement is 

more effective only for a/d ratios lower than 0.8, while the shear reinforcement is more effective 

for higher a/d ratios.  
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1 INTRODUCTION 

1.1 GENERAL 

Deep beams are characterized by relatively small shear-span-to-depth (a/d) ratios. Maximum 

value of ratio for deep beams is around 2.5. Because of their proportions, they develop 

mechanisms of load resistance that are quite different from those in slender beams, and their 

strengths are likely to be governed by shear rather than flexure (Mansur and Ong, 1991). Thanks 

to their high shear strengths deep beams are used for example as transfer girders in buildings, 

where they carry heavy loads from discontinuous columns, as shown in Figure 1.1. Structural 

safety of a building with deep beam highly depends on the resistance of the girder as its failure 

could result in a partial or complete collapse of the building. When subjected to vertical ground 

accelerations due to strong earthquakes, the ability of structure to redistribute forces from 

damaged girders to other structural members is crucial. The extent of such force redistribution 

depends on displacement capacity and post-peak behavior of the transfer beam (Mihaylov, 

2015). 

 

Figure 1.1 Application of deep beam in a building (Mihaylov et al.,2013) 

The load-deformation response of slender beams can be modelled based on the hypothesis that 

“plane sections remain plane” first proposed by Robert Hook in 1678. However, for deep beams 

such as transfer girders, plane sections do not remain plane and shear strains become dominant. 

The deformation patterns of such beams become more complex and a different modelling 

approach is required.  

In deep beams, a significant portion of the shear is carried by strut action, where compressive 

stresses flow directly from the load to the support (Mihaylov et al.,2013). Due to this, strut-and-

tie models are recommended when designing deep beams. However, strut-and-tie method is not 

always capable of predicting the shear behavior of deep beams due to the large number of 

parameters that influence the shear behavior. A model that takes into account the number of 

parameters that influence the shear behavior has been proposed by Mihaylov et al. (2013). The 

model uses equations with two degrees of freedom and predicts the shear behavior of deep 

beams through equilibrium, compatibility and stress-strain relationships. 

 

transfer
girder

deep beam

slender
beam

footing
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A two-parameter kinematic theory (2PKT) for deep beams has been introduced by Mihaylov et 

al. (2013) and is capable of describing the deformed shape of deep beams and the ultimate shear 

strength of such members. Later the model has been extended to non-linear five-spring model, 

which is able to predict the complete load-displacement response of shear-critical deep beams. 

Four springs of the model represent the shear resistance mechanisms of the beam, and the fifth 

spring represents the flexural behavior. The five-spring model has shown to predict the post-

peak shear behavior effectively, which is important for the analysis of structures under extreme 

loading.  

To enhance the post-peak capacity and displacement capacity, the addition of fibers to concrete 

matrix has shown to significantly improve brittle behavior of concrete. The post-peak behavior 

of fiber reinforced beams improves compared to regular concrete and provides higher ductility 

of the members. Some of the observed enhancements include higher tensile strength of 

concrete, increased post-cracking ductility, higher toughness and reduced crack width and crack 

spacing. Fibers are produced from materials such as steel, carbon, glass, plastic or cotton. For 

the reinforcement of deep beams used within this study, steel fibers were considered. Steel 

fibers can be found in various profiles including straight, hooked-end, crimped and flattened-

end. The effectiveness of steel fibers in improving the behavior depends on several factors like 

fiber volume ratio, fiber length and fiber aspect ratio.  

1.2 SCOPE AND OBJECTIVES OF THE THESIS 

This thesis is a continuation of work developed by Mihaylov et al. (2013). His two-parameter 

kinematic theory for shear behavior of deep beams is capable of describing the shear strength 

and deformation patterns for deep beams in shear failure. The kinematic theory as proposed by 

Mihaylov et al. (2013) is applicable to reinforced concrete deep beams with possible transverse 

reinforcement. Later, an extension of 2PKT allowed a complete prediction of pre- and post-

peak shear behavior of deep beams. Both of the methods showed to predict the results 

effectively when compared to experimental results. 

As it has been previously researched by Narayan and Darwish (1989) and Mansur and Ong 

(1991), inclusion of fibers in concrete can increase the ductility and displacement capacity of 

deep beams. The effect of fibers was, however, not considered in the five-spring model 

developed by Mihaylov (2015). The main objective of this thesis is to extend the five-spring 

model, to be able to capture the behavior of reinforced concrete deep beams with inclusion of 

steel fibers.  

First, the original five-spring model is analyzed. After a thorough analysis, changes caused by 

the fibers, such as additional tensile forces from fibers bridging the cracks, are evaluated. 

Appropriate models are proposed based on previous research and validated against 

experimental data. Such models are then implemented into the original five-spring model to 

create an extended five-spring model that captures the behavior of fiber reinforced concrete 

deep beams. Proposed extended five-spring model is then validated against experimental 

studies done by other researchers, and the accuracy of the model is evaluated. Additionally, a 
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parametric study is performed to study the effects of vertical and longitudinal reinforcement, 

fiber volume ratio, size effect and a/d ratio on the shear strength of the beam. 

1.3 THESIS OUTLINE 

This thesis consists of six chapters, including Chapter 1 with some general information and 

scope of the thesis.  

Chapter 2 provides background information about topics relevant for the thesis. It includes a 

brief overview of state-of-arts of design with fibers, including an overview of code provisions. 

Selected experimental studies from other researchers are described, including the properties of 

the specimen, experimental setup and obtained results with observations. It also consists of 

description of two-parameter kinematic theory and five-spring model by Mihaylov (2015). The 

theory behind the model is briefly explained, and the original model that served as a starting 

point for the thesis is introduced.  

Chapter 3 describes all the modifications introduced into the original model in order to capture 

the behavior with inclusion of steel fibers. First, simplified diverse embedment model to model 

the tension resisted by the fibers bridging the crack is introduced. Then, the created Matlab code 

is validated against experimental and analytical results, and the version of the code as it enters 

the five-spring model is explained. Secondly, tension-stiffening model is introduced. A Matlab 

code is then created and a code to model the tension force provided by bottom longitudinal 

reinforcement of the beam is validated against experimental and analytical results. The obtained 

Matlab code is then explained as it enters the five-spring model. Later, the stress-strain behavior 

of fiber-reinforced concrete under uniaxial compression is evaluated. Proposals by several 

researchers are introduced and the most suitable ones are selected to enter into the extended 

five-spring model. At last, additional formula to account for additional deflections in the mid-

span of deep beams under four-point loading is introduced. 

Chapter 4 presents a validation of the proposed extended five-spring model. A sample specimen 

is described and experimental results are compared with results obtained using extended five-

spring model and finite element model results. The effect of fiber volume ratio is analyzed and 

a comparison between experimental results, analytical results and numerical results is provided. 

Also the effect of a/d ratio is evaluated and experimental results are compared with analytical 

ones. At last, results of other load-deflection curves based on other experimental results are 

provided. Discussion is carried out to summarize the effectiveness of the model, and an issue 

encountered during the validation process for deep beams with high shear reinforcement is 

addressed and explained.  

Chapter 5 consists of a parametric study. The effect of a/d ratio is analyzed, as well as the effect 

of bottom longitudinal reinforcement. Fiber volume ratio and its influence on shear strength is 

analyzed along with the effect of shear reinforcement and size effect. Finally, the amount of 

fibers or shear reinforcement that is needed to obtain a given shear strength is calculated and 

the effectiveness of each type of reinforcement is analyzed. 

Chapter 6 contains a summary with conclusions and limitations of the proposed model. 
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2 BACKGROUND 

2.1 FIBER-REINFORCED CONCRETE (FRC) 

Fiber-reinforced concrete is a composite material consisting of cement matrix and discrete 

fibers. The material of the fibers can vary from steel, polymers and carbon to glass or natural 

materials. The main difference between regular concrete and FRC is an enhanced post-cracking 

residual tensile resistance due to fibers capacity to bridge the cracks. Research regarding FRC 

has started in the USA almost 50 years ago, however the research focused on structural response 

of FRC has mainly developed only over last 15 years as described by Di Prisco et al. (2013). 

As a consequence, international building codes for structural design are lacking guidelines for 

design with FRC and due to the lack of guidelines practitioners are generally unwilling to use 

FRC just based on voluntary guidelines or research papers.  

2.1.1 Properties and Classification of FRC 

In the fib Model Code 2010, FRC is recognized as a new material for structures (Di Prisco et 

al., 2013). The code is divided in two sections, one devoted to material behavior and the other 

to structural behavior. It mainly addresses steel fibers, however can be considered for other 

types of fibers with limitations. The code also introduces classification of FRC to standardize 

performance-based production.  

Unless high volume of fibers is used, the addition of fibers does not significantly affect elastic 

properties of concrete or compressive strength. However, for fiber volumes higher than 1% the 

ascending branch of compressive stress-strain curve changes depending on the amount of fibers 

and with increasing fiber volume ratio becomes less steep. Such results suggest higher ductility 

and toughness of FRC and have been previously investigated. However, fib Model Code 2010 

does not describe the compressive behavior of FRC unless experimental results are available, 

and so the most recent research and analytical approach to describe the stress-strain relationship 

is discussed later in this thesis. 

Behavior in tension is the most important aspect of FRC. The fibers are able to bridge the crack 

and transmit stresses across the crack. With increasing fiber content, the post-peak behavior is 

characterized by increased toughness, becoming ductile for very high fiber contents as 

described by Di Prisco et al. (2013). Depending on the orientation of the member and fibers, 

steel fiber reinforced concrete (SFRC) members in uniaxial tension can have softening or 

hardening post-cracking behavior as shown in Figure 2.1. Susetyo (2009) explains that tension 

hardening effects occur in concrete containing higher fiber volume content than the critical fiber 

volume content. The critical fiber volume is the volume of fibers which after matrix cracking 

will carry the load which the composite maintained before cracking (Newman and Choo, 2013). 

If there are very few fibers present, the stress on the composite may be high enough to break 

the fibers thus causing the tensile-softening effect as described by Shah et al. (2012). When the 

volume of fibers is lower than the minimum fiber volume fraction the fibers weaken the material 

rather than strengthen it, and the failure is controlled by the matrix. The reinforcing action of 
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fibers and tensile-hardening is only observed once the fiber volume fraction exceeds the critical 

fiber volume fraction (Shah et al, 2012). 

 

Figure 2.1 Softening (a) and hardening (b) post-cracking behavior of SFRC - adapted from fib MC2010 

(2013) 

To determine tension behavior of FRC, uniaxial tests are not advised for standard testing due 

to difficulty to carry out the tests. Instead, the relationship between tensile stress and crack 

width is typically derived by inverse analysis from the results from two- or three- point bending 

tests. Typical results from a bending test are presented in Figure 2.2 (fib Model Code 2010). 

On the vertical axis of the plot is the applied load, and on the horizontal axis is the crack mouth 

opening displacement (CMOD) measured at a notch cut in the test specimen (beam). CMOD is 

defined as the opening of the notch at the bottom face of the beam for three-point bending tests. 

For four-point loading tests the measured parameter is the crack top opening displacement 

(CTOD). 

 

Figure 2.2 Typical load-CMOD curve from fib MC2010 (2013) 

According to fib Model Code 2010, fiber-reinforced concrete can be classified to five different 

classes based on the results from two- or three- point bending tests. Two important stresses 

from the measured post-cracking behavior are used: the first corresponding to CMOD                   

of 0.5 mm (fR1k) and the second to CMOD of 2.5 mm (fR3k). Stress fR1k is significant for 

serviceability limit states while fR3k for ultimate limit state design. The classification has two 

parameters where one corresponds to fR1k and represents a strength interval between consecutive 
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strength values (1, 1.5, 2, 2.5, 3, 4, 5, 6, …MPa), and a letter a, b, c, d or e, where each letter 

represents different residual strength ratio as follows:

𝑎 𝑖𝑓 0.5 <
𝑓𝑅3𝑘

𝑓𝑅1𝑘
< 0.7 

𝑏 𝑖𝑓 0.7 ≤
𝑓𝑅3𝑘

𝑓𝑅1𝑘
< 0.9 

𝑐 𝑖𝑓 0.9 ≤
𝑓𝑅3𝑘

𝑓𝑅1𝑘
< 1.1 

𝑑 𝑖𝑓 1.1 ≤
𝑓𝑅3𝑘

𝑓𝑅1𝑘
< 1.3 

𝑒 𝑖𝑓 1.3 ≤
𝑓𝑅3𝑘

𝑓𝑅1𝑘
 

For example, material labeled as 2d would have fR1k equal to 2 – 3 MPa and fR3k/ fR1k ratio from 

1.1 to 1.3.  

2.1.2 Factors Affecting Behavior of FRC 

The impact of fibers on behavior of concrete depends on several factors which include fiber 

volume ratio, fiber length, fiber aspect ratio, fiber tensile strength and the strength of concrete 

matrix (ACI Committee 544, 2008).  

Fiber length does not play a significant role in post-cracking behavior of SFRC containing 

reinforcing bars (Deluce and Vecchio, 2013). However, the longer the fiber is, the more cracks 

it can bridge. Short fibers should not be smaller than crack spacing in order to be able to transfer 

stresses between the cracks. 

Fiber volume ratio influences the properties of hardened concrete and also the workability of 

freshly mixed concrete. The higher the fiber volume ratio, the more significant the effect 

becomes. The flexural strength increases, however concrete workability decreases with high 

fiber concentration and special mixing and placing methods are needed (Zollo, 1997). ACI 

Committee 544 (1993) suggests a range of fiber volume ratio from 0.25% to 2% for 

conventional steel fiber reinforced concrete. 

Fiber aspect ratio is defined as the ratio of the fiber length to the fiber diameter and indicates 

the slenderness of the fiber (Johnston, 2001). Higher aspect ratio means higher surface area of 

fibers and higher surface area of fiber improves bond between the fibers and the concrete which 

leads to better performance of the composite. Higher aspect ratio also improves the residual 

post-cracking tensile strength and toughness of the concrete as described by Johnson (2001), 

however reduced workability applies in cases with high aspect ratio. 

Tensile strength of fibers is the tensile stress that results in the rupture of the fiber. Tensile 

strengths of fibers can be up to 2000 MPa. The more stress the fiber is able to resist the more 

ductile behavior the member experiences. When fibers with high tensile strengths are used, the 

fiber will be pulled out of the matrix without rupturing, and the residual tensile strength of the 

FRC will depend of the bond strength between the fibers and the concrete matrix (Susetyo, 

2009). 
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2.2 TESTS ON FRC DEEP BEAMS 

Four studies of the effect of steel fibers on behavior of deep beams were evaluated. Mansur and 

Alwist (1984) tested 12 fiber-reinforced deep beams with openings and analyzed the effect of 

volume fiber ratio, opening location and a/d ratio. Narayan and Darwish (1988) tested 12 

reinforced concrete deep beams including 11 with steel fiber reinforcement. The main focus of 

their study was the effect of fiber volume ratio, a/d ratio and concrete strength. Mansur and 

Ong (1991) analyzed 10 reinforced concrete deep beams including 9 with steel fibers, observing 

mainly the influence of fiber volume ratio, a/d ratio and transversal and longitudinal 

reinforcement. One of the newest research studies focused on deep beams was carried out by 

Campione (2012) and consists of 4 reinforced concrete deep beams from which 2 of them 

included steel fibers.  

Numerous other tests were conducted, however only two of the previously mentioned ones were 

considered suitable for the validation of the extended five-spring model. When selecting studies 

relevant for the validation of the extended five-spring model, only members with height over 

500 mm were to be considered. Such restriction is due to the behavior of deep beams, which 

cannot be captured correctly if the size of the tested specimen is smaller than 500 mm. Also 

tests where cylinders were used to apply load, without presence of loading plates transferring 

the load, were discarded from the tests used for the validation. This was due to the unrealistic 

concentration of stresses under the loading point and thus invalid results obtained from the test. 

The experimental results by Campione (2012) were discarded due to the lack of information 

about the specimen. 

Given all of the limitations mentioned above, only two of the studies were considered relevant 

for the validation of the five-spring model. The tests of Mansur and Alwist (1984) and the 

experiments conducted by Mansur and Ong (1991) were considered and a database with 

provided beam properties which can be seen in Appendix A was created. Both of the studies 

will be described in detail in the following sections.  

2.2.1 Mansur and Ong (1991) 

Mansur and Ong (1991) conducted a study including 9 fiber reinforced deep beams and one 

control specimen without fibers. The major parameters observed in the study were a/d ratio, 

volume fraction of fibers and ratios of longitudinal and transversal reinforcement. 

All of the specimens had height of 500 mm, width of 90 mm, maximum aggregate size of 10 

mm, yield strength of bottom longitudinal and web reinforcement of 440 MPa and 375 MPa, 

respectively. Bottom longitudinal reinforcement consisted of 4 reinforcement bars, with 16 mm 

diameter, placed in two layers. The rebars were welded to a 15 mm thick steel plate at each end. 

Web reinforcement had diameter of 6 mm and the number of bars varied depending on the 

length and cross section of the member.  Bottom longitudinal reinforcement ratio was 1.93% 

while the transversal ratio varied from 0.42% to 1.26%. The layout of the reinforcement and 

experimental setup is shown in Figure 2.3. Fibers used in the experiment were straight, slightly 

twisted with 0.5 mm square in cross section and length of 30 mm. Concrete strength was 
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determined for each specimen individually and is specified in table in Appendix A. Further 

details regarding the test setup and properties of the specimen are shown in the table in 

Appendix A with reference number 1. Data highlighted in purple was not directly specified by 

the authors, but obtained by an assumption or calculation based on provided data. The beams 

were tested in four-point loading, where the loads and reactions were applied through rollers 

and bearing blocks. Load was applied in 50 kN increments until the failure which was noted 

after the collapse.  

 

Figure 2.3 Experimental setup by Mansur and Ong (1991) 

Results showed that the reduction of the shear span resulted in lower occurrence of flexural 

cracking. While for beams with a/d ratio of 1.85 the flexural cracks occurred first, for a/d ratio 

of 1.23 flexural and diagonal cracks propagated simultaneously. For shorter shear spans 

diagonal cracks propagated first with little or no occurrence of flexural failure. It was also 

observed that increase in a/d ratio results in lower stiffness of the member as shown in Figure 

2.4a. 

The effect of increasing fiber volume was most significant in cracking behavior of the beam. 

While in the beam with no fibers the cracks formed suddenly and then propagated rapidly, in 

beams with fibers the crack propagation and widening was significantly slower. Increasing fiber 

volume ratio resulted in higher ultimate strength as shown in Figure 2.4b. 

 

Figure 2.4 Experimental results by Mansur and Ong (1991) 
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The tests also included two beams designated to study the effect of vertical and longitudinal 

web reinforcement. It was concluded that the longitudinal reinforcement has almost no 

influence on the shear strength of the beams. However, increasing the ratio of vertical 

reinforcement proved to significantly increase the shear resistance of the member.  

To describe the shear failure in detail, beam B4 from the study was selected as a sample. The 

beam had 1% of fiber volume ratio, and vertical reinforcement of 0.42% and a/d ratio of 1.23. 

In the test the shear cracks propagated at the same time as flexural cracks. However, it was the 

propagation of shear cracks that lead to the final failure of the beam. As described in the 

experiment, at 80 to 90 percent of the ultimate load, one of the diagonal cracks began to grow 

excessively. This critical diagonal crack was described to originate at the mid-depth of the beam 

and with increasing load to extend to the support and to the loading point. A crushing of the 

concrete was observed between the loading point and the tip of the inclined crack. The size of 

the critical loading zone which is susceptible to compression introduced by the loading plate is 

also one of the parameters influencing the overall shear resistance of the beam. The cracking 

pattern of the beam can be observed in Figure 2.5. 

 

Figure 2.5 Cracking pattern of the beam B4 by Mansur and Ong (1991)  

 

2.2.2 Mansur and Alwist (1984) 

Mansur and Alwist (1984) tested 12 fiber reinforced concrete deep beams with openings. Such 

beams are not relevant for the validation of the extended five-spring model, however one of the 

tested beams was a control beam for comparison, and did not include any openings. The control 

specimen had height of 850 mm and width of 80 mm, maximum aggregate size of 10 mm, yield 

strength of bottom longitudinal and web reinforcement of 418 MPa and 304 MPa, respectively. 

Bottom longitudinal reinforcement consisted of 2 reinforcement bars, with 16 mm diameter. 

The rebars were welded to a 20 mm thick steel plate at each end. Web reinforcement had 

diameter of 3.3 mm with 12 bars in longitudinal direction and 31 in vertical direction. Bottom 

longitudinal reinforcement ratio was 0.81% and transversal ratio 0.43%. The specimen setup is 

illustrated in Figure 2.6. Fibers used in the experiment were hook-ended fibers, glued together 

in bundles. Length of the fibers was 30 mm and diameter 0.4 mm. Concrete strength of the 
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specimen was 40 MPa. Further details regarding the test setup and properties of the specimen 

are shown in the table in Appendix A with reference number 2. The beam was tested in four-

point loading where the loads and reactions were applied through rollers and bearing blocks. 

The beam was loaded with 20 kN increments until the failure.  

 

Figure 2.6 Experimental setup by Mansur and Alwist (1984) 

The results showed that the beam behaved linearly at the beginning. Diagonal cracks appeared 

first and with increasing load started propagating and widening. Flexural cracks appeared later 

in the loading but did not affect the final failure. Final failure occurred by rapid propagation 

and widening of one of the diagonal cracks as illustrated in Figure 2.7.  

 

Figure 2.7 Failure mode of control specimen by Mansur and Alwist (1984) 
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2.3 TWO-PARAMETER KINEMATIC THEORY AND FIVE-SPRING MODEL FOR 

DEEP BEAMS 

The two-parameter kinematic theory is based on a simple kinematic description of the 

deformation patterns of deep beams. The theory has been introduced by Mihaylov et al. (2013) 

and is capable to predict the shear strength and deformation patterns of deep beams at shear 

failure. Later the method has been expanded to a five-spring model (5sm) which is capable of 

predicting the complete pre-peak and post-peak behavior of deep beams (Mihaylov, 2015). The 

5sm allows engineers to evaluate the safety and assess the deformations and crack widths of 

deep reinforced concrete beams such as transfer girders (Mihaylov et al., 2013). However, the 

theory does not account for the action of fibers. 

Based on results from tests on the behavior of deep reinforced concrete beams under monotonic 

and cyclic loading by Mihaylov (2008), observations made were used as a background for the 

2PKT.  The main assumptions of the kinematic approach are illustrated in Figure 2.8. It is 

assumed that the shear failure of deep beams occurs along a straight critical shear crack that 

extends from the support to the load. The concrete above the critical crack is modeled as a rigid 

block with a critical loading zone (CLZ) located under the loading plate. The concrete below 

the crack is modeled with a series of rigid radial struts that connect the loading point with the 

bottom longitudinal reinforcement. The two regions are connected by the stirrups and 

longitudinal reinforcement.  

 

Figure 2.8 Main assumptions of kinematic model (Mihaylov et al.,2013) 

The two-parameter kinematic theory assumes that with respect to the loading plate, the motion 

of the concrete block above the critical crack can be described as a rotation around the loading 

point and a vertical translation of the rigid block, see Figure 2.9. The rotation is proportional to 

the average strain in the bottom longitudinal reinforcement εt,avg, while the translation equals 

the vertical displacement Δc of the critical loading zone (Mihaylov et al., 2013). The two degrees 

of freedom (DOFs) as described are the two parameters of the kinematic theory. The elongation 
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of the bottom reinforcement causes the rigid radial struts to rotate around the loading point and 

the cracks between them to widen. The transverse displacement in the critical loading zone 

causes the critical diagonal crack to widen and a slip displacement to occur along the crack. As 

illustrated in Figure 2.9, both degrees of freedom contribute to the increase of tensile strains in 

transverse reinforcement (stirrups).  

 

Figure 2.9 Degrees of freedom of kinematic model (Mihaylov et al.,2013) 

The angle of the critical crack depends on the shear-span-to-depth (a/d) ratio and is defined as 

α1. Angle α1 is determined as the smallest value of two other angles α and θ, see Figure 2.10. 

Angle α is the angle of the line connecting the inner edge of the support plate with the outer 

edge of the effective width of the loading plate. The effective width of the loading plate is the 

portion of the loading plate participating in the transfer of the applied load to the support. Angle 

α governs for deep beams while angle θ captures the transition to slender beams when the shear 

span a becomes relatively large as compared to the effective depth d. Angle θ can be obtained 

from sectional shear models for slender beams, however, for simplification, its value will be 

assumed equal to 35°.  

0lkl
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Figure 2.10 Variation of the angle α1 during transition from deep to slender beams (Mihaylov et al.,2013) 

Based on the assumptions for the kinematics of deep beams, and assuming that the two degrees 

of freedom εt,avg and Δc are known, the two-parameter kinematic theory is able to provide the 

complete displacement field of the shear span of deep beams. In other words, the horizontal and 
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vertical displacement of each point from the shear span can be expressed with DOFs εt,avg and 

Δc. As shown by Mihaylov et al. (2013), these expressions are as follows: 

- for points below the critical diagonal crack 

 𝛿𝑥(𝑥, 𝑧) =  𝜀𝑡,𝑎𝑣𝑔𝑥 (1) 

   

 

 𝛿𝑧(𝑥, 𝑧) =  
𝜀𝑡,𝑎𝑣𝑔𝑥2

ℎ − 𝑧
 

(2) 

- for points above the critical diagonal crack 

 𝛿𝑥(𝑥, 𝑧) =  𝜀𝑡,𝑎𝑣𝑔(ℎ − 𝑧)cot𝛼 (3) 

   

 𝛿𝑧(𝑥, 𝑧) =  𝜀𝑡,𝑎𝑣𝑔𝑥cot𝛼 + ∆𝑐 (4) 

These equations can be used to derive important deformations in the shear span, again as a 

function of εt,avg and Δc. Such important deformation for example is the width of the critical 

diagonal crack halfway along the crack. This width is expressed as follows: 

 𝑙𝑘 = 𝑙0 + 𝑑(𝑐𝑜𝑡𝛼 − 𝑐𝑜𝑡𝛼1) ≤ 2𝑙0 

 

 (5) 

 𝑙0 = 1.5(ℎ − 𝑑)𝑐𝑜𝑡𝛼1 ≥ 𝑠𝑐𝑟 

 

 (6) 

 
𝑤 = ∆𝑐𝑐𝑜𝑠𝛼1 +

𝜀𝑡,𝑎𝑣𝑔𝑙𝑘

2𝑠𝑖𝑛𝛼1
 

 

 (7) 

 
𝑠𝑐𝑟 = 

0.28𝑑𝑏

𝜌𝑙

2.5(ℎ − 𝑑)

𝑑
 

 (8) 

Where lk is the length of dowels provided by the bottom longitudinal reinforcement, l0 is the 

length of heavily cracked zone at bottom of critical diagonal crack, and scr is the distance 

between the cracks along bottom longitudinal reinforcement (see Figure 2.8). 

Using the two degrees of freedom, the kinematic model can be used to evaluate the overall 

deflection of the member. The deflection is defined as the relative displacement between the 

support and the section with maximum bending moment, assuming that the latter section 

remains vertical (Mihaylov, 2015). The deflection is defined as follows: 

 
∆ =

𝜀𝑡,𝑎𝑣𝑔𝑙𝑡

𝑑
𝑎 + ∆𝑐 

(9) 

Where the first term of the equation describes the deflection of shear span Δt due to elongation 

of bottom longitudinal reinforcement. The variable lt is the length of bottom reinforcement 

within the cracked part of shear span, as illustrated in the free-body diagram in Figure 2.12, and 

is defined as: 

 𝑙𝑡 = 𝑑 𝑐𝑜𝑡(𝛼1) + 𝑙𝑘 − 𝑙0 (10) 
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Given the two deflections Δt and Δc, the five-spring model represents the shear span using two 

sets of springs connected in series and loaded by shear force V. As shown in Figure 2.11, a set 

of four parallel springs elongates by the value of deflection Δc, while the fifth spring elongates 

by Δt. The four parallel springs represent the shear behavior of the beam, while the fifth spring 

represents the flexural behavior.  

 

Figure 2.11 Five-spring model (Mihaylov, 2015) 

The forces of the five-spring model, and their definition within the shear span of the beam, are 

illustrated in Figure 2.12. The force VCLZ is the shear carried by the critical loading zone, Vci is 

the shear resisted by aggregate interlock along the critical crack, Vd is the shear resisted by the 

dowel action of the bottom flexural reinforcement, and Vs is the shear resisted by the stirrups. 

The sum of these forces is the shear force V obtained from the equilibrium of the vertical forces 

acting on the rigid block. The force in the flexural spring is the shear force derived from the 

moment equilibrium of the shear span taken about the point of application of the compression 

force C in the section with maximum moment. The equilibrium equation is as follows: 

 
𝑉 =

𝑇(0.9)𝑑

𝑎
 

(11) 

Where T is the tension force in the flexural reinforcement and 0.9d is the assumed lever arm 

between the compression force C and the tension force T.  

 

Figure 2.12 Free-body diagram of the rigid block (Mihaylov, 2015) 

Therefore, given that the shear force can be expressed in two different ways, the equilibrium of 

the spring forces requires that: 
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 𝑇(0.9)𝑑

𝑎
=  𝑉𝐶𝐿𝑍 + 𝑉𝑐𝑖 + 𝑉𝑠 + 𝑉𝑑 

(12) 

Shear failure is predicted if the set of four parallel springs fails first, and failure due to yielding 

of the flexural reinforcement occurs if the flexural spring fails first. The force in flexural 

reinforcement is expressed as: 

 
𝑇 = 𝐸𝑠𝐴𝑠𝜀𝑡,𝑎𝑣𝑔 +

0.33√𝑓′𝑐

1 + √200𝜀𝑡,𝑎𝑣𝑔

𝐴𝑐,𝑒𝑓𝑓 ≤ 𝐴𝑠𝑓𝑦 
(13) 

   

Where the first term of the equation models the resistance of bare steel reinforcement. The 

second term of the equation models the tension stiffening effect of the concrete, where the area 

of concrete involved in the tension stiffening effect is taken as: 

 
𝐴𝑐,𝑒𝑓𝑓 = min [2.5(ℎ − 𝑑),

ℎ

2
] 𝑏 

(14) 

   

The last part of the equation for the force T is the yield force of the bottom longitudinal 

reinforcement.  

The shear carried by the critical loading zone is derived using the degree of freedom Δc. The 

critical loading zone has a triangular shape that depends on the effective width of the loading 

plate and the angle of the critical crack. The concrete in the critical loading zone is subjected to 

diagonal compressive stresses σ and strains ε, where the strain at the bottom plane of the critical 

loading zone is εmax. The strain εmax can be expressed using DOF Δc as shown in Figure 2.13. 

The diagonal compressive stress is obtained through appropriate stress-strain relationships for 

concrete under uniaxial compression, which is in this case Popovics (1970) curve for stress-

strain relationship. The average stress σavg is multiplied by the area of the section passing 

through the edge of the loading plate and perpendicular to the bottom face of the critical loading 

zone.  

 

Figure 2.13 Critical loading zone (Mihaylov, 2015) 

The shear carried by the critical loading zone is then expressed as: 
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 𝑉𝐶𝐿𝑍 = 𝜎𝑎𝑣𝑔[𝜀𝑚𝑎𝑥(𝛥𝑐)]𝑏𝑙𝑏1𝑒𝑠𝑖𝑛
2𝛼 

 

(15) 

The shear force resisted by the aggregate interlock is expressed using the average shear stress 

vci transferred across the critical crack by interlocking of the rough crack surfaces: 

 𝑉𝑐𝑖 = 0.18𝑣𝑐𝑖𝑏𝑑 (16) 

The value of vci is evaluated halfway along the critical crack as a function of crack width w and 

slip s. Where the crack slip is defined as follows: 

 𝑠 =  𝛥𝑐sin (𝛼1) (17) 

In order to compute the value of vci, contact density model (CDM) developed by Li et al. in 

1989 is used. The model represents the crack surface using series of planes at different angles, 

where the planes with the same angle on each side of the crack are connected by contact springs. 

The springs have an elastic-perfectly-plastic behavior in compression and zero resistance in 

tension. The CDM also accounts for clamping stresses, which are not taken into account in the 

five-spring model and thus a factor 0.18 is adopted to reduce the shear resistance vci.  

The shear carried by the stirrups across the critical diagonal crack is expressed using both 

degrees of freedom of the kinematic approach. Firstly, the strain in the stirrups is evaluated as: 

 
𝜀 𝑣 = 2

𝛥𝑐 + 0.25𝜀𝑡,𝑎𝑣𝑔𝑑𝑐𝑜𝑡2𝛼1

0.9𝑑
 

(18) 

The stress in the stirrups is then expressed as: 

 𝜎𝑣 = min( 𝜀 𝑣𝐸𝑣, 𝑓𝑦𝑣) (19) 

 

And the shear carried by the stirrups can be then taken as the stress in the stirrups multiplied by 

the effective area of stirrups that are providing shear resistance: 

 𝑉𝑠 = 𝜎𝑣𝜌𝑣𝑏(𝑑𝑐𝑜𝑡𝛼1 − 𝑙0 − 1.5𝑙𝑏1𝑒) (20) 

   

Where 𝜌𝑣 is the transverse reinforcement ratio which should not be larger than 0.15𝑓′𝑐/𝑓𝑦. The 

value in brackets should not be smaller than 0.5𝑑𝑐𝑜𝑡(𝛼1). For beams without stirrups, the five-

spring model becomes a four-spring model as the value of 𝑉𝑠 is 0. 

The last component of the equilibrium equations represents the shear force resisted by the dowel 

action of the bottom longitudinal reinforcement. The resistance depends on the number of 

bottom flexural bars, diameter of the bars, and the length of the dowels lk. The equation is then 

as follows: 

 
𝑉𝑑 = 𝑛𝑏

12𝐸𝑠𝜋𝑑𝑏
4

64𝑙𝑘
3 ∆𝑐≤ 𝑛𝑏𝑓𝑦

𝑑𝑏
3

3𝑙𝑘
[1 − (

𝑇

𝐴𝑠𝑓𝑦
)

2

] 

 

(21) 

Where the first term of the equations represents the behavior of the elastic fixed-fixed dowels 

subjected to relative transverse support displacement ∆𝑐. The second part corresponds to the 
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formation of plastic hinges at the ends of the dowels, where the moment capacity of the plastic 

hinges is reduced due to the tension force T acting on the bars. 

The five-spring model is then solved for increasing deflection ∆𝑐 at a step of 0.1 mm. The final 

load-deflection curve is then created by calculating the shear force at each step for the given 

shear distortion of the CLZ and plotted for the consecutively calculated overall deformation. 

Given that the elongation of the flexural spring is ∆𝑡= ∆ − ∆𝑐, the only unknown kinematic 

parameter is the ∆𝑐. The deformation can be obtained solving the equilibrium equation (12). 

Figure 2.14 illustrates the shear forces in the five-spring model for a sample beam with 

properties described in Table 2.1 for imposed shear distortion of the CLZ of 5 mm. The figure 

describes how only one point of many that create the final load-deflection curve is obtained. 

Table 2.1 Sample beam properties 

 

The horizontal axis of Figure 2.14 shows the range of tensile strain in the bottom longitudinal 

reinforcement. The vertical axis represents the shear forces obtained from all the springs of the 

five-spring model. Thick red line represents the sum of shear forces resisted by the critical 

loading zone, aggregate interlock, stirrups and dowel action. As the shear force resistance of 

the CLZ is only dependent on the ∆𝑐 parameter, the shear force does not depend on the strain 

in the bottom longitudinal reinforcement, the line representing VCLZ is a constant. The shear 

force resisted by the stirrups is also a constant, since in this part of the loading the stirrups are 

considered to have yielded. At the moment of shear distortion of the CLZ that is considered in 

this case, the stress in the stirrups is dependent on the yield strength of the bottom longitudinal 

reinforcement rather than on the strain and modulus of elasticity of the reinforcement. The shear 

force resisted by the aggregate interlock is dependent on the strain in the dowels provided by 

the reinforcement. Therefore, the curve representing the aggregate interlock decreases with 

increasing strain. The last force contributing to the sum of shear forces is the dowel action 

which is dependent on both of the parameters. The shear force resisted by the dowels decreases 

as the strain in the bottom longitudinal reinforcement increases until the point where the 

reinforcement has yielded and is no longer able to transfer any stresses. 

The thick black line represents the shear obtained from the moment equilibrium. The orientation 

of this bilinear curve depends on the properties of the concrete matrix and bottom longitudinal 

reinforcement. First part of the curve is the contribution of tensile resistance of the concrete 

matrix and second part represents the contribution of the reinforcement. The intersection of the 

two thick lines highlighted with red dot, marks the solution of the equilibrium equation. 

Consecutively, the value of the shear force at the intersection is the shear resistance of the beam 

at 5 mm distortion of the critical loading zone. The intersection is found iteratively using the 

bisection method. 

a/d b d h l ρI As ⌀I No. fy ag fc' fyv ρv ⌀v No. 

(mm) (mm) (mm) (mm) (%) (mm2) (mm) barsI (MPa) (mm) (MPa) (MPa) (%) (mm) barsv

1,55 400 1095 1200 3900 1,27 5541,8 28 9 550 20 40 490 0,1 10 10
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Figure 2.14 Shear forces in five-spring model at 5 mm imposed distortion of the CLZ 

The final curve of the model is then generated by gradually increasing the distortion of the CLZ 

from 0 to 15 mm, and repeating the calculations illustrated in Figure 2.14. For each step, which 

represents a certain value of the distortion of the CLZ, the solution (red dot) is found using 

equilibrium equations and bisection method. Obtained intersections then create a load-

displacement curve as shown in red in Figure 2.15, where the overall deflection ∆ is calculated 

for given ∆𝑐. Horizontal axis of the Figure 2.15 represents the imposed displacement ∆ with 

range from 0 to 15 mm in this case. Vertical axis represents the values of shear forces obtained 

from the equilibrium equations, which can be described as the path of the red dot for different 

imposed distortions of the CLZ. Thick red curve corresponds to the solutions of the equilibrium 

equations for increasing displacement and is described as a sum of the shear forces provided by 

each of the parameters described in the 5sm. Thinner curves of the graph each represent one of 

the four parallel springs of the five-spring model. These curves are obtained also using the 

Figure 2.14 and generating the intersections of each of the curves with the thick black curve 

describing the moment equilibrium equation. 

As it can be seen in the Figure 2.15 the CLZ provides the most shear force resistance of the 

model. The value of the shear force provided by the critical loading zone increases until 

deflection of about 6 mm where crushing of the CLZ occurs. The peak of the VCLZ occurs at the 

same deflection as the maximum shear force resisted by the beam is achieved. The aggregate 

interlock, which reaches its maximum right after the beam reaches its peak shear strength and 

then starts decreasing, also greatly contributes to the overall shear resistance of the beam. The 

shear force provided by the dowel action of the bottom longitudinal reinforcement does not 

vary much throughout the loading. The amount of shear resistance is in this case comparable 

with shear force provided by the stirrups. The contribution of stirrups is increasing until the 

yield strength is reached, after that the curve becomes constant since it is no longer dependent 

on any of the degrees of freedom considered within the model. 
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Figure 2.15 Equilibrium of forces in five-spring model for imposed displacement Δ 

As it has been already mentioned previously, the 5sm proposed by Mihaylov (2015) is only 

applicable to deep beams with conventional reinforcement and with or without stirrups. The 

model does not account for the action of fibers. Based on described experiments on deep beams 

reinforced with fibers carried out by various researchers it has been concluded that inclusion of 

fibers can enhance the behavior of the deep beams and their post-peak response. The main 

objective of this thesis is to introduce the fiber action into the existing five-spring model. The 

aim of the next chapter is to extend the 5sm to deep beams with conventional and fiber 

reinforcement. 
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3 EXTENDED FIVE-SPRING MODEL FOR FRC DEEP 

BEAMS 

3.1 INTRODUCTION 

The extension of the five-spring model is divided into several subchapters, each of which is 

focused on a different part of the model that is affected by the addition of fibers into the concrete 

mixture. An extension of the model is made by adding another spring to the spring model to 

represent the shear resistance of fibers along the diagonal crack of the beam. This extension 

provides a fifth spring to the set of parallel springs by using the Simplified Diverse Embedment 

Model by Lee et al. (2013). Following the already existing model, two adjustments are made to 

account for the effect of the fibers on the properties of the concrete.  

The first adjustment is implemented in the flexural spring which now also accounts for tension 

stiffening behavior of the beam caused by the addition of fibers using the Tension-Stiffening 

Model by Lee et al. (2013). The second adjustment is made in the stress-strain relationship for 

fiber-reinforced concrete under uniaxial compression, that now includes the impact of fibers on 

the resistance of the critical loading zone under uniaxial compression. The last adjustment does 

not deal with the effect of fibers, but rather extends the model to be able to represent not only 

three-point loading cases by giving the deflection under the loading point, but also four-point 

loading cases by introducing additional equations that enable the calculation of deflection in 

the middle of the beam. 

In this chapter all of these extensions and modifications are described as given in the literature, 

including their limitations and formulations. Each of the implemented models is firstly 

developed as a separate code in Matlab and its results are validated against information and 

graphs provided in the literature. Secondly a description of the modified formulation of the code 

as it enters the five-spring model is provided and justified with description of its function within 

the model. 

3.2 TENSION IN FIBERS ACROSS THE CRITICAL DIAGONAL CRACK 

3.2.1 Introduction 

One of the most crucial and beneficial aspects of adding steel fibers into the concrete structures 

is the non-brittle behavior after concrete cracking, that is achieved through fibers bridging the 

cracks. Whilst in normal concrete the tensile stress quickly decreases as soon as the crack starts 

propagating, in fiber-reinforced concrete we can observe the action of fibers that transfer the 

tensile stresses and contribute to the total response. Such behavior provides considerable tensile 

resistance to the structure even after the propagation of the crack.   

Figure 3.1 illustrates the tensile behavior of FRC. The behavior of regular concrete with tension-

softening effect is illustrated with dash-dotted line. The maximum value of stress depends on 

the tensile strength of the concrete. For FRC members the effect of fibers is included into the 

overall response of the member. As it can be seen in Figure 3.1, the fibers start acting as soon 
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as the crack starts propagating and provide additional resistance to the member even after the 

concrete matrix has lost its ability to transfer stresses. The solid line in the figure represents the 

response of FRC member, which consists of the sum of the tension softening effect and the 

action of fibers. Based on these observations it can be concluded, that in order to accurately 

predict the post-cracking response of FRC, the tensile stress behavior attainable with fibers 

should be evaluated.  

 

Figure 3.1 Tensile behavior of FRC (Lee et al., 2013) 

Figure 3.2 illustrates the additional force Ff that will be implemented within the extended five-

spring model to represent the actions of fibers across the critical diagonal crack. The action of 

fibers while bridging the crack results in additional vertical force VF that will enter the parallel 

set of springs and provide higher shear resistance to the member.  

Figure 3.2a shows the additional stress ff  representing the tensile stress at crack due to steel 

fibers. The stress can be calculated using the SDEM by Lee et al. (2013) which describes the 

stress transfer through the crack taking into account the concrete matrix and steel fibers (hooked 

or straight). However, to obtain the stress ff  transferred through the crack only the contribution 

of fibers, without the resistance provided by the concrete matrix will be considered.  The stress 

vf  represents the vertical component of the force ff  acting along the critical crack of the member. 

For a given width b of the cross section and the length of critical diagonal crack, the shear force 

resistance Ff  provided by the fibers bridging the crack can be calculated. The vertical 

component VF  of the force Ff  is then calculated using the angle α1 of the critical crack. 

Figure 3.2b shows the tensile stresses ff  resisted by the fibers for a given crack width. The 

figure represents a sample beam with fiber volume of 1%, fiber length of 30 mm, diameter of 

fibers of 0.5 mm and straight fibers. Horizontal axis of the figure describes different crack 

widths varying from 0 mm to 10 mm. Vertical axis shows the stresses transferred by the fibers 

along the area of the critical crack. The curve then represents the stress transferred through the 

steel fibers for increasing width of the crack. 
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Figure 3.2 Illustration of additional force provided by fibers in the extended five-spring model 

Several researchers have tried to describe the tensile stress behavior of fibers but so far the most 

realistic method is the Diverse Embedment Model (DEM) by Lee et al. (2011) that predicts 

tensile stress in fibers across a given crack. In this model the pullout strength of fibers is 

analyzed taking into account embedment on both sides and considering both frictional bond 

behavior and mechanical anchorage effects. Given such circumstances, the DEM can be applied 

to end-hooked fibers as well as straight fibers. The DEM method also takes into consideration 

all possible fiber orientations and embedment lengths.  

Due to the complicated calculation of the tensile strength of the fibers using the DEM, which 

includes double numerical integration, Lee et al. (2013) proposed a Simplified DEM (SDEM). 

SDEM is derived from the DEM by eliminating the integration and by neglecting the slip on 

the longer embedded side. The frictional bond behavior and mechanical anchorage effects are 

incorporated in the model as coefficients preventing an overestimation of the tensile stress 

attained by fibers. The tensile stress behavior of the fibers obtained using the SDEM has shown 

a good agreement with the results obtained using the DEM and thus it can be concluded that 

despite the simplification the accuracy of the model remained.  

3.2.2 Formulation of the SDEM 

In order to be able to perform the SDEM it is necessary to know the compressive strength of 

concrete that will be considered in the calculation and the fiber volumetric ratio included in the 

concrete. Regarding the properties of the fibers, the length of the fibers and its diameter are 

necessary. In case of using hook-ended fibers, the length of the straight part between the 

mechanical anchorages should be specified, see Figure 3.3. 

 

Figure 3.3 Fiber types used in the study by Lim et al. (1987) 

vf 
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The tensile stress in steel fiber-reinforced concrete without conventional reinforcement can be 

described with the following equation: 

 𝑓𝑆𝐹𝑅𝐶 = 𝑓𝑓 + 𝑓𝑐,𝑠𝑜𝑓𝑡 

 

(22) 

Where ff is the tensile stress at crack due to steel fibers and fc,soft stands for the tensile stress in 

concrete due to tension softening effect described by Voo and Foster (2003) as follows: 

 𝑓𝑐,𝑠𝑜𝑓𝑡 = 𝑓𝑐𝑟𝑒
−𝑐𝑤𝑐𝑟  

 

(23) 

Where fcr is the cracking stress of the concrete estimated as 𝑓𝑐𝑟 = 0.33√𝑓′𝑐 (Ramaswamy et al. 

1994). The coefficient c is either 15 or 30 for concrete or mortar, respectively, and wcr is the 

given average crack width. 

Due to the simplification in the SDEM, the bond mechanism for the pullout behavior of steel 

fibers and the mechanical anchorage effect due to end-hooks are evaluated separately. The total 

tensile stress at a crack due to the fibers can be described as: 

 𝑓𝑓 = 𝑓𝑠𝑡 + 𝑓𝑒ℎ 

 

(24) 

Where fst is the tensile stress due to frictional bond behavior of steel fibers and feh is the tensile 

stress due to mechanical anchorage effect of end-hooked steel fibers. These tensile stresses are 

expressed as follows: 

 
𝑓𝑠𝑡 = 𝛼𝑓𝑉𝑓𝐾𝑠𝑡𝜏𝑓,𝑚𝑎𝑥

𝑙𝑓

𝑑𝑓
(1 −

2𝑤𝑐𝑟

𝑙𝑓
)

2

 

 

(25) 

 
𝑓𝑒ℎ = 𝛼𝑓𝑉𝑓𝐾𝑒ℎ𝜏𝑒ℎ,𝑚𝑎𝑥2(

𝑙𝑖 − 2𝑤𝑐𝑟

𝑑𝑓
) 

 

(26) 

Where Vf stands for fiber volumetric ratio, lf is the fiber length, df is the diameter of the fiber, 

αf is the fiber orientation factor that can be assumed to be 0.5 for cases where the dimensions 

of the structural member are much larger than the fiber length (Lee et al., 2013), and τ is the 

pullout strength of a single fiber taken from Table 3.1 (Voo and Foster, 2003). 
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Table 3.1 Pullout strength of single fiber by Voo and Foster (2003) 

 

The parameters Keh and Kst are defined as follows: 

 
𝐾𝑠𝑡 = 

𝛽𝑓

3

𝑤𝑐𝑟

𝑠𝑓
     𝑓𝑜𝑟 𝑤𝑐𝑟 < 𝑠𝑓 

(27) 

   

 

𝐾𝑠𝑡 = 1 − √
𝑠𝑓

𝑤𝑐𝑟
+ 

𝛽𝑓

3
√

𝑤𝑐𝑟

𝑠𝑓
     𝑓𝑜𝑟 𝑤𝑐𝑟 ≥ 𝑠𝑓 

(28) 

   

 
𝐾𝑒ℎ =  𝛽𝑒ℎ [

2

3

𝑤𝑐𝑟

𝑠𝑒ℎ
−

1

5
(
𝑤𝑐𝑟

𝑠𝑒ℎ
)
2

]      𝑓𝑜𝑟 𝑤𝑐𝑟 < 𝑠𝑒ℎ 
(29) 

   

 

𝐾𝑒ℎ = 1 + (
7𝛽𝑒ℎ

15
− 1)√

𝑠𝑒ℎ

𝑤𝑐𝑟
−

2(√𝑤𝑐𝑟 − √𝑠𝑒ℎ)
2

𝑙𝑓 − 𝑙𝑖
     𝑓𝑜𝑟 𝑠𝑒ℎ ≤ 𝑤𝑐𝑟  <  

𝑙𝑓 − 𝑙𝑖

2
 

(30) 

   

 
𝐾𝑒ℎ = (

𝑙𝑖 − 2𝑤𝑐𝑟

2𝑙𝑖 − 𝑙𝑓
)

2

𝐾𝑒ℎ,𝑖     𝑓𝑜𝑟 
𝑙𝑓 − 𝑙𝑖

2
 ≤  𝑤𝑐𝑟  <  

𝑙𝑖
2

 

 

(31) 

Where 𝛽𝑓 , is a coefficient reflecting the effect of fiber slip on the longer embedded side and has 

been analytically determined as 0.67. In the same way as the determination of βf, the value of 

coefficient βeh has been defined as 0.76 where this coefficient prevents the tensile force by 

mechanical anchorage from being overestimated due to the effect of a fiber slip on the longer 

embedded side as defined by Lee et al. (2013).  
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The length li is the length of the straight part of the fiber between the mechanical anchorages 

for end-hooked fibers, and can be obtained by subtracting 8 mm from the overall length of the 

fiber lf based on the assumption shown in the Figure 3.3. 

The value of sf, which refers to a slip at maximum tensile force due to mechanical anchorage of 

fiber with inclination angle of 0 degrees with respect to the crack surface, can be assumed as 

0.01 mm based on the experiments provided by Naaman and Najm (1991). Equally, the value 

of seh, which describes the slip at maximum tensile force due to mechanical anchorage of an 

end-hooked fiber, has been derived from the same experiments and is considered to be equal to 

0.1 mm.  

The last unknown value in the equations of Keh is the variable Keh.i which is the value of Keh at 

wcr = (lf - li)/2. An important point that should be taken into account while applying the SDEM 

is that only the DEM is suitable for SFRC in which fiber rupture is expected. Fiber rupture is 

not considered in the SDEM.  

3.2.3 Validation of the SDEM 

To perform calculations of tensile stresses in steel fibers across cracks, a code in Matlab was 

developed using the formulation of the SDEM as described in the previous chapter. The code 

is verified and the SDEM is validated by performing comparisons with SDEM simulations and 

test results from the literature (Lee et al. 2013, Lim et al. 1987, Susetyo 2009). The Matlab code 

itself as it enters the five-spring model is included in Appendix B. 

3.2.3.1 Experimental results by Lim et al. (1987) 

Lim et al. (1987) tested members with straight and hook-ended fibers subjected to uniaxial 

tension. These specimens had a rectangular cross section of 70 mm width and 100 mm 

thickness. The input value of concrete cylinder strength was not specified and thus is just 

assumed to be 40 MPa. It should be taken into consideration that such value might have a big 

impact on the accuracy of the results. 

For the comparison, test results for straight fibers tested by Lim et al. (1987) and SDEM results 

by Lee et al. (2013) were used. In the experimental study the fiber volumetric ratio used has 

been considered to be 1% and 1.5% respectively. Fiber length used was 30 mm and the diameter 

of the fibers was 0.565 mm. As displayed in the Figure 3.4, we can observe that the proposed 

Matlab code is slightly more conservative than results by Lee and the experimental results. It 

can be assumed that the main cause of this difference is the assumed cylinder strength of the 

concrete. The strength was selected with the intention to match as closely as possible all the 

analytical results provided by Lee et al. (2013). Several cylinder strengths were considered and 

the one that showed the best agreement with the analytical curve generated by Lee et al. (2013) 

was used. 
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Figure 3.4 Comparison of proposed model and test results for members with straight fibers tested by Lim 

et al. (1987) 

Another validation has been performed using the data from the tests by Lim et al. (1987) 

performed with end-hooked fibers, see Figure 3.5. In this experiment two types of fibers were 

used. The graph on the left corresponds to a fiber volume ratio 0.5%, fiber length 30 mm and 

diameter of the fiber 0.5 mm. The graph on the right represents fiber volume ratio of 1%, fiber 

length 50 mm and diameter of the fiber 0.5 mm. The results show again good agreement with 

the SDEM by Lee considering the shape of the curve. The curve generated using the created 

Matlab code proves to be more conservative but it can be assumed that the main reason for such 

difference is again the assumed concrete strength.  

 

Figure 3.5 Comparison of proposed model and test results for members with end-hooked fibers tested by 

Lim et al. (1987) 

3.2.3.2 Experimental results by Susetyo (2009) 

Susetyo (2009) performed direct tension tests using specimens with cross section of 70x100 

mm2 and concrete compressive stress varying of 80 MPa and 50 MPa. In his experiments 

Susetyo tested steel FRC members with hook-ended fibers with overall fiber length 50 mm and 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

40 

 

fiber diameter 0.62 mm. Two examples shown in the Figure 3.6 refer to concrete strength of 50 

MPa and fiber volume ratio of 0.5%, and 1% respectively. The frictional bond strength τf, max 

and τeh,max was considered to be 0.396 f ′c and 0.429 f ′c respectively, based on previous research 

of Voo and Foster (2003) and Lee et al. (2011). The input value of li was not specified in this 

case and thus was based on the data provided by Lim et al. (1987). It should be taken into 

consideration that such assumption might slightly affect the accuracy of results.  

During the data validation it was discovered that the formula for cracking strength based on the 

work of Ramaswamy et al. (1994) greatly underestimates the initial value of concrete strength. 

In order to match the results closer, a different formula was used for the value of cracking 

strength of concrete, in this case the most suitable formulation was one provided in the 

European Code (EN 1992-1-1:2004, EC2 Section 3.1) which defines cracking strength for 

concrete cylinder strength of 50 MPa as 𝑓𝑐𝑟 = 0.3𝑓′𝑐
2

3. 

 

Figure 3.6 Comparison of proposed model and test results for members with end-hooked fibers tested by 

Susetyo (2009) 

As can be seen in the Figure 3.6 the results obtained using the Matlab code almost perfectly 

match the results provided by Lee et al. (2013). Overall the experimental results show slightly 

higher tensile stress in the beginning of crack width propagation than the tensile stress obtained 

using the SDEM, after reaching crack width of 1 mm the SDEM results show good agreement 

with the experimental results.  

3.2.3.3 Conclusion 

Based on the results obtained using the experimental results from Susetyo (2009) and Lim et 

al. (1987) it can be concluded that the developed code correctly simulates the tensile stress 

behavior of the fibers.  
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3.2.4 Implementation of the SDEM into the Five-Spring Model 

The SDEM was included in the model as a sixth spring that represents the shear strength 

provided by the action of fibers and in the model is referred to with a symbol VF. The 

contribution of the tensile stress in concrete due to tension softening effect has been neglected 

in order to only account for the fiber action and thus the final tensile stress in the fibers is 

described as 𝑓𝑓 = 𝑓𝑠𝑡 + 𝑓𝑒ℎ. 

The shear strength provided by the action of fibers across the critical diagonal cracks is 

described as follows: 

 
𝑉𝐹 = 

𝑓𝑓𝑏𝑑

sin (𝛼1)
cos (𝛽) 

 

(32) 

Where the angle β represents the angle between the force provided by fibers Ff and the vertical 

component of the force VF as illustrated in Figure 3.7. The maximum possible value for the 

angle is α1 and the minimum is 0. A study has been conducted in order to define the most 

suitable value of the angle β, where three different values have been considered. 

 

Figure 3.7 Definition of angle β 

The first assumption was the most conservative one and considered the angle β equal to α1. This 

scenario assumes that the angle of the fibers stays the same throughout the whole process of 

widening of the crack and thus only the vertical component of the force is being accounted for. 

This consideration does not take into account the fact that as the diagonal crack keeps on 

widening the part of the beam below the diagonal crack is sliding along the crack and the angle 

β of the fibers gets lower the wider the crack gets. This is the reason that another scenario has 

been taken into consideration. In this case the angle β is defined as follows: 

 𝛽 = atan (
𝑠

𝑤
) 

 

(33) 

Where s is the slip and w is the width of the crack and are defined as follows: 

 𝑠 =  𝛥𝑐 sin 𝛼1 (34) 

 

 
𝑤 = 𝜀𝑡,𝑎𝑣𝑔

𝑙𝑘
2 sin 𝛼1

+ 𝛥𝑐 cos 𝛼1 
(35) 

   

This scenario assumes that the force Ff is parallel to the relative displacement between the crack 

faces. The last option taken into account is when the angle β is equal to zero, and thus the 
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resulting force consists only of the vertical component. An analysis was carried out to define 

the most suitable scenario to include in the five-spring mode. Properties of the beam B4 from 

the experimental study of Mansur and Ong (1991) were used for the analysis of the impact of 

the changing angle. Predicted shear strength was obtained for changing a/d ratios and a curve 

was generated. Same process was repeated for three different assumptions of angle β, resulting 

in three different curves. Figure 3.8 shows the results of the analysis. The results obtained using 

angle β equal to α1, and definition of the angle from equation (33), are overlapping, while β 

equal to 0 provides slightly higher shear resistance. 

 

Figure 3.8 Variation of the angle β given different a/d ratios 

Figure 3.9 shows the results of the analysis performed on the beam B4 for different fiber volume 

ratios. The process was same as for the Figure 3.8, where three different curves were created to 

analyze the impact of changing angle β. Two of the curves are again overlapping, while the one 

with β equal to 0 results in slightly higher predicted shear strength. From the results it can be 

concluded, that the impact on the shear strength of the beam by using different angle β is 

insignificant. The scenario with the simplest assumption, where β is equal to zero has been 

implemented within the final model. 

 

Figure 3.9 Variation of the angle β given different fiber volume ratios 
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In order to illustrate the additional force introduced into the five-spring model Figure 3.10 

highlights effect of the 0.5% volume of fibers introduced into the sample beam previously 

chosen to describe the five-spring model in the Chapter 2.3 of this thesis. The figure represents 

the equilibrium of forces for ∆𝑐 equal to 5 mm. The force VF is indicated with the bold yellow 

curve and the increased shear strength is depicted in red. It can be seen, that the main difference 

caused by the addition of fibers is in the sum of shear forces 𝑉 = ∑𝑉𝑖 whose value has increased 

by the shear force provided by the fibers. The value indicated by the dotted line represents the 

value of the shear force before the fibers were added. The shear strength provided by fibers 

shows a decreasing tendency for increasing tensile strain. Such phenomenon is caused by the 

dependency of the shear strength on the width of the crack, where the width of the crack 

increases with increasing average tensile strain. 

 

Figure 3.10 Equilibrium of forces in extended five-spring model with fiber contribution at Δc=5 mm 

Figure 3.11 shows the effect of fibers on the overall V-Δ response of the member. Thick yellow 

curve represents the contribution of fibers and the red curve the overall response. The response 

of the member before adding fibers is represented with red dotted line to highlight the difference 

caused by addition of fibers. As it can be observed from the figure, the fibers start acting as 

soon as the deformation begins. The biggest contribution of the fibers occurs at the deformation 

of about 3 mm from which the curve starts slowly decreasing. The addition of 0.5% of fibers 

provides the beam with an increase of about 200 kN in shear resistance and also higher post-

peak resistance.  
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Figure 3.11 Predicted V-Δ response with addition of fibers 
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3.3 TENSION-STIFFENING OF THE BOTTOM FLEXURAL REINFORCEMENT 

3.3.1 Introduction 

As it was described before, steel fibers are used in concrete members to compensate for the low 

tensile strength and brittle response of the material. Given the constitutive equations for the 

springs in the five-spring model, it is necessary to consider the effect of fibers on the tensile 

force in the bottom reinforcement which is described in the original five-spring model by 

Mihaylov (2015) for the cracked stage of the behavior of the member as: 

 
𝑇 =  𝐸𝑠𝐴𝑠𝜀𝑡,𝑎𝑣𝑔 + 

0.33√𝑓′𝑐

√1 + 200𝜀𝑡,𝑎𝑣𝑔

𝐴𝑐,𝑒𝑓𝑓 ≤ 𝐴𝑠𝑓𝑦 

 

(36) 

Where the first term of this equation describes the behavior of bare elastic reinforcement and 

the second term describes the tension stiffening effect of the concrete around the reinforcement. 

However, the tension behavior of FRC members with conventional reinforcement (R/FRC) is 

significantly different from the behavior of members without fibers. As described in a study by 

Lee et al. (2013) the contribution of fibers to the tensile stress is considerable as illustrated in 

Figure 3.12. 

 

Figure 3.12 Tensile behavior of RC and R/FRC members by Lee et al. (2013) 

As we can see in the Figure 3.12, R/FRC is able to resist higher tensile stresses not only after 

initial cracking, but also after yielding of the bar. Due to this additional resistance the equation 

for the tensile force in the bottom reinforcement will be modified based on the model proposed 

by Lee et al. (2013) on tension-stiffening for steel fiber-reinforced concrete containing 

conventional reinforcement. The model proposed by Lee et al. (2013) reflects the effect of steel 

fibers on the tensile behavior of R/FRC member and is based on the DEM model whose 

simplified version has been already described in the previous chapter of this thesis. Other 

researchers have also researched the tension-stiffening behavior of R/FRC members, but such 
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models proposed by Bischoff (2003) or Deluce and Vecchio (2013) evaluate only the total 

tensile stresses. The tensile stresses due to fiber and the bond mechanism between the concrete 

matrix and the reinforcing bar cannot be separately evaluated in their models, while the model 

developed by Lee et al. (2013) allows us to do so. In the model proposed by Lee et al. (2013) 

the tensile resistance of the R/FRC member is divided into three different components which 

are summed up in the end. The effect of concrete matrix, fibers and tension-stiffening or 

softening are all evaluated separately, while in the other models only the total tensile resistance 

is evaluated.  

Figure 3.13a highlights tensile force T which is going to be affected by the addition of fibers. 

Figure 3.13b illustrates the difference between the tensile force of the original five-spring 

model, that does not include the effect of fibers, and the resulting tensile force with fibers 

included in the concrete mixture causing tension-stiffening effect. 

 

Figure 3.13 Illustration of implemented modification due to tension-stiffening effect 

3.3.2 Formulation of Tension-Stiffening Model for R/FRC 

The tensile stress resistance of R/FRC consists of three terms: tensile stress resistance of the 

reinforcing bar, tensile stress resistance of the steel fibers, and tensile stress from tension-

stiffening or tension-softening effect, whichever is larger. The final formulation of the tensile 

force in the bottom reinforcement including fibers can be described as follows: 

 𝑇𝑓 = 𝐹𝑟𝑒𝑏 + 𝐹𝑓𝑖𝑏 + 𝐹𝑐𝑜𝑛 

 

(37) 

Where Freb is the tensile force of the reinforcing bar, Ffib is the tensile force of the fibers, and 

Fcon the tensile force from tension-stiffening or tension-softening effect. In this chapter all of 

these expressions will be described and analyzed in detail, and then Tf will be used to calculate 

the shear force derived from moment equilibrium in the five-spring model. 

The first term of the equation describes the tensile force resisted by the bare bar, this force is 

evaluated the same way it was described in the original five-spring model and thus can be 

defined as: 

 𝐹𝑟𝑒𝑏 = 𝐸𝑠𝐴𝑠𝜀𝑡,𝑎𝑣𝑔 ≤ 𝐴𝑠𝑓𝑦  (38) 
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The second term refers to the tensile force resisted by steel fibers and is expressed as follows: 

 𝐹𝑓𝑖𝑏 = 𝑓𝑓𝐴𝑐,𝑒𝑓𝑓 

 

(39) 

Where Ac, eff is the area of concrete around the bottom reinforcement that contributes to the 

tension-stiffening effect and can be calculated as: 

 𝐴𝑐,𝑒𝑓𝑓 = 2.5𝑏(ℎ − 𝑑) ≤ 𝑏ℎ/2 

 

(40) 

Because the tensile stresses sustained by the steel fibers are calculated for a given crack width 

while the tensile stress due to tension stiffening is calculated for given average tensile strain, it 

is necessary to define the relationship between the crack width and the average tensile strain. 

Average crack spacing model has been defined based on the model proposed by Deluce (2011) 

where average crack spacing is defined as: 

 
𝑠𝑐𝑟 = 2(𝑐 +

𝑠𝑏

10
) 𝑘3 +

𝑘1𝑘2

𝑠𝑚𝑖
 

 

(41) 

Where sb is the maximum spacing between reinforcing bars and the rest of the variables are 

expressed as follows:   𝑐 = 1.5𝑎𝑔 𝑘1 = 0.4 𝑘2 =  0.25 

Where ag is the maximum aggregate size. 

 

𝑠𝑚𝑖 =
𝜌𝑠

𝑑𝑏
+ 

𝛼𝑓𝑉𝑓

𝑑𝑓
𝑚𝑎𝑥 (

𝑙𝑓

𝑑𝑓

50
, 1)   

 

(42) 

 

𝑘3 = 1 − 
min(𝑉𝑓 , 0.015)

0.015

[
 
 
 

1 − min 

(

 
50

𝑙𝑓
𝑑𝑓

, 1

)

 

]
 
 
 

 

(43) 

 

Where db is the diameter of the reinforcing bar and ρs is the ratio of the reinforcement within 

the concrete area Ac,eff. Having estimated the crack spacing, the width of the crack that will be 

applied within the SDEM to define the tensile stress ff is defined as: 

𝑤𝑐𝑟,𝑇 = 𝑠𝑐𝑟𝜀𝑡,𝑎𝑣𝑔 

The last term of the equation (37), to define the tensile force in the bottom reinforcement, 

describes the tension-stiffening/tension-softening provided by the concrete and is expressed as 

follows: 

 𝐹𝑐𝑜𝑛 = 𝑓𝑐𝑡𝐴𝑐,𝑒𝑓𝑓 

 

(44) 
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Where fct is the tension response due to bond mechanism of the reinforcing bar and is described 

as: 

 𝑓𝑐𝑡 = max (𝑓𝑐,𝑠𝑜𝑓𝑡, 𝑓𝑐,𝑇𝑆) ≤ 𝐸𝑐𝜀𝑡,𝑎𝑣𝑔 (45) 

 

Where the elastic modulus of concrete matrix Ec for fiber reinforced concrete is defined as 𝐸𝑐 =

3300√𝑓′𝑐 + 6900, as presented in the CSA A23.3-04 (2004) and fc, TS is the tension-stiffening 

effect that reflects the effect of steel fibers and was derived by Lee et al. (2013). The model is 

based on the conventional tension-stiffening model for reinforced concrete members by Bentz 

(2005) and is modified to take into account the effect of steel fibers as follows: 

 
𝑓𝑐,𝑇𝑆 = 

𝑓𝑐𝑟

1 + √3.6𝑐𝑓𝑀𝜀𝑡,𝑎𝑣𝑔

 

 

(46) 

Where M is the bond parameter defined as 𝑀 =
𝐴𝑐,𝑒𝑓𝑓

∑𝑑𝑏𝜋
 and cf is the coefficient to consider the 

effect of steel fibers which was defined based on a parametric study performed by Lee et al 

(2013). Only the variables with significant influence on the tension-stiffening response have 

been taken into account such as percentage of conventional reinforcement, fiber volumetric 

ratio and fiber type. Based on the parametric study the following values for cf were proposed: 

- for straight fibers 

 
𝑐𝑓 = 0.6 +

1

0.058
(

𝑙𝑓

𝑑𝑓
)

0.9
100𝑉𝑓

𝑀0.8
 

(47) 

- for hook-ended fibers 

 
 𝑐𝑓 = 0.6 +

1

0.034
(

𝑙𝑓

𝑑𝑓
)

(100𝑉𝑓)
1.5

𝑀0.8
  

(48) 

3.3.3 Validation of the Tension-Stiffening Model for R/FRC 

Based on the Tension-Stiffening model a code in Matlab was developed using the formulation 

described in the previous section. The code to account for tension-stiffening within the five-

spring model can be found in Appendix C. The developed model will be validated against data 

provided by Lee et al. (2013) and experimental results. The validation includes results from 

application of the Tension-Stiffening model by Lee et al. (2013) and provided experimental 

data by Bischoff (2003) and Deluce and Vecchio (2013).  

3.3.3.1 Experimental results by Bischoff (2003) 

In the test eight axially loaded tension specimens were tested. Each specimen had a cross-

section size of 100x100 mm. Two ratios of reinforcement were tested using either single 15 M 

bar or 20 M bar with final reinforcement ratios of 2% and 3.1%, respectively. Members were 

divided into two groups of four where for each reinforcement ratio were produced four 
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members. Three out of those four members were additionally reinforced with 0.78% fiber 

volumetric ratio and one of the three specimens contained an un-bonded reinforcing bar.  

Conclusion of the experiment by Bischoff (2003) is that after cracking, fiber reinforced 

members experience more tension-stiffening than plain concrete. The difference becomes more 

obvious once a sufficient number of cracks have developed. It has been also observed that while 

plain concrete does not exhibit any tension-stiffening once the reinforcement yields, fiber 

reinforced concrete continues to exhibit tension-stiffening after yielding since the fibers are 

able to transmit additional tensile forces across the crack where the steel rebar has yielded. 

For the validation only two fiber reinforced specimens were considered, each with different 

amount of reinforcement ratio and both with bonded reinforcing bar. The fibers used in this 

experiment were end-hooked fibers, 50 mm long with diameter of 0.5 mm. Shrinkage of the 

member has been measured within the experiment and implemented into the code to reflect the 

real behavior of the member.  

 

Figure 3.14 Comparison of proposed models and test results by Bischoff (2003) 

Figure 3.14 compares results of the experiment carried out by Bischoff (2003), results obtained 

by Lee et al. using proposed tension-stiffening model and results obtained with the created 

Matlab code. It can be observed that both models copy the behavior of the experiment quite 

well. Slight difference in test BS15M between the analytical results by Lee et al. (2013) and 

created code is most likely due to the simplification of the DEM used in the code. While Lee et 

al. (2013) have applied the DEM within their method, the Matlab code defines stress attainable 

by fibers using the SDEM, which does not account for fiber rupture as it has been explained 

before. Thus it is possible that in the experiment with 2% reinforcement ratio some fiber rupture 

already appears that the Matlab code cannot capture, while in the test BS20M thanks to the 

3.1% reinforcement ratio no fiber rupture appears. 

3.3.3.2 Experimental results by Deluce and Vecchio (2013) 

Experimental investigation carried out by Deluce and Vecchio consisted of tests on total of 12 

uniaxial tension reinforced concrete specimens and 48 uniaxial tension R/FRC specimens. In 
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this case, parameters studied within the experiment were the fiber volumetric ratio, fiber length, 

fiber aspect ratio, conventional reinforcement ratio and reinforcing bar diameter. In his thesis 

Deluce (2011) describes the tests in detail including numerous material tests. However, for the 

purpose of validation only two tests were selected. Selected specimen had cross section of 

150x150 mm, and concrete strength of 45 MPa and 80 MPa. Two different fiber volumetric 

ratios were considered, 0.5% and 1% of fibers in the concrete matrix. Fibers used in this 

experiment were end-hooked with length of 30 mm, diameter of fibers 0.38 mm and 

conventional reinforcement with diameter 19.5 mm and reinforcement ratio of 1.33%.  

Based on the experimental results Deluce and Vecchio (2013) concluded that steel fiber added 

to the concrete mixture with conventional reinforcing bar improves the cracking characteristics 

and tension-stiffening behavior and that they can increase the post-yield load-carrying capacity 

to levels significantly higher than the bare-bar yield load. They also came to a conclusion that 

fiber length does not appear to play a significant role in the post-cracking behavior of SFRC 

containing conventional reinforcing bars, provided that the crack spacing is not so short that a 

fiber bridges multiple cracks. 

Due to the unclear definition of cracking strength of concrete, an assumption has been made in 

order to match the curve of the proposed model. In this experiment the effect of shrinkage has 

not been included within the final graph. As presented in Figure 3.15 the proposed model by 

Lee et al. (2013) agrees very well with the results of Deluce and Vecchio and also with the 

proposed Matlab code.  

 

Figure 3.15 Comparison of proposed models and test results by Deluce and Vecchio (2013) 

3.3.3.3 Conclusion 

Given the experimental results of Bischoff (2003) and Deluce and Vecchio (2013) it can be 

concluded that developed model simulates correctly the tension-stiffening behavior of R/FRC 

members. Thanks to the Tension-Stiffening model derived by Lee et al. (2013) it is possible to 

evaluate the tension force resistance of each of the considered parts of the member and thus the 

impact of fibers, concrete matrix and conventional reinforcement can be evaluated separately 

as shown in the Figure 3.16. A limitation that should be considered while implementing the 
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code is the same as for the SDEM and thus that fiber rupture should not occur and is not being 

accounted for in the model.  

 

Figure 3.16 Separate evaluation of contribution of tensile forces in Tension-stiffening model 

3.3.4 Implementation of the Tension-Stiffening Model into the Five-Spring Model 

Within the five-spring model, the Tension-Stiffening model has been included just as it has 

been described in the formulation of the model. The only change concerns the definition of 

tensile force contribution from the rebar, where the yielding of the bar was neglected in order 

to focus on shear failures of deep beams.  

After obtaining the tension force in the bottom flexural reinforcement using tension-stiffening 

model, moment equilibrium equation of the shear span is used to define the shear force. The 

equilibrium is calculated about the point of application of the compression force in the section 

with maximum moment as presented by Mihaylov (2015), and the final equation to determine 

the shear force can be described as follows: 

 
𝑉 =

𝑇𝑓(0.9𝑑)

𝑎
 

 

(49) 

Where d is the effective depth and a is the shear span of the member, and V in this case 

represents the force in the flexural spring of the five-spring model.  

In order to illustrate the modification introduced into the five-spring model, the tension-

stiffening model was implemented into the sample beam example previously used in sections 

2.3 and 3.2.4. In the Figure 3.17 the thick black curve represents the shear force derived from 

the moment equilibrium, which is influenced by the tension stiffening model. The dotted curve 

represents the original shear force derived from moment equilibrium. As it can be observed 

from the figure, the tension-stiffening does not influence the result significantly. However, the 

transition of the curve results in a change of equilibrium points obtained through intersection 

of the thick black curve with the rest of the curves. 
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Figure 3.17 Equilibrium of forces in extended five-spring model with tension-stiffening model at Δc=5 mm 

Figure 3.18 illustrates the effect that tension-stiffening has on the load displacement curve. 

Slightly steeper orientation of the curve causes that forces influenced by strain in bottom 

reinforcement change their values from the original model due to the transition of the 

equilibrium points. The original values are depicted with dotted lines within the graph, while 

the values corresponding to the tension-stiffening model and addition of fibers are illustrated 

with solid lines. The tension-stiffening effect influences very slightly the values of most of the 

shear forces. The only forces that are not affected are the critical loading zone, whose value is 

consistent and does not depend on the strain in bottom flexural reinforcement, and the effect of 

fibers. Overall, the effect of tension stiffening does not significantly influence the resistance of 

the member unless a very high volume of fibers is included in the mixture.  

 

Figure 3.18 Predicted V-Δ response with implementation of tension-stiffening model 
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3.4 COMPRESSIVE BEHAVIOR OF THE CRITICAL LOADING ZONE 

3.4.1 Introduction 

Apart from enhanced tensile strength that the addition of fibers provides significant increase in 

toughness, in compression has been observed in fiber reinforced concrete members. 

Traditionally, transverse reinforcement is adopted to improve the toughness of concrete in 

compression. However, the use of steel fibers has advantages over transverse reinforcement, 

namely less labor cost and shorter construction time. Steel fibers bridge longitudinal cracks 

caused by the lateral expansion of concrete in compression. As the cracks widen, the pull-out 

strength of fibers increases the toughness of the member as described by Ou et al. (2012). 

Figure 3.19a illustrates the effect of fibers on compression behavior of the member within the 

five-spring model. The resistance of the critical loading zone is increased due to the inclusion 

of fibers and the ultimate shear strength increases. Figure 3.19b describes shear resisted by 

critical loading based on transverse displacement of the critical loading zone, the solid line 

describes behavior with fibers and the dotted line without fibers. 

   

Figure 3.19 Illustration of modification due to change of stress-strain curve of concrete in compression 

Many researchers have performed experiments in order to describe the compressive stress-

strain response of FRC. The most recognized formulation is by Di Prisco et al. (2013) where it 

is concluded that when using FRC, compressive strength is not particularly influenced by the 

presence of fibers up to 1% of content by volume. However, in the extended five-spring model, 

fiber volumetric ratios higher than 1% are taken into account as well. It is necessary to adjust 

the stress-strain curve to reflect the effect of fibers on the concrete under uniaxial compression 

using a different model suitable for fiber volumes higher than 1%. 

In the original model, the compressive behavior of concrete is described using Popovics (1970) 

definition of stress-strain relationships for concrete as follows: 

 

𝑓𝑐 = 𝑓′𝑐

𝑛 (
𝜀𝑐𝑓

𝜀′
𝑐
)

𝑛 − 1 + (
𝜀𝑐𝑓

𝜀′
𝑐
)
𝑛𝑘 

(50) 
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Where f’c is the peak stress obtained from a cylinder test, ε’c, is the strain when the stress fc 

reaches f’c and is described as: 

 
𝜀′

𝑐 = 
𝑓′𝑐
𝐸𝑐

𝑛

𝑛 − 1
 

 

(51) 

Factor k increases the post-peak decay in stress, for 
𝜀𝑐𝑓

𝜀′
𝑐
 < 1 k is taken as 1, and for 

𝜀𝑐𝑓

𝜀′
𝑐
  > 1 as:  

 
𝑘 = 0.67 +

𝑓′𝑐
62

 

 

(52) 

However, k must not be taken less than unity. 

Curve fitting factor n is defined as: 

 
𝑛 = 0.8 +

𝑓′𝑐
17

 

 

(53) 

Tangent stiffness Ec, when εcf  equals zero and described as: 

- for normal strength concrete 

 𝐸𝑐 = 4730√𝑓′𝑐 (54) 

 

- for concrete strength higher than 40 MPa 

 𝐸𝑐 = 3320√𝑓′𝑐 + 6900 (55) 

   

3.4.2 Stress-Strain Curves for FRC 

The next section evaluated the effect of steel fibers with fiber volumes higher than 1% on the 

compressive behavior of FRC. Several proposals from various researchers are presented and 

analyzed in order to choose the most adequate model that is to be used within the five-spring 

model. As a comparison Popovics (1970) stress-strain curve was used to ensure correct behavior 

of concrete in the pre-peak branch of the curve.  

3.4.2.1 Barros and Figueiras (1999) 

In the experimental study of Barros and Figueiras (1999) five series were manufactured where 

fiber percentage, fiber aspect ratio and water-to-cement ratio were the parameters whose 

influence was of the main focus. Cylinder specimens, 150 mm in diameter and 300 mm in 

height with concrete strength varying from 30 – 60 MPa, were tested under displacement 

control. Only two of the series were used to determine the compression behavior from which 

each series consisted of four specimens. In those two series end-hooked fibers were used with 

length of 60 mm, diameter equal to 0.8 mm and strength of 1100 MPa.  
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The analytical approach suggested by Barros and Figueiras is similar to Ezeldin and Balaguru 

(1992) where only one parameter is proposed and the whole expression is based on the 

following stress-strain relationship: 

 

𝑓𝑐 = 𝑓′𝑐

𝜀𝑐𝑓

𝜀′
𝑐

(1 − 𝑝 − 𝑞) + 𝑞 (
𝜀𝑐𝑓

𝜀′
𝑐
) + 𝑝 (

𝜀𝑐𝑓

𝜀′
𝑐
)
(1−𝑞)/𝑝

 

(56) 

 

 𝑞 = 1 − 𝑝 −
𝐸𝑐

𝐸𝑐𝑓
  𝑝 + 𝑞 ∈  ]0,1[ 

1−𝑞

𝑝
> 0 (57) 

 

  
𝐸𝑐𝑓 =

𝑓′
𝑐

𝜀𝑐𝑓
 

(58) 

 

   

 
𝐸𝑐 = 21500 (

𝑓′
𝑐

10
)

1/3

 

 

(59) 

Where for fibers with length of 30 mm and diameter 0.5 mm: 

 𝜀′
𝑐 = 𝜀𝑐0 + 0.0002𝑊𝑓  

 

(60) 

 𝑝 = 1 − 0.919𝑒−0.394𝑊𝑓 (61) 

 

 𝜀𝑐0 = 0.0022 (62) 

 

 𝑊𝑓 = 325𝑉𝑓 

 

(63) 

And for fibers with length of 60 mm and diameter 0.8 mm: 

 𝜀′
𝑐 = 𝜀𝑐0 + 0.00026𝑊𝑓 (64) 

 

 𝑝 = 1 − 0.722𝑒−0.144𝑊𝑓 

 

(65) 

Where 𝜀𝑐0 is the strain at peak for plain concrete and 𝑊𝑓 is the fiber weight percentage in the 

mixture. Proposed analytical approach has been validated against experimental results and 

showed a good agreement. In order to evaluate the model, the model was applied on an example 

specimen with concrete strength of 40 MPa, fiber volumetric ratio 1%, fiber length of 30 mm 

and fiber diameter 0.5 mm and compared to results with curve proposed by Popovics (1970). 

As it can be seen in the Figure 3.20 the strain at maximum concrete strength is higher which is 

one of the effects that prove that fibers have influence on the compression behavior of concrete. 
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The effect of fibers on the post peak behavior is significant and instead of brittle failure which 

appears in case of regular concrete, FRC exhibits more ductile behavior. 

It can be concluded that model by Barros and Figueiras (1999) represents the stress-strain 

compression behavior quite well, however it should be taken into account that only one fiber 

aspect ratio was considered in the study, so it is questionable whether proposed model 

reasonably represents the effect of aspect ratio of steel fibers on compressive behavior. 

 

Figure 3.20 Analytical proposal of stress-strain compression curve by Barros and Figueiras (1999) 

3.4.2.2 Lee, Oh and Cho (2015) 

Experimental study of Lee et al. (2015) consisted of tests on 48 cylinder specimens subjected 

to uniaxial compression. Specimens had a size of 150 mm in diameter and 300 mm in height. 

Several variables were investigated including concrete compressive strength, fiber volumetric 

ratio, and fiber aspect ratio. Fiber volumetric ratio was ranging from 0.5% to 2% and end-

hooked steel fibers of three different fiber aspect ratios (47%, 65%, 79%) were used.  Concrete 

strength varied from 40 MPa to 90 MPa.  

Results of the experiments showed that the compressive strength increased slightly with 

increasing fiber volumetric ratio up until 1.5% of fiber volume while with 2% of fiber volume 

the compressive strength slightly decreased. This phenomenon has been previously described 

by Ezeldin and Balaguru (1992) and is assumed to be caused by the transverse confinement 

effect of the steel fibers which restrain the lateral expansion of SFRC specimens. Due to 

observed changes in slump effect while changing the aspect ratio and fiber volumetric ratio it 

was concluded that the compressive strength of SFRC can be affected by the fiber aspect ratio 

as well as the fiber volumetric ratio.  

In the analytical model the effect of steel fibers was represented by employing the fiber 

reinforcing index 𝑅𝐼𝑣 =  𝑉𝑓𝑙𝑓/𝑑𝑓  which has been previously introduced by several researchers 
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such as Ezeldin and Balaguru (1992) and Mansur et al. (1999) and is implemented in the model 

as follows: 

 

𝑓𝑐 = 𝑓′𝑐

𝐴
𝜀𝑐𝑓

𝜀′
𝑐

𝐴 − 1 + (
𝜀𝑐𝑓

𝜀′
𝑐
)
𝐵 

 
 

(66) 

 𝜀′
𝑐 = (0.0003𝑅𝐼𝑤 + 0.0018)𝑓′

𝑐
0.12

 

 

(67) 

 𝐸𝑐 = (−367𝑅𝐼𝑤 + 5520)𝑓′𝑐
0.41

 (68) 

 

 𝑅𝐼𝑤 = 3.25𝑅𝐼𝑣 (69) 

Where A and B are parameters to reflect the effect of the steel fibers on compressive behavior 

and are defined as: 

 𝐴 = 𝐵 =
1

1−
𝑓′𝑐

𝜀′
𝑐𝐸𝑐

 for  
𝜀𝑐𝑓

𝜀′
𝑐
 ≤ 1 

 

(70) 

 𝐴 = 1 + 0.723(𝑅𝐼𝑤)−0.957 (71) 

   

 
𝐵 = (

𝑓′𝑐

50
)
0.064

[1 + 0.882(𝑅𝐼𝑤)−0.882] ≥ 𝐴 for  
𝜀𝑐𝑓

𝜀′
𝑐
 > 1 

(72) 

Analytical model by Lee et al. (2015) has been implemented on hypothetical specimen 

previously considered for Barros and Figueiras (1999) example and compared with Popovics 

(1970) curve. As it can be seen on the Figure 3.21 the pre-peak behavior agrees well with all 

the models but there is a considerable difference between the post-peak behavior of the curve 

obtained by Barros and Figueiras (1999) which assumes much higher stresses in concrete than 

Lee et al. (2015).  

 

Figure 3.21 Analytical proposal of stress-strain compression curve by Lee et al. (2015) 
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3.4.2.3 Ou, Tsai, Liu and Chang (2012) 

In the experimental study 40 specimens were tested with variation of diameter of the fiber, fiber 

length and fiber volumetric ratio. Compressive strength of concrete was 40 MPa. Steel fibers 

used in the study were end-hooked and had tensile strength of 1000 MPa. Maximum reinforcing 

index taken under consideration was 1.7 due to reduced workability of the concrete mixture that 

has been observed with higher reinforcing index. All the specimens had diameter of 150 mm 

and height of 300 mm. 

Based on the experiment it was concluded that since the modulus of elasticity fluctuated as the 

reinforcing index increased, the reinforcing index has low impact on the value of modulus of 

elasticity. For the compressive strength, little correlation with the reinforcing index was 

observed in the pre-peak branch but for the post-peak it was confirmed that fibers significantly 

contribute to the ductility of the material. Strain at the peak stress tends to increase with 

reinforcing index based on the obtained results. It was also observed that the toughness limit of 

the material was reached at a fiber volume fraction of approximately 2% for all steel fibers and 

that long fibers (50 – 60 mm) outperformed short fibers (30 mm). 

An analytical model developed by Ou et al. (2012) is based on a model proposed by Carreira 

and Chu (1985) and predicts a slightly steeper descending branch at a reinforcing index of 1.7 

than at a reinforcing index of 1.3. The proposal, given that 𝜀𝑐0 = 0.002 is following: 

 𝜀′
𝑐 = 𝜀𝑐0 + 0.0007(𝑅𝐼𝑣) (73) 

   

 𝛽 = 0.71(𝑅𝐼𝑣)
2 − 2(𝑅𝐼𝑣) + 3.05 (74) 

   

 𝑓′𝑐𝑓 = 𝑓′𝑐 + 2.35(𝑅𝐼𝑣) (75) 

 

 

𝑓𝑐 = 𝑓′𝑐𝑓

𝛽 (
𝜀𝑐𝑓

𝜀′
𝑐
)

𝛽 − 1 + (
𝜀𝑐𝑓

𝜀′
𝑐
)
𝛽

 

(76) 

Proposed model has been also implemented on the same hypothetical specimen as previous 

models and Figure 3.22 shows obtained results. It can be observed that model proposed by Ou 

et al. (2012) shows very good agreement with model by Lee et al. (2015) however the concrete 

compressive peak strength is assumed to be slightly higher and strain at peak a bit lower.  
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Figure 3.22 Analytical proposal of stress-strain compression curve by Ou et al. (2012) 

3.4.2.4 Mansur, Chin and Wee (1999) 

Experimental study of Mansur et al. (1999) investigated high-strength concrete members with 

end-hooked fibers with 0.5 mm diameter and length of 30 mm. Fiber volumetric ratios that were 

tested were 0.5%, 1% and 1.5%. In order to define the shape effect, three different shapes were 

casted for the experiment. Tested specimens consisted of 100x200 mm cylinders, 100 mm cubes 

and 100x100x200 prisms.  

Based on results it was concluded, that for vertically casted prisms and for cylinders, inclusion 

of fibers caused smaller initial tangent modulus while for horizontally casted prisms the fibers 

have practically no influence on the initial tangent modulus. Regarding the shape effect it was 

concluded that fiber volumetric ratio effect was found to be smaller for cylinders. Regarding 

compressive strength of the material it was concluded that vertically cast specimens are likely 

to exhibit higher strengths than those casted horizontally.  

Proposed analytical model is following: 

 
𝑓𝑐 = 𝑓′𝑐

𝛽(
𝜀𝑐𝑓

𝜀′
𝑐
)

𝛽−1+(
𝜀𝑐𝑓

𝜀′
𝑐
)
𝛽  for 0 ≤

𝜀𝑐𝑓

𝜀′
𝑐
≤ 1 

 

(77) 

 
𝑓𝑐 = 𝑓′𝑐

𝑘1𝛽(
𝜀𝑐𝑓

𝜀′
𝑐
)

𝑘1𝛽−1+(
𝜀𝑐𝑓

𝜀′
𝑐
)
𝑘2𝛽  for 1 ≤

𝜀𝑐𝑓

𝜀′
𝑐
 

 

(78) 

 
𝑘1 = (

50

𝑓′𝑐
)
3

[1 + 2.5(𝑅𝐼𝑣)
2.5] 

(79) 
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𝑘2 = (

50

𝑓′𝑐
)
1.3

[1 − 0.11(𝑅𝐼𝑣)
−1.1] 

(80) 

   

 
𝐸𝑐 = (10300 − 400𝑉𝑓)𝑓′𝑐

1
3 

(81) 

 

 
 𝜀𝑐0 = (0.0005 + 00000072𝑅𝐼𝑣)𝑓′𝑐

1

3 
(82) 

 

 
𝛽 =

1

[1 − (𝑓′𝑐/𝜀𝑐0𝐸𝑐)]
 

 

(83) 

Figure 3.23 shows that for given hypothetical specimen the analytical prediction of Mansur et 

al. (1999) agrees well with the model proposed by Popovics (1970) for the ascending branch. 

For the post-peak behavior, we can see that there is significant increase in stresses as it is 

expected due to presence of fibers. 

 

Figure 3.23 Analytical proposal of stress-strain compression for high-strength concrete by Mansur et al. 

(1999) 

3.4.2.5 Conclusions 

All of the previously mentioned models were compared and their limitations taken into account 

while selecting the most suitable stress-strain curve for the five-spring model. In the proposal 

by Barros and Figueiras (1999) the main problem was the limitation of the model to two specific 

fiber types and only one fiber aspect ratio, which does not provide accurate simulation of 

behavior of FRC for other fiber aspect ratios. It is also questionable whether the model estimates 

the behavior of the FRC after it reaches the peak stress correctly. The proposal by Lee et al. 

(2015) takes into account different fiber aspect ratios and is more conservative in the post-peak 

branch but if low amounts of fiber volumetric ratio are being considered, the resulting curve 
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does not capture the behavior correctly. Also, the curve by Lee et al. (2015) cannot be applied 

on the regular concrete without fiber inclusion.  

Most suitable analytical method and method considered within the five-spring model is the 

proposal by Ou et al. (2012). This method takes into account different fiber aspect ratios and 

thus is not limited to one type of fibers, gives reasonable results for lower fiber volume ratios, 

can also be used for regular concrete without fiber inclusion, has a more conservative 

assumption for the post-peak behavior of the concrete than Barros and Figueiras (1999) and its 

pre-peak behavior agrees well with behavior described by Popovics (1970). However, one 

significant limitation has to be taken into account and that is the range of concrete strength 

considered within the method that only covers concrete strengths of 30 – 60 MPa and thus 

cannot be implemented for high-strength concretes.  

In order to include high-strength concrete in the five-spring model, for concretes with strength 

higher than 50 MPa the method proposed by Mansur et al. (1999) was implemented. This 

method is suitable for different fiber aspect ratios and the assumption of post-peak behavior is 

as conservative as the model by Ou et al. (2012). The limitation in this case is that it cannot be 

used for regular concrete without fiber inclusion. In order to provide a solution for cases without 

fibers, Popovics (1970) curve was implemented in the five-spring model to describe the 

behavior of concrete under compression if no fibers are included. 

3.4.3 Implementation of the Stress-Strain Curve into the Five-Spring Model 

Adjusted stress-strain curve for FRC under uniaxial compression has been implemented in the 

five-spring model based on the given conclusions. For deep beams without fiber reinforcement 

and any concrete strength Popovics (1970) curve is used for the calculation of stress in the 

critical loading zone. For regular strength concretes with inclusion of fibers, the proposal by 

Ou et al. (2012) has been implemented and the definition of elastic modulus is taken according 

to Lee et al. (2015). For high-strength concrete the five-spring model uses the definition of 

stress-strain relationship by Mansur et al. (1999). The formulation of the methods used in the 

model is exactly as mentioned in the description of each analytical method.  

After obtaining the stress-strain curve the area under the curve is computed as follows: 

 
Ω(𝜀) = ∫ 𝑓𝑐 𝑑𝜀 ≈ ∑

𝑓𝑐(𝜀𝑖) + 𝑓𝑐(𝜀𝑖−1)

2(𝜀𝑖 − 𝜀𝑖−1)
𝑖

𝜀

0

 

 

(84) 

Where the right-hand-side of the equation is the numerical integration of the integral using the 

trapezium rule. The strain axis is divided into small constant intervals ∆𝜀= 𝜀𝑖 − 𝜀𝑖−1, and the 

area under the fc curve within each interval is approximated as a trapezium.  

Average diagonal compressive stress in the critical loading zone is computed: 

 
𝜎𝑎𝑣𝑔 = −

𝛺

𝜀
 

(85) 
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Where the ε represents the diagonal compressive strains in the CLZ which increase with 

increasing imposed shear distortion of the CLZ Δc. The code describing the calculation of the 

𝜎𝑎𝑣𝑔 within the five-spring model can be found in Appendix D. Obtaining 𝜎𝑎𝑣𝑔 allows us to 

compute the shear carried in the critical loading zone: 

 𝑉𝐶𝐿𝑍 = 𝜎𝑎𝑣𝑔𝑏𝑙𝑏1𝑒sin
2 (𝛼) 

 

(86) 

Figure 3.24 and 3.25 highlight the modification introduced into the five-spring model using a 

stress-strain curve with consideration of fibers. Figure 2.24 illustrates the effect for given 

imposed displacement. The dotted lines represent values obtained using the original five-spring 

model and solid lines are values obtained from modified five-spring model. Thick blue line 

represents increased value of shear force provided by the critical loading zone. The only curve 

that is affected by the change of stress-strain response of FRC is the VCLZ. The value remains 

constant, as it is not dependent on the strain in the bottom flexural reinforcement, however its 

value increases significantly due to the action of fibers. 

 

Figure 3.24 Equilibrium of forces in extended 5sm with adjusted stress-strain curve at Δc=5 mm 

Figure 3.25 illustrates the influence of modification on the load-displacement curve. The only 

curve affected by the modification is the VCLZ due to the shift of the curve representing shear 

force provided by VCLZ showed in Figure 2.24. The original VCLZ curve is depicted with blue 

dotted line while the modification with blue solid curve. As it is shown in the figure, adjusted 

stress-strain curve has mainly impact on the post-peak behavior of the beam. Overall, the 

inclusion of fibers results in less brittle behavior of the member in the post-peak branch of the 

curve.  
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Figure 3.25 Predicted V-Δ response with modified stress-strain curve 
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3.5 DEFLECTIONS 

3.5.1 Introduction 

The original five-spring model only accounts for deflection in three-point loading where the 

deflection of the beam is equal to deflection under the loading point. In the extension of the 

model due to limited experimental results, it became one of the crucial points to take into 

account also deflection in four-point loading. Experimental results by Mansur and Ong (1991), 

which served for the validation of the extended five-spring model, tested all the members in 

four-point loading. In order to be able to compare the maximum deflection obtained from the 

five-spring model and the experiment, it was necessary to include the additional deflection in 

the original five-spring model. While in the three-point loading the calculated deflection under 

the loading point is equal to the midspan deflection in four-point loading an additional value 

that accounts for the difference in deflection under the loading point and the midspan needs to 

be introduced.  

3.5.2 Definition of the Additional Deflection 

Given the assumption that plane sections remain plane in bending, the value of the additional 

deflection can be taken as a sum of two deflections: 

 𝛥1 = 𝛥11 + 𝛥12 (87) 

Where: 

 
𝛥11 =

𝜙𝑙𝑠
2

8
 

(88) 

   

 
𝛥12 =

𝜙𝑙𝑠
2

𝑎 

 

(89) 

Where ls is the distance between the loading points, which in case of three-point loading is equal 

to zero and the curvature φ is described as: 

 
𝜙 =

𝑉𝑎

𝐸𝑐𝐼𝑐𝑟
 

 

(90) 

So the final formulation of the additional deflection is: 

 
𝛥1 =

𝑉𝑎

𝐸𝑐𝐼𝑐𝑟
(
𝑙𝑠

2

8
+

𝑙𝑠
2

𝑎) 

 

(91) 

Where the Icr is the moment of inertia of cracked section and for cases without compression 

steel is calculated as follows: 

 
𝐼𝑐𝑟 =

𝑏𝑘3𝑑3

3
+ 𝑛𝐴𝑠(𝑑 − 𝑘𝑑)2 

(92) 
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And the coefficients are defined as follows: 

 
𝑛 =

𝐸𝑠

𝐸𝑐

 
(93) 

   

 
𝐵 =

𝑏

𝑛𝐴𝑠

 
(94) 

   

 
𝐼𝑔 =

𝑏ℎ3

12
 

(95) 

   

 
𝑘𝑑 =

√2𝑑𝐵 + 1 − 1

𝐵
 

 

(96) 

Where Ec is the tangent modulus of fiber-reinforced concrete and Ig is the moment of inertia of 

un-cracked section.  

3.5.3 Implementation of the Additional Deflection into the Five-Spring Model 

Within the extended five-spring model the additional deflection to account for four-point 

loading is added to the sum of the deflection of the shear span due to elongation of the bottom 

longitudinal reinforcement Δt and the shear distortion of critical loading zone Δc. Final 

formulation of the overall deflection at the midspan is defined as follows: 

 𝛥 = 𝛥𝑐 + 𝛥𝑡 + 𝛥1 (97) 

 

Where Δ is the overall deflection when defining the shear strength and displacement capacity 

of deep beams under single curvature. 
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4 VALIDATION OF THE EXTENDED FIVE-SPRING MODEL 

4.1 INTRODUCTION 

Developed extended five-spring model as shown in Appendix E is validated against existing 

experimental results. Two experimental studies were considered for the validation, one being 

the study of FRC deep beams in shear by Mansur and Ong (1991) and another experimental 

study by Mansur and Alwist (1984) on FRC deep beams with web openings where one of the 

control specimens was considered without openings and thus relevant for the validation of the 

extended five-spring model.  

Validation consists of comparisons of the experimental results with extended five-spring model 

and results obtained from a finite element model. Analyses of the effect of fiber volumetric 

ratio and effect of shear span over effective height ratio were carried out, where four different 

fiber volumetric ratios and five different a/d ratios were tested and compared within the 

experimental study.  

In the end, results of the comparisons are discussed and a validation of the model is provided 

with corresponding figures. A verification for FRC beams with high shear reinforcement is 

performed and relevant issues that arise with high shear reinforcement ratios are discussed and 

explained. 

4.2 SAMPLE SPECIMEN EVALUATION 

In order to validate the extended five-spring model, one representative specimen was selected 

from the experimental study of Mansur and Ong (1991) and analyzed in detail. Out of ten 

specimen tested in the experimental study five had variety of shear span to depth ratios from 

0.31 to 1.85. Four of the specimens were tested to analyze the effect of fiber volume ratio 

varying from 0% to 2%. From these specimens the most representative one was selected being 

the specimen B4 with 1% fiber volume ratio and a/d of 1.23.  

Selected specimen is 500 mm high and has a width of 90 mm. Effective depth has been 

calculated based on provided drawings of the setup to 463 mm. Length of the specimen is 1590 

mm which gives a shear length of 570 mm. Concrete strength of the specimen is 31.1 MPa with 

maximum aggregate size of 10 mm. Flexural reinforcement of the beam is provided by four 

reinforcing bars of 16 mm in diameter, yield strength 440 MPa and reinforcement area of 804 

mm2 which gives a reinforcement ratio of 1.93%. The beam has additional web reinforcement 

provided by bars with diameter 6 mm and yield strength 375 MPa with spacing in transversal 

direction of 110 mm and in longitudinal direction of 125 mm which gives a reinforcement ratio 

of 0.27% and 0.47%, respectively. Fibers used in this experimental study were 30 mm long 

straight fibers, slightly twisted and with square cross section and sides length of 0.5 mm. In 

order to get equivalent diameter of fiber that is used in the extended five-spring model, 

perimeter of the square was calculated from which the corresponding diameter was expressed 

as 0.564 mm. Longitudinal length of loading plates is 80 mm and is equal to the support plates. 
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The beam is loaded in four-point loading where distance between the loading plates is equal to 

200 mm. 

Mansur and Ong (1991) provide a detailed description of behavior of the beam throughout the 

experiment. According to Mansur and Ong (1991) in the early stages of loading the beam 

behaved in a truly elastic manner giving a linear load-deflection curve. Diagonal crack within 

the shear span was the first one to form and is described to appear approximately at mid-depth 

of the beam with extension towards both the support and the loading points. Further increase in 

load resulted in the propagation and widening of the existing cracks while simultaneously new 

diagonal cracks developed more or less parallel to the existing ones. Some of the cracks 

originated vertically, but later became inclined in a diagonal direction. Flexural cracks 

propagated within the constant moment region of the beam but only after formation of diagonal 

cracks and, according to Mansur and Ong (1991), they hardly reached the mid-depth of the 

beam. At load ranging from 80% - 90% of the ultimate load, one of the diagonal cracks began 

to grow excessively wide, finally leading to failure which for this particular beam was at load 

of 228 kN. At impending failure, some crushing of the concrete was observed between the 

loading points and the tip of the major inclined crack. The failure load of the beam and its 

cracking patterns can be observed in Figure 4.1. 

 

Figure 4.1 Cracking pattern and mode of failure of beam B4 by Mansur and Ong (1991) 

All of the previously described properties of the beam were implemented into the extended five-

spring model and a load-deformation curve was generated, the curve can be seen in Figure 4.2. 

Based on the detailed description of behavior of the beam throughout the experiment some 

general assumptions of the five-spring model theory can be validated against real life 

observations. One of the main assumptions of the five-spring theory is a formulation of a critical 

diagonal crack. In this case the crack propagated as expected and also was the reason of the 

failure of the beam as assumed in the model. Furthermore, the experiment description also 

mentions the presence of crushing of the concrete between the loading points and the tip of the 

major inclined crack which is in the five-spring model described as crushing of the critical 

loading zone.  
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Figure 4.2 Comparison of load-deflection curves for beam B4 obtained from five-spring method and 

experimental results by Mansur and Ong (1991) 

As it can be seen in Figure 4.2, ultimate shear strength obtained from the five-spring method is 

more conservative than the shear strength obtained in the test. Shear capacity obtained by the 

five-spring method is 214 kN, which gives ratio between experimental result and prediction of 

1.06. As it can be observed from Figure 4.2, deformations of the experimental results are 

slightly higher than the five-spring predictions, which results in the deformation at a peak 

strength of 4.5 mm for the test and only 2.8 mm for the five-spring model. Such difference can 

be caused by the settlement of supports due to high compression forces applied to the beam 

during the loading.  

In order to evaluate the effect of support settlement and to define its impact on the overall 

deflections of the beam, a finite element model (FEM) was created using a VecTor2 program 

for 2D static and dynamic analysis of reinforced concrete structures. The analysis was carried 

out by Jian Liu (2016) who provided the results for the comparisons. The sample specimen was 

modeled in the software using same properties as the five-spring model and specimen B4 in the 

experimental study. Force method using a load step of 2 kN was applied in order to define the 

shear strength of the member. Resulting curve can be seen in Figure 4.3 which also includes 

experimental and five-spring model results.  

From Figure 4.3 we can observe that the shear resistance is slightly higher than the experimental 

result. For the finite element model the failure occurs at shear force of 238 kN which gives ratio 

of experimental shear resistance to FEM prediction of 0.96. For the FEM the shear failure 

occurs at 3 mm deflection which supports the theory of overestimated deformation in the 

experimental study and suggests that some settlement of supports, that might have not been 

accounted for, takes place in the experimental study. 
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Figure 4.3 Comparison of load-deflection curves for beam B4 obtained from finite element model, five-

spring method and experimental results by Mansur and Ong (1991) 

Figure 4.4 pictures the cracking pattern of one half of the beam B4 right before the failure as 

predicted by the FE model. The formation of diagonal cracks corresponds to the formation of 

cracks as described in the experimental study, as well as the flexural cracks in the constant 

moment region which only propagated to the mid-depth of the beam at the moment of the 

failure. Additional cracking can be observed on the edge of the beam where horizontal cracks 

started forming, as well as cracking on top of the beam with some vertical cracks, these cracks 

do not copy the real cracking behavior of the beam as observed in the experimental study and 

are most likely caused by incorrect simulation of cracking by the FE model. 

 

Figure 4.4 Cracking pattern of the beam B4 obtained by the FE analysis 
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4.3 EFFECT OF FIBER VOLUMETRIC RATIO 

In the experimental study, Mansur and Ong (1991) have focused on two main parameters one 

of which was the effect of fiber volumetric ratio. Based on their study they concluded that 

adding fibers to the concrete mixture significantly influenced cracking behavior of the beams. 

The experiment showed that increase of fiber volume ratio decreased maximum crack width 

and also average crack width at all load levels. Higher fiber volume ratio also resulted in smaller 

concrete strains and smaller deflections at a particular load level. Increasing fiber content 

increased both the cracking and ultimate strengths of the beams. 

The effect of fiber volume ratio on the ultimate shear strength is shown in Figure 4.5. Apart 

from the experimental results and VecTor2 results, Figure 4.5 shows also the effect of fiber 

volume ratio according to the extended five-spring model. Separate curves represent the shear 

strength provided by each of the springs of the five-spring model. The biggest shear resistance 

is provided by the critical loading zone and the stirrups. For the extended five-spring model an 

average compressive strength of 33.1 MPa was implemented to generate the average curve of 

the behavior of the specimen, and different fiber volume ratios with step of 0.1% were applied 

to generate resulting curve. Results show that the model created in VecTor2 overestimates the 

ultimate shear strength at lower fiber volumes, however the extended five-spring model copies 

the behavior of the beams quite accurately with comparison to the experimental results.  

 

Figure 4.5 Effect of fiber volume ratio on ultimate shear strength 

4.4 EFFECT OF A/D RATIO 

Second parameter analyzed in the experimental study of Mansur and Ong (1991) was shear-

span-to-depth (a/d) ratio. Five different a/d ratios were considered in the study of Mansur and 

Ong (1991), varying from 0.31 to 1.85. Shear length of the members varied from 740 mm to 

2140 mm and the concrete cylinder strength varied from 31.1 MPa to 35.7 MPa. All of the 
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tested specimen had the same longitudinal and transversal reinforcement ratios of 1.93% and 

0.27%, respectively and fiber volume ratio of 1%.  

Conclusions of the experimental study state that shortening of shear span reduced the 

occurrence and extent of the flexural cracking. In the member with the highest a/d ratio of 1.85, 

flexural cracks appeared first followed by diagonal cracking. In the beam with a/d ratio of 1.23, 

both flexural and diagonal cracking occurred almost simultaneously and for the beam with a/d 

ratio of 0.93, diagonal cracks were the first ones to form. In tested beams with ratios 0.31 and 

0.62 no flexural cracking was observed up to failure. It was also concluded that an increase in 

a/d ratio decreases the stiffness of the beam. 

Within the extended five-spring model an average concrete cylinder strength of 33.9 MPa was 

implemented to obtain the corresponding behavior of the members and gradually increasing a/d 

value with step of 0.1 was implemented to generate the a/d ratio curve. Due to limited time, 

only one member with a/d ratio of 1.23 was analyzed in VecTor2 software and included in the 

comparison of the effect of a/d ratio, properties of the member were the same as the 

corresponding specimen used in the experimental study. 

 

Figure 4.6 Effect a/d ratio on ultimate shear strength 

Figure 4.6 shows results from the experimental study compared with one result from VecTor2 

and curve generated using the extended five-spring model. Separate curves show the influence 

of each of the springs of the five-spring model. From the graph we can observe that for a/d ratio 

up to 1.6 the biggest contribution is caused by critical loading zone, while after a/d ratio of 1.6 

the stirrups provide the most shear strength. Proposed analytical model copies the behavior of 

the member well, however a sudden change of the slope of the curve occurs around a/d of 1.6. 

The cause of such change is most likely the change of the angle of critical crack as defined in 

the model, which changes when the beam is transitioning from deep beam to slender beam. 

Highlighted on the curve is a point, where the angle of critical crack α1 changes its value from 
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α to θ, determined using the extended five-spring method.   α is the angle of line connecting 

inner end of support plate lb2 and outer end of the loading plate lb1 and is described as follows: 

 
𝛼 = atan

ℎ

𝑎𝑒𝑓𝑓
 

(98) 

Where h is the height of the member and effective shear span aeff  is defined as: 

 𝑎𝑒𝑓𝑓 = 𝑎𝑐1 + 𝑙𝑏1𝑒 (99) 

   

 𝑎𝑐1 = 𝑎 −
𝑙𝑏1

2
+

𝑙𝑏2

2
  (100) 

 

 
𝑙𝑏1𝑒 = max (

𝑉

𝑃
𝑙𝑏1, 3𝑎𝑔) 

(101) 

 

   

Where ac1 is the distance between the facing edges of the loading plate and support plate and 

lb1e is the effective width of loading plate parallel to longitudinal axis of member which is 

defined as the maximum of either three times the size of aggregate or contribution of length of 

the loading plate defined by the ratio of shear force to applied point load. The value of angle θ, 

which is the angle of the shear cracks obtained from sectional shear models for slender beams, 

is in this case simplified to the value of 35°, however can be defined using level three 

approximation described in fib MC2010 (2013). 

4.5 DISCUSSION 

Finally, conclusions based on the results obtained from the performed analyses are made and a 

discussion about the results is carried out. In order to verify the results obtained using the 

extended five-spring theory, a load-displacement curve was plotted for four specimens from 

experimental study of Mansur and Ong (1991) along with the curve obtained in the experiment. 

Curve obtained using the extended five-spring model captures well the ultimate shear strength 

of the model, however the deflections are smaller at a particular load level and the stiffness of 

the model is overestimated. An explanation for such behavior could be the settlement of 

supports, caused by the high compression force applied on the beam. Since the material of the 

support plates and its stiffness was not defined in the article by Mansur and Ong (1991) and the 

settlement of the supports was not measured to provide another explanation, finite element 

analysis of the beams was performed.  

Finite element analysis was performed by Jian Liu (2016) with the same properties as described 

in the experiment and the obtained load-displacement curves were compared with the 

experimental and analytical ones. Results obtained by using the finite element analysis captured 

well the ultimate shear strength of the specimen according to the experiments, however the 

deflections were again smaller at a particular load level and the stiffness of the model was 

overestimated. The finite element analysis showed good agreement with the analytical results 

and thus it can be concluded that the main reason for the difference in deflections and stiffness 

is the settlement of supports. 
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Figure 4.7 Comparison of results obtained by FEM and five-spring model for different fiber volumetric 

ratios 

Figure 4.7 shows comparisons of results obtained from the experimental study performed by 

Mansur and Ong (1991), extended five spring model and VecTor2 analysis for four different 

specimens with varying fiber volume ratios, B4, B6, B7 and B8. The ocumented shear strength 

depicted in the graphs with dotted line is the ultimate shear strength of the member as defined 

by Mansur and Ong (1991).  

Apart from the displayed comparisons, all the members from specimens from Mansur’s 

experimental studies relevant for the extended five-spring model were analyzed and the ultimate 

shear strength for each member was predicted. Table 4.1 shows most important properties of 

each beam and ratio of experimental over predicted ultimate shear strength.  
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Table 4.1 Standard deviation and coefficient of variation of results obtained with extended five-spring 

model 

 

Given results from Table 4.1 it can be concluded that the shear strength obtained using the 

extended five-spring model shows good accuracy when compared to the experimental results. 

With coefficient of variation of 6% it can be concluded that the effect of fibers has been well 

represented within the extended five-spring model, and the five-spring model is now able to 

capture not only behavior of regular deep beams, but also fiber reinforced concrete deep beams. 

  

Beam a/d d Vf lf df ρI fc' ρv Vexp Vpred Vexp

Name (mm) (%) (mm) (mm) (%) (MPa) (%) (kN) (kN) Vpred

B1 0,36 463 1 30 0,56 1,93 35,7 0,42 375 350 1,07

B2 0,62 463 1 30 0,56 1,93 35,7 0,49 360 307 1,17

B3 0,93 463 1 30 0,56 1,93 35,5 0,48 291 262 1,11

B4 1,23 463 1 30 0,56 1,93 31,1 0,47 228 214 1,06

B5 1,85 463 1 30 0,56 1,93 31,5 0,49 183 177 1,04

B6 1,23 463 - - - 1,93 34,4 0,47 205 190 1,08

B7 1,23 463 0,5 30 0,56 1,93 33,8 0,47 220 205 1,07

B8 1,23 463 1,5 30 0,56 1,93 33,2 0,47 260 235 1,11

B9 1,51 463 1 30 0,56 1,93 29,5 0,48 224 195 1,15

B10 1,51 463 1 30 0,56 1,93 30,1 1,26 290 299 0,97

WO-1/1 0,58 624 1 30 0,40 0,81 40 0,43 345 355 0,97

1,07

Standard deviation: 0,064

Coefficient of variation: 0,060

Average:
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5 PARAMETRIC STUDY 

5.1 INTRODUCTION 

To study the effects of several variables, a parametric study was carried out using the extended 

five-spring model. First a sample beam was created, properties of the beam were based on an 

experimental beam from tests by Mihaylov (2008). Properties of the sample beam as used in 

the study are described in Table 5.1. The beam is considered to be loaded in three-point loading 

and reinforced with straight fibers.  

Table 5.1 Properties of a sample beam for parametric study 

 

Variables investigated in the parametric study were the effect of a/d ratio, effect of longitudinal 

reinforcement, shear reinforcement, fiber volume ratio and size effect. Each of the investigated 

variables was adjusted within each parametric study, with the rest of the properties remaining 

as described in the Table 5.1. Some of the parameters were evaluated for beams with no shear 

reinforcement, most of the studies were carried out for three different fiber volume ratios of 

0%, 1% and 2%. The last study investigated the effectiveness of fiber and shear reinforcement. 

The impact of each parameter included within the study is evaluated and described in this 

chapter.  

5.2 PARAMETRIC STUDY 
5.2.1 a/d Ratio 

First, the effect of the shear-span-to-depth ratio was evaluated. The range of the ratio taken into 

account varied from 0.5 to 2.5 a/d.  The effect was investigated for fiber volume ratios of 0%, 

1% and 2%. For each of the fiber volume ratios a curve was created by generating the shear 

capacity for given a/d ratio where the step of 0.1 was used. Sample beam with no shear 

reinforcement was considered in this part of study to focus on the effect of fibers. 

The results of the study are shown in Figure 5.1. Horizontal axis describes the values of a/d 

ratio, and the vertical axis represents the shear strength of the beam for given a/d ratio. Three 

different lines represent three different fiber volume ratios. The black dots mark the point of 

change of the angle α1 from α to θ as explained previously in Chapter 2.2. From the graph we 

a/d b d h l ρI As ⌀I No. fy

(mm) (mm) (mm) (mm) (%) (mm2) (mm) barsI (MPa)

1,55 400 1095 1200 3900 0,70 3060 25 6 650

Vf lf df lb1 lb2 ag fc' fyv ρv ⌀v

(%) (mm) (mm) (mm) (mm) (mm) (MPa) (MPa) (%) (mm)

1 30 0,5 300 150 20 40 490 0,1 10
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can observe gradual decrease of shear strength for increasing a/d ratios, where for the shortest 

considered ratio the shear resistance has the highest value. For the highest a/d ratio the shear 

strength of the beam shows to be the lowest. The shear strength resisted by the beam between 

the ratios 0.5 and 2.5 dropped by 78% for the beam with no fiber reinforcement, by 73% for 

1% of fibers, and 69% for 2% of fiber volume ratio. 

 

Figure 5.1 Effect of a/d ratio for different fiber volume ratios 

The effect of fiber volume ratio on the shear strength was evaluated next. Comparison between 

the curves with different fiber volume ratios in Figure 5.1 shows a significant increase in shear 

strength for fiber volume ratio of 1% and 2% compared to the beam with no fibers included. 

The shear strength at 0.5 a/d ratio has increased by 21% for 1% fiber volume ratio compared to 

the beam with no fibers, and by almost 30% for 2% fiber volume ratio. However the difference 

between the shear resistance for a/d ratio of 2.5 is slightly more significant. The beam with 1% 

fiber volume ratio shows increase of 32% in the shear strength compared to deep beam with no 

fiber inclusion, and 2% fiber volume ratio shows and increase of 48% in the shear strength.  

 

Figure 5.2 Breakdown of effect of a/d ratio for Vf = 1% 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

77 

 

Figure 5.2 shows the breakdown of the forces contributing to the shear resistance for 1% fiber 

reinforcement ratio. The decreasing tendency of the curve is mainly dependent on the 

contribution from the critical loading zone, whose size decreases as the a/d ratio gets higher. 

The aggregate interlock also decreases with increasing a/d ratio, however not as significantly 

as the critical loading zone. The effect of fibers slightly reduces the decreasing tendency of the 

curve, where for higher a/d ratios the contribution of fibers is more significant than for lower 

ones. 

In conclusion, the shear force resisted by the beam has desceding tendencies for increasing a/d 

ratios. The inclusion of fibers provides additional shear strength resistance, and the shear 

strength provided by fibers increases with higher fiber volume ratios.  

5.2.2 Longitudinal Reinforcement 

Next parameter investigated within the parametric study was the bottom longitudinal 

reinforcement and its effect on the shear strength of the beam. Reinforcement ratios taken into 

account in this case varied from 0.5% to 3%. The effect was investigated for three different 

fiber volume ratios of 0%, 1% and 2%. For each fiber volume ratio a curve was created by 

generating the shear strength resisted by the beam at a step of 0.1%. To focus on the effect of 

fibers no shear reinforcement was considered in this study. 

 

Figure 5.3 Effect of longitudinal reinforcement for different fiber volume ratios 

Figure 5.3 shows results of the study. Horizontal axis describes different ratios of shear 

reinforcement taken into account. Vertical axis shows the shear strength achieved for each 

reinforcement ratio. Three different lines represent different fiber volume ratios. The tendency 

of the graph shows linear increase in shear strength resistance for increasing ratio of 

longitudinal reinforcement. The increase of shear strength between the ratios 0.5% and 3% for 

beam without fibers was by 107%, for 1% fiber volume ratio by 77% and for 2% fiber volume 
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ratio by 64%. Thus the results show that bottom longitudinal reinforcement contributes greatly 

to the resistance of the deep beams. 

Inclusion of fibers shows again a significant increase in shear capacity. From Figure 5.3 we can 

observe that the contribution of fibers is a constant value added to the overall shear strength of 

the member. The increase in shear strength for beam with 1% of fiber volume ratio and 

longitudinal reinforcement ratio of 0.5% is by 42% compared to beam with no fiber 

reinforcement. The beam with fiber reinforcement of 2% has shear strength higher by 78% than 

beam with no fiber reinforcement. For higher longitudinal reinforcement the percentage of 

increase in overall shear strength decreases and for 1% fiber volume ratio is only 22% higher. 

For fiber volume ratio of 2% the shear strength increases by 42%. 

 

Figure 5.4 Breakdown of effect of longitudinal reinforcement for Vf = 1% 

Figure 5.4 shows the breakdown of the forces contributing to the shear resistance of the beam 

for 1% fiber reinforcement ratio. As it can be seen in the figure the contribution of fibers and 

the critical loading zone is constant. Biggest contribution to the shear resistance comes from 

the critical loading zone, and depending on the reinforcement ratio also from the dowel action 

for higher ratios. The main reason for the increase in the shear strength is the contribution from 

the dowel action which increases with increasing reinforcement ratio. 

It can be concluded, that higher longitudinal reinforcement ratios provide higher shear 

resistance of the beam. The inclusion of fibers increases the shear resistance of the beam, where 

the contribution of fibers highly depends on the fiber volume ratio. 
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5.2.3 Fiber Volumetric Ratio 

The effect of fiber volumetric ratio was investigated in each of the parametric studies. However, 

a separate analysis focused on the effect of fibers was also carried out. The shear resistance of 

the beam was evaluated for fiber volumes varying from 0% to 2.5%. Three curves were 

generated for three different shear reinforcement ratios of 0%, 0.5% and 1% and curves were 

created by generating the shear strength at a step of fiber volume ratio of 0.1%. The rest of the 

properties were as proposed for the sample beam in the introduction of this chapter.  

Figure 5.5 shows the results of the study, where the horizontal axis represents different fiber 

volume ratios, and vertical axis the variation in the shear strength of the beam. Each of the three 

different lines represents one shear reinforcement ratio. As it was previously observed in the 

parametric studies for a/d ratio and longitudinal reinforcement, the inclusion of fibers increases 

the capacity. The resistance of the beam linearly increases with increasing fiber volume ratio. 

For beams with no shear or fiber reinforcement the increase of shear resistance compared to the 

beam with 2.5% volume of fibers is by 91%. For 1% volume of fibers the shear resistance 

increases by 38% compared to the beam with no fibers. When shear reinforcement is 0.5% the 

resistance of the beam with 1% fiber volume ratio increases by 46%, and for 1% shear and fiber 

reinforcement by 29% compared to no fiber reinforcement.  

 

Figure 5.5 Effect of fiber volumetric ratio for different shear reinforcement ratios 

The impact of shear reinforcement was also evaluated within the study. Increase in shear 

reinforcement caused significant increase in shear resistance of the beam. Increase in shear 

resistance for 0.5% shear reinforcement and 1% fiber volume is almost by 70%. For 1% shear 

reinforcement and 1% fiber volume ratio the increase in shear strength is by 140%.  
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Figure 5.6 Breakdown of effect of fiber volumetric ratio for ρv = 0.5% 

Figure 5.6 shows the breakdown of forces contributing to the shear strength for 0.5% shear 

reinforcement. As it can be seen in the figure the main contribution is caused the shear 

reinforcement. The effect of fibers increases with increasing fiber volumetric ratio. 

In conclusion, the inclusion of fibers provides significant increase in shear resistance for deep 

beams. However, shear reinforcement such as stirrups seems to contribute to the overall 

strength more than the fibers. 

5.2.4 Shear Reinforcement 

Next study focused on the effect of shear reinforcement on the shear strength of the beam. Shear 

reinforcement ratio considered in the study varied from 0% to 0.7%. As in the previous studies, 

the effect was evaluated for three different fiber volume ratios of 0%, 1% and 2%. The curves 

were created by generating the shear strength at a step of 0.1%. The rest of the properties of the 

beam remained as mentioned in the introduction of this chapter. 

Figure 5.7 represents the outcome of the study. Horizontal axis consists of different shear 

reinforcement ratios, and vertical axis describes the shear strength achieved. Three different 

curves represent three different fiber volume ratios. The study shows that for increasing shear 

reinforcement ratio the shear strength linearly increases. The increase in the shear strength is 

most significant for case with no fiber reinforcement where the difference between the shear 

strength with 0% shear reinforcement and 0.7% is by 134%. The increase in shear strength for 

1% fiber reinforcement is 98% and for 2% fiber reinforcement ratio is 76%. 

The inclusion of fibers provides additional shear strength to the beam. A constant value of shear 

force is added to the original shear strength depending on the amount of fibers added. Beams 

with no shear reinforcement to 1% fiber reinforcement increased in the shear strength by 39% 

and with 2% of fiber reinforcement ratio by 75%. For members with 0.7% shear reinforcement 
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ratio the shear strength increased less significantly by 11% for 1% fiber volume ratio and by 

20% for 2% fiber volume ratio. 

 

Figure 5.7 Effect of shear reinforcement for different fiber volume ratios 

Figure 5.8 shows the breakdown of the effect of shear reinforcement. As shown in the figure, 

the biggest contribution to the shear resistance comes from the critical loading zone or shear 

reinforcement depending on the reinforcement ratio. The force due to the shear reinforcement 

linearly increases as the ratio of reinforcement increases. 

 

Figure 5.8 Breakdown of effect of shear reinforcement for Vf = 1% 

5.2.4.1 FRC with High Shear Reinforcement 

While generating results to obtain the ultimate shear strength using the extended five-spring 

model, it was observed that in some cases the resulting curve started at a nonzero deformation 

value as shown on Figure 5.9. Such phenomenon was observed for example in specimen B10 

from the experimental study of Mansur and Ong (1991) where the beam B10 was included in 
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the program to study effects of shear reinforcement on the ultimate shear strength. Unlike other 

beams that contained shear reinforcement around 0.47%, beam B10 had percentage of shear 

reinforcement of 1.26% along with fiber reinforcement ratio of 1%. Such high reinforcement 

ratio resulted in the phenomenon depicted in Figure 5.9 where the resistance provided by the 

stirrups is so high that the model is not able to capture the behavior of the curve from the 

beginning but rather from a certain value of deflection. 

When provided with large amount of flexural reinforcement, the beams start to propagate 

flexural deformations before the shear deformations. In this particular case, the transverse 

displacement of critical loading zone does not start propagating only after the deflection of the 

shear span due to elongation of bottom reinforcement has reached 2.9 mm. Due to the high 

shear resistance of the beam the deflection due to transverse displacement is restrained by action 

of stirrups and fibers in the beam and thus only flexural deflections of the shear span propagate 

at the beginning of the loading of the beam.  

 

Figure 5.9 Results for B10 obtained with the extended five-spring model 

Figure 5.10 shows the average tensile strength to shear force at deflection of the beam equal to 

zero for two different shear force reinforcement ratios of 0.47% and 1.26%, respectively. As 

shown in the figures, resulting shear force curve intersects the flexural spring force curve only 

once for 0.47% shear reinforcement ratio. However, due to significant increase in shear force 

provided by stirrups the curve representing the sum of forces, consisting of 1% fiber 

reinforcement ratio and 1.26% shear reinforcement ratio, intersects the flexural spring curve 

three times.  

Five-spring model defines the equilibrium of forces using a bisectional method where it 

searches for a value of the intersection iteratively. Only one correct solution is assumed to exist 

by the model and thus causing the phenomenon showed in Figure 5.9 for beams with high shear 

reinforcement. In highly reinforced members, for fixed Δ equal to zero, the multiple intersection 

of the flexural spring force is causing the model to define the equilibrium at an intersection 
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point with the highest shear force instead of zero where the equilibrium is found for members 

with regular shear reinforcement as shown in Figure 5.10.  

 

Figure 5.10 Average tensile strain at deflection equal to zero for different shear reinforcement ratios 

With the provided explanation an assumption can be made regarding the missing part of the 

plot for a given load-deflection curve. A linear growth of the curves can be assumed to model 

the behavior of the beam before the propagation of transverse displacement of the critical 

loading zone as shown in Figure 5.11. However, the assumption is only a rough prediction of 

the behavior of the curve and does not necessarily represent the real behavior of the specimen.  

 

Figure 5.11 Results for B10 obtained with the extended five-spring model with completed curve  

5.2.5 Comparison of Effectiveness of Fibers vs. Shear Reinforcement 

Previously, the effects of fiber volume ratio and shear reinforcement were separately evaluated. 

It was concluded that both of the parameters contribute significantly to the shear strength of the 
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beam. However, another parametric study was carried out to determine which of the two 

reinforcements is more efficient. Firstly, the shear strength was obtained considering shear 

reinforcement ratio of 0.2% and no fiber reinforcement for different a/d ratios. Then, for each 

step of a/d ratio a fiber volume ratio was specified to match the shear strength obtained using 

0.2% of shear reinforcement. For this case a beam with no shear reinforcement was considered. 

The results then show the amount of fibers necessary to match the shear strength achieved with 

0.2% shear reinforcement for different a/d ratios. 

 

Figure 5.12 Variation of Vmax for different a/d ratios with ρv = 0.2% 

Figure 5.12 illustrates the shear strength for different a/d ratios for beam with 0.2% of shear 

reinforcement. The curve was created by generating the shear strength for different a/d ratios 

at a step of 0.1. The black dot represents the angle change as previously explained in Chapter 

5.2.1. The same curve was then generated for beam with certain ratio of fiber reinforcement 

and 0% shear reinforcement. However, to generate such curve, fiber volume ratio that provides 

the beam with equal shear strength as 0.2% shear reinforcement had to be found. 

 

Figure 5.13 Fiber volume ratio equivalent to 0.2% shear reinforcement ratio 
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Figure 5.13 shows the fiber volume ratio equivalent to the shear strength obtained by using 

0.2% shear reinforcement for different a/d ratios. Horizontal axis shows the range of a/d ratios 

taken into consideration, vertical axis describes the fiber volume ratio equivalent to 0.2% of 

shear reinforcement.  

The outcome of the study shows, that the fiber reinforcement is more effective than shear 

reinforcement only for a/d ratios under 0.8. This is due to the effective length of shear span 

considered within the equation that defines the contribution of shear strength provided by 

stirrups. To obtain the effective shear length, the lengths l0 and 1.5lb1e are subtracted from 

expression 𝑑𝑐𝑜𝑡𝛼1to neglect the stirrups too close to the edges of the shear span. Unfortunately, 

for smaller shear spans such subtraction greatly reduces the amount of stirrups contributing to 

the shear strength. Such reduction does not apply to the contribution of fibers and thus the fibers 

are able to provide more shear resistance than the shear reinforcement in these cases. For higher 

a/d ratios than 0.8 however, the shear reinforcement shows to be more efficient than fibers. 

5.2.6 Size Effect 

Last parameter investigated within the parametric study was the size effect. The size effect was 

examined for effective depth ranging from 700 mm to 2700 mm. For the study a member with 

only fiber reinforcement and without additional shear reinforcement was considered. Three 

different fiber volume ratios of 0%, 1% and 2% were considered. Figure 5.14 shows the results 

of the study. Horizontal axis shows different effective depths and vertical axis describes the 

shear strength divided by the effective cross section of the beam. Three different lines represent 

three different fiber volume ratios. 

 

Figure 5.14 Size effect for different fiber volume ratios 
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From the Figure 5.14 it can be observed that for beams with no fiber reinforcement the size 

effect is very small. The decrease in stress resisted by the cross section is only 10% between 

the and minimum effective depth considered. For 1% fiber reinforcement ratio the effect 

becomes more significant, the size effect decreases by 24%, and for 2% fiber volumetric ratio 

by 31%. Thus it can be concluded, that the size effect gets bigger for members with higher fiber 

reinforcement ratio. 

 

Figure 5.15 Size effect breakdown for 0% fiber volume ratio 

Figure 5.15 represents a breakdown of the size effect for members with 0% fiber reinforcement 

ratio. The figure shows a breakdown of the size effect to contribution of separate shear forces. 

Because in this case no additional shear reinforcement was considered, the graph only consists 

of three shear forces contributing to the stress resisted by the cross section. As it is shown in 

the figure, the dowel action and the effect of the critical loading zone have almost no impact on 

the size effect. However, the aggregate interlock contribution is influenced by the size of the 

member the most. 

Figure 5.16 shows the breakdown of size effect for member with 2% fiber volume ratio. Just as 

for the breakdown of member with 0% fiber volume ratio, this member does not include any 

shear reinforcement. Figure 5.16 shows four different forces contributing to the stress resisted 

by the cross section. The dowel action in this case does not contribute much to the size effect. 

The effect of aggregate interlock decreases with increasing effective height. However, the effect 

of the critical loading zone is more significant than the one of aggregate interlock. Biggest 

contribution to the size effect is provided by the fibers, which is depicted in the figure with 

yellow line. The difference between the contribution to the size effect by the critical loading 

zone for beam with 0% fibers and one with 2% is caused by the redefined stress-strain curve. 

The stress-strain curve definition used in the Figure 5.16 is affected by inclusion fibers, while 

the one in Figure 5.15 is not. 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

87 

 

 

Figure 5.16 Size effect breakdown for 2% fiber volume ratio 

It can be concluded, that the size effect mainly depends on the fiber volume ratio. While for 

beams with no fiber reinforcement the size effect is insignificant, for beams with increasing 

fiber volume ratios the effect becomes bigger and more significant. 

5.3 DISCUSSION 

Based on the results of the parametric study several conclusions can be made. Regarding the 

effect of a/d ratio, the study has shown that for increasing a/d the shear strength becomes 

smaller. This is caused mainly by the reduction of the size of the critical loading zone which 

has shown to have significant impact on the shear resistance of the beam. The effect of bottom 

longitudinal reinforcement has shown to improve the shear strength of the beam with increasing 

reinforcement ratio. Higher ratio of flexural reinforcement increases the resistance of the beam, 

and with addition of fibers the tension stiffening effect increases the resistance even more. 

Shear reinforcement such as stirrups and its impact on the shear strength was investigated in 

three of the studies. Firstly, shear reinforcement and its effect on the shear strength was 

evaluated as a separate parameter. In this study, a linear increase of shear resistance was 

observed for increasing shear reinforcement ratios. The effect of shear reinforcement was also 

included in the study of fiber reinforcement ratio as well as its impact on the maxim shear 

strength of the beam. Again, a significant contribution of the shear reinforcement to the shear 

strength was observed. Lastly, the efficiency of shear reinforcement was compared with the 

efficiency of the fiber reinforcement. It was concluded, that for beams with a/d ratio higher than 

0.8 the shear reinforcement is more effective than fiber reinforcement. For lower a/d ratios, the 

effect of stirrups was lower due to the limitations of the definition of effective area for shear 

reinforcement considered to contribute to the shear resistance. 
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Fiber volume ratio and its effect on the shear resistance was evaluated separately and then also 

in each of the studies. It can be concluded, that fibers provide additional shear strength to the 

beam and with increasing amount of fibers the contribution becomes more significant. 

However, based on the study of comparing the effectiveness of fiber and shear reinforcement, 

fibers have shown to provide less shear strength to the beam.  

Last parameter investigated was the size effect. It was concluded that while for beams with no 

fiber or shear reinforcement the size in effect is not significant, the addition of fibers notably 

affects the size effect. It was observed that for increasing fiber reinforcement ratios, the size 

effect becomes more significant than for beams with no fiber reinforcement. 
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6 SUMMARY AND CONCLUSIONS 

First, all data available on tests performed on fiber reinforced concrete deep beams was 

collected. Based on a literature review, several experimental studies were found. However, only 

the study by Mansur and Ong (1991) and Mansur and Alwist (1984) were summarized and 

placed in a test database due to limitations such as missing data or unsuitable experimental 

setup in other studies. All the tests showed that the addition of fibers increases the shear 

resistance of deep beams. The effects of fiber volumetric ratio, a/d ratio, shear and additional 

longitudinal reinforcement ratios were evaluated in the experimental study by Mansur and Ong 

(1991), where for increasing fiber volume ratio a higher shear resistance was observed. For 

increasing a/d ratio, the shear strength showed a significant decrease. The shear reinforcement 

enhances the shear strength significantly, while the additional longitudinal reinforcement shows 

to have a negligible effect on the shear resistance. 

The main goal of the thesis was to propose an extension to an existing five-spring model (5sm) 

for the shear behavior of deep beams (Mihaylov, 2015) to include the effects of steel fibers in 

such members. A two-parameter kinematic theory proposed by Mihaylov et al. (2013), on 

which the five-spring model is based, was analyzed in detail and explained before an extension 

of the model was implemented.  

The extension of the five-spring model accounts for three effects caused by steel fibers in the 

concrete. To represent the shear resistance provided by the fibers across the critical shear crack, 

the SDEM model proposed by Lee et al. (2013) was selected. The SDEM model is a simplified 

version of DEM model introduced by Lee et al. (2011), and can be used for straight or hooked-

end fibers. To model the tension-stiffening effect of the fibers around the bottom longitudinal 

reinforcement, a tension-stiffening model by Lee et al. (2013) was used. The model takes into 

account the tension resistance of the bottom longitudinal reinforcing bar, the effect of fibers 

and tension-stiffening or softening effect whichever is higher. The last adjustment introduced 

into the model regarding the effect of fibers was the stress-strain curve to represent the 

compressive behavior of the critical loading zones in deep beams. The original code considered 

Popovics (1970) stress-strain curve for the behavior of concrete under uniaxial compression. 

However, extensive research on stress-strain behavior of FRC has shown that, while the 

inclusion of fibers does not significantly affect the pre-peak part of the stress-strain response, it 

greatly enhances the post-peak response compared to regular concrete. A model proposed by 

Ou et al (2012) was used to describe the stress-strain response of regular strength concrete, 

while for high-strength FRC the approach by Mansur et al. (1999) was used. Finally, an 

extension of the Matlab code of the five-spring model was introduced to account for deflections 

in members under four-point loading. 

The proposed extended five-spring model was validated against the collected experimental data. 

The model showed good agreement regarding the shear strength of the test specimens. Yet the 

deflections at the maximum predicted shear force (displacement capacity) were only about 50% 

of the deflections measured in the tests. A possible explanation of such difference was 
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considered to be the settlement of the supports that was possibly unaccounted for in the 

experimental study. To confirm this assumption, four of the beams from the experimental study 

of Mansur and Ong (1991) were analyzed by Liu (2016) using non-linear finite element models, 

and the load-deflection curves obtained from the models were compared with the experimental 

and analytical results. The results of the analyses supported the assumption of support 

settlements, and it was concluded that they were the main cause of the difference in deflections. 

Finally, the measured shear strength of the FRC deep beams from the database was compared 

with the predictions of the extended 5sm. With an average experimental-to-predicted ratio of 

1.07 and a coefficient of variation of 6%, the proposed model was shown to predict the shear 

strength of FRC deep beams with adequate accuracy.  

With the validated model, a parametric study was carried out to study the effect of a/d ratio, 

shear and longitudinal reinforcement ratio, fiber volumetric ratio, and the size effect in shear. 

As it was previously concluded by Mansur and Ong (1991), the 5sm shows that the shear 

strength decreases with increasing a/d ratio. For the fiber volumetric ratio and shear 

reinforcement, the same conclusion was reached as by Mansur and Ong (1991) that for 

increasing fiber volumetric ratio and shear reinforcement ratio the shear resistance of the beam 

increases. A comparison of both types of shear reinforcement was carried out for different a/d 

ratios where the stirrups showed to be more efficient than equal amounts of fiber reinforcement 

for a/d ratios higher than 0.8. The effect of bottom longitudinal reinforcement was also 

evaluated where it was concluded that higher reinforcement ratios provide higher shear strength 

to the member. The last parameter evaluated was the size of the member (size effect in shear). 

Three different fiber volumetric ratios were considered in the size effect series. For beams 

without fibers, the size effect was negligible, while for increasing fiber volume ratios the effect 

became more significant.  

Finally, there are several limitations of the proposed extended 5sm model for FRC deep beams 

that should be considered for future research. It should be taken into account that the SDEM 

does not account for fiber rupture, and therefore when using hooked-ended fibers with low 

strength, the model can overestimate the shear strength. Second, the lack of experimental data 

did not allow an extensive validation of the model. The database created for the validation 

should be extended as new tests become available to validate the model against more 

experimental results. Also, the impact of fibers on the post-peak behavior was not evaluated 

due to the lack of tests in which the post-peak response was measured. 
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APPENDIX A: TEST DATABASE 

Ref. No 1 – Mansur and Ong (1991) 
Ref. No 2 – Mansur and Alwist (1984) 
  

N
o

.
R

e
f.

 N
o

.
B

e
am

 
a/

d
b

d
h

l
a:

M
/V

V
f

l f
l i

d
f

Fi
b

e
r

l b
1

N
am

e
(m

m
)

(m
m

)
(m

m
)

(m
m

)
(m

m
)

(%
)

(m
m

)
(m

m
)

(m
m

)
ty

p
e

(m
m

)

1
1

B
1

0,
31

90
46

3
50

0
74

0
14

5
1

30
-

0,
56

4
S

80

2
1

B
2

0,
62

90
46

3
50

0
10

20
28

5
1

30
-

0,
56

4
S

80

3
1

B
3

0,
93

90
46

3
50

0
13

10
43

0
1

30
-

0,
56

4
S

80

4
1

B
4

1,
23

90
46

3
50

0
15

90
57

0
1

30
-

0,
56

4
S

80

5
1

B
5

1,
85

90
46

3
50

0
21

60
85

5
1

30
-

0,
56

4
S

80

6
1

B
6

1,
85

90
46

3
50

0
15

90
57

0
0

0
-

-
-

80

7
1

B
7

1,
23

90
46

3
50

0
15

90
57

0
0,

5
30

-
0,

56
4

S
80

8
1

B
8

1,
23

90
46

3
50

0
15

90
57

0
1,

5
30

-
0,

56
4

S
80

9
1

B
9

1,
51

90
46

3
50

0
18

50
70

0
1

30
-

0,
56

4
S

80

10
1

B
10

1,
51

90
46

3
50

0
18

50
70

0
1

30
-

0,
56

4
S

80

11
2

W
O

-1
/1

0,
58

80
62

4
65

0
15

50
36

0
1

30
22

0,
4

EH
10

0

N
o

.
l b

2
V

/P
l s

ρ
I

A
s

⌀
I

N
o

. 
f y

a g
f c

'
f y

h
ρ

h
⌀

h
N

o
. 

f y
v

ρ
v

⌀
bv

N
o

. 
V

u

(m
m

)
(m

m
)

(%
)

(m
m

2
)

(m
m

)
b

ar
s I

(M
P

a)
(m

m
)

(M
P

a)
(M

P
a)

(%
)

(m
m

)
b

ar
s h

(M
P

a)
(%

)
(m

m
)

b
ar

s v
(k

N
)

1
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
35

,7
37

5
0,

54
6

4
37

5
0,

42
6

5
37

5

2
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
35

,7
37

5
0,

54
6

4
37

5
0,

49
6

8
36

0

3
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
35

,5
37

5
0,

54
6

4
37

5
0,

48
6

10
29

1

4
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
31

,1
37

5
0,

54
6

4
37

5
0,

47
6

12
22

8

5
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
31

,5
37

5
0,

54
6

4
37

5
0,

49
6

17
18

3

6
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
34

,4
37

5
0,

54
6

4
37

5
0,

47
6

12
20

5

7
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
33

,8
37

5
0,

54
6

4
37

5
0,

47
6

12
22

0

8
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
33

,2
37

5
0,

54
6

4
37

5
0,

47
6

12
26

0

9
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
29

,5
37

5
1,

22
6

9
37

5
0,

48
6

14
22

4

10
80

1
20

0
1,

93
80

4,
25

16
4

44
0

10
30

,1
37

5
0,

54
6

4
37

5
1,

26
6

37
29

0

11
10

0
1

58
0

0,
81

40
2,

12
16

2
41

8
10

40
30

4
0,

20
6

3,
3

12
30

4
0,

43
3,

3
31

34
5



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

95 

 

APPENDIX B: SDEM - MATLAB CODE 

function [ff]=SDEM(wcr,fc,Vf,lf,lh,li,df) 
  

taufmax = 0.396*sqrt(fc); 
tauehmax = 0.429*sqrt(fc); 
  

betaf = 0.67; 
betaeh = 0.76; 

  
sf = 0.01; 
seh = 0.1;  
Kehi = 1+(1+(7*betaeh/15-1)*sqrt(seh/(lf-li/2))-(2*(sqrt(lf-li/2))-

sqrt(seh))^2)/(lf-li); 

  
    if wcr < sf 
        Kst = betaf*wcr/3/sf; 
    else 
        Kst = 1-sqrt(sf/wcr)+betaf/3*sqrt(sf/wcr); 
    end 

  
    if wcr < seh 
        Keh = betaeh*(2*wcr/3/seh-1/5*(wcr/seh)^2); 
    elseif seh <= wcr < lf-li/2 
        Keh = 1+(7*betaeh/15-1)*sqrt(seh/wcr)-(2*(sqrt(wcr)-

sqrt(seh))^2)/(lf-li); 
    elseif lf-li/2 <= wcr < li/2 
        Keh = (li-2*wcr/(2*li-lf))^2*Kehi; 
    else 
        Keh = 0; 
    end 

  
alphaf = 0.5; 

  
fst = alphaf*Vf.*Kst.*taufmax.*lf./df.*(1-2.*wcr./lf).^2; 
if lh >= 1 
    feh = alphaf*Vf.*Keh.*tauehmax.*2.*(li-2.*wcr)/df; 
else 
    feh = 0; 
end 

  
ff = feh+fst; 

  
return 
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APPENDIX C: TENSION-STIFFENING - MATLAB CODE 

function [N]=TS_R_FRC_S(Aceff,Ec,e,ag,Vf,lf,df,db,sb,fc,nb,lh,li,Er,As) 

  
rs=As/Aceff; 
c=1.5*ag; 
k1=0.4; 
k2=0.25; 
k3=1-(min(Vf,0.015)/0.015)*(1-min(50/(lf/df),1)); 
smi=rs/db+0.5*Vf/df*(max((lf/df)/50,1)); 
scr=2*(c+sb/10)*k3+k1*k2/smi; 
fcr=0.33*sqrt(fc); 
M=Aceff/(nb*db*pi); 

         
  if lh<=0 
      cf=0.6+1/0.058*(lf/df)^0.9*((100*Vf)/M^0.8); 
  else 
      cf=0.6+1/0.034*(lf/df)*((100*Vf)^1.5/M^0.8);  
  end 

  
wcri=scr*e;  
[ff]=SDEM(wcri,fc,Vf,lf,lh,li,df); 
fcsofti=fcr*exp(-15*wcri); 
fcTSi=fcr/(1+(3.6*cf*M*e)^0.5); 
fctj=min(Ec*e,max(fcsofti,fcTSi)); 

  
freb=min(Er*As*e); 
ffib=min(ff*Aceff); 
fcon=fctj*Aceff; 
N=(freb+ffib+fcon); 
return 
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APPENDIX D: AVERAGE DIAGONAL STRESS IN THE 

CRITICAL LOADING ZONE - MATLAB CODE 

function [favg,Ec,Dcenv]=FAVG(Vf,lf,df,fc,alfa,lb1e) 

  
e=-(0:0.0001:1.0001)'*0.3; 
RIv=Vf*lf/df; 
if Vf<=0; 
    n=0.8+fc/17; 
    kk=0.67+fc/62; 
    if fc<=41 
        Ec=4730*fc^0.5; 
    else 
        Ec=(3320*fc^0.5+6900); 
    end 
    ec=-fc/Ec*n/(n-1); 
     for i=1:length(e) 
        f(i,1)=fc*n*e(i)/ec./(n-1+(e(i)/ec).^(n*kk)); 
     end  
else 
    if fc<=60 
        Ec=(-367*Vf*lf/df+5520)*fc^(0.41); 
        fcf=fc+2.35*RIv; 
        eco=0.002; 
        ecf=-(eco+0.0007*RIv); 
        beta=0.71*RIv^2-2*RIv+3.05; 
      for i=1:length(e) 
        f(i,1)=fcf*beta*(e(i)/ecf)/(beta-1+(e(i)/ecf)^beta);  
      end 
    else 
    eo=-((0.0005+0.00000072*RIv)*fc^0.35); 
    Ec=(10300-400*Vf)*fc^(1/3); 
    beta=1/(1-(fc/(-eo*Ec))); 
    k1=(50/fc)^3*(1+2.5*RIv^2.5); 
    k2=(50/fc)^1.3*(1-0.11*RIv^(-1.1)); 
    for i=1:length(e) 
        if e(i)/eo <= 1 
            f(i,1)=fc*beta*(e(i)/eo)/(beta-1+(e(i)/eo)^beta); 
        else 
            f(i,1)=fc*k1*beta*(e(i)/eo)/(k1*beta-1+(e(i)/eo)^(k2*beta)); 
        end 
    end 
    end 
end 
Om(1,1)=0; 
for i=2:10002 
    Om(i,1)=Om(i-1)-(f(i)+f(i-1))/2*(e(i)-e(i-1)); 
end 
Dcenv=-3*lb1e*e/tan(alfa); 
favg=-Om./e; 
end 
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APPENDIX E: EXTENDED FIVE-SPRING MODEL - MATLAB 

CODE 

%% Input 
kci=0.18; 
[fc, h, d, a, b, As, rs, sb, fy, Er, ls, Vf, lf, lh, li, df, fyf, nb, ag, 

rv, fyv, Ev, lb1, lb2, VoP, Id, Vexp]=BeamData('B1');  

 

PDexp1=B1; 

  
Dc=(0:0.1:15)'; 

  
%% Geometry 
lb1e=max(VoP*lb1,3*ag); 
acl=a-lb1/2-lb2/2; 
acalc=a-lb1/2+lb1e/2; 
aeff=acl+lb1e; 
alfa=atan(h/aeff); 
alfa1=max(alfa,35/180*pi); 

  
db=(As/nb*4/pi)^0.5; 
rl=100*As/b/d; 
scr=0.28*db*2.5*(h-d)/(rl/100)/d; 
l0=max(scr,1.5*(h-d)/tan(alfa1)); 
l0=min(l0,d/tan(alfa1)/2); 
lk=l0+min(l0,d*(1/tan(alfa)-1/tan(alfa1))); 
lt=d/tan(alfa1)+(lk-l0); 

  
Av=max(min(rv/100,0.15*fc/fyv)*b*(d/tan(alfa1)-l0-1.5*lb1e),0); 

                                                             
Aceff=b*min(2.5*(h-d),h/2); 

  
z=0.9*d; 

  
%% CLZ 
[favg,Ec,Dcenv]=FAVG(Vf,lf,df,fc,alfa,lb1e); 
favg(1)=0; 
Vclzenv=favg*b*lb1e*sin(alfa)^2; 
[Vclzmax, row]=max(Vclzenv); 
Dcmax=Dcenv(row); 
Kclz0=Vclzenv(2)/Dcenv(2); 

  
%% Bottom reinforcement 
kt=1; 

  
%% Solution 
LS=size(Dc,1); 

  
for i=1:LS 
    etl=0; 
    etr=20/100; 

     
    for j=1:100 
        etj=(etl+etr)/2; 
        etminj=kt*etj; 
        etmaxj=(etj*lt-etminj*lk)/(lt-lk); 
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        Dtj=etj*lt/d*a; 

         
        % CLZ                  
        Vclzj=interp1(Dcenv,Vclzenv,Dc(i),'linear'); 

         
        % Stirrups         
        evj=(Dc(i)+0.25*etj*d/(tan(alfa1))^2)/(0.5*z); 
        fvj=min(Ev*evj,fyv); 
        Vsj=Av*fvj; 

         
        % Shear derived from moment equilibrium 

            

[N]=TS_R_FRC_S(Aceff,Ec,etmaxj,ag,Vf,lf,df,db,sb,fc,nb,lh,li,Er,As); 
        Vtj=N*z/acalc; 

               
        etminj=N/Er/As; 

         
        % Dowel action             
        fyej=fy*max((1-(Er*etminj/fy)^2),0); 
        Vdj=min(12*Er*Id/lk^3*Dc(i),nb*fyej*db^3/3/lk); 

         
        % Aggregate interlock 
        sj=Dc(i)*sin(alfa1); 
        wj=Dc(i)*cos(alfa1)+0.5*etminj*lk/sin(alfa1); 
        [ncij,vcij]=CDMfunc(fc,ag,sj,wj); 
        Vcij=kci*vcij*b*d; 

         
        % Fiber action 
        [ff]=SDEM(wj,fc,Vf,lf,lh,li,df); 
        beta=0; 
        VFj=ff*b*d/sin(alfa1); 

         
        % Shear resistance across diagonal crack    
        Vccj=Vclzj+Vcij+Vsj+Vdj+VFj; 

         
        % Error in equilibrium condition Vtj=Vccj        
        erj=100*abs((Vtj-Vccj)/Vccj); 
        if erj<0.01 
            break 
        end 

       
        % Additional deformation to account for four-point loading 
        n=Er/Ec; 
        B=b/(n*As); 
        Ig=b*h^3/12; 
        kd=(sqrt(2*d*B+1)-1)/B; 
        Icr=b*kd^3/3+n*As*(d-kd)^2; 
        D11ij=(Vtj*a)/(Ec*Icr)*((ls^2/8)+(ls/2*a)); 

         
        % Adjustment of boundaries for bisection method 
        if Vtj<Vccj 
            etl=etj; 
        else 
            etr=etj; 
        end 
    end 

    
    er(i,1)=erj; 
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    V(i,1)=Vtj/1000; 
    Vclz(i,1)=Vclzj/1000; 
    VF(i,1)=VFj/1000; 
    Vci(i,1)=Vcij/1000; 
    Vs(i,1)=Vsj/1000; 
    Vd(i,1)=Vdj/1000; 
    Dt(i,1)=Dtj; 

 Vcc(i,1)=Vccj; 

   
    if Vtj<0; 
        LS=i; 
        break 
    end 

     
end 
etmax=et*(lt-kt*lk)/(lt-lk); 
Dc=Dc(1:i); 

  
D=Dt+Dc+D11; 
[Vmax, rvmax]=max(V); 
VFmax=VF(rvmax); 
Vcimax=Vci(rvmax); 
Vclzmax=Vclz(rvmax); 
Vsmax=Vs(rvmax); 
Vdmax=Vd(rvmax); 
Dcu=Dc(rvmax); 

  
% max error 
max(abs(er)) 


