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Abstract

Background: Current research has shown that major difficulties in event extraction for the biomedical domain are
traceable to coreference. Therefore, coreference resolution is believed to be useful for improving event extraction. To
address coreference resolution in molecular biology literature, the Protein Coreference (COREF) task was arranged in
the BioNLP Shared Task (BioNLP-ST, hereafter) 2011, as a supporting task. However, the shared task results indicated
that transferring coreference resolution methods developed for other domains to the biological domain was not a
straight-forward task, due to the domain differences in the coreference phenomena.

Results: We analyzed the contribution of domain-specific information, including the information that indicates the
protein type, in a rule-based protein coreference resolution system. In particular, the domain-specific information is
encoded into semantic classification modules for which the output is used in different components of the
coreference resolution. We compared our system with the top four systems in the BioNLP-ST 2011; surprisingly, we
found that the minimal configuration had outperformed the best system in the BioNLP-ST 2011. Analysis of the
experimental results revealed that semantic classification, using protein information, has contributed to an increase in
performance by 2.3% on the test data, and 4.0% on the development data, in F-score.

Conclusions: The use of domain-specific information in semantic classification is important for effective coreference
resolution. Since it is difficult to transfer domain-specific information across different domains, we need to continue
seek for methods to utilize such information in coreference resolution.

Background
While named entity recognition (NER) and relation/event
extraction are regarded as standard tasks for biomed-
ical information extraction (IE), coreference resolution
[1-3] is being recognized more and more as an important
component of IE to achieve a higher performance. Coref-
erence structure is so abundant in natural language text,
that without properly dealing with it, it is often difficult
to capture important information pieces in text. It was
also a lesson from the BioNLP Shared Task (BioNLP-ST)
2009, which was a community-wide campaign of bioIE
system development and evaluation [4-6], that corefer-
ence structures in biomedical text substantially hinder the
progress of fine-grained IE. Readers are referred to [4,7]
for details about BioNLP-ST. There have been also several
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attempts for coreference resolution for IE, most of which
are focused on newswire texts [3,8-12].
To address the problem of coreference resolution in

molecular biology literature, the Protein Coreference
(COREF) task was arranged in BioNLP-ST 2011. Figure 1
shows an example text segmented into four sentences,
S2 - S5, where coreferential expressions are shown
in brackets. In the task, particularly references to pro-
teins were the primary target of coreference resolution.
In the figure, protein names P4 - P10 are highlighted
in bold-face. In the example, the definite-noun-phrase
expression, this transcription factor (T32), is considered
coreferential with the protein mention p65 (P10). With-
out knowing this coreference relation, it becomes dif-
ficult to capture the information written in the phrase,
nuclear exclusion of this transcription factor, which is
a localization of p65 (out of nucleus), according to the
framework of BioNLP-ST.We call the specific protein ref-
erence contained in the antecedent expression, e.g., p65
in NF-kappa B p65, the antecedent protein. Coreferential
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Figure 1 An excerpt of protein coreference annotated data.
Given protein names are highlighted in purple. Pronouns and definite
noun phrases, are highlighted in red, T27, T29, T30, T32, of which the
antecedents are indicated by arrows.

expressions which do not involve antecedent proteins are
out of the focus of the COREF task, e.g., T30→T27. In
figure, only the coreferences, T29→T28 and T32→T31
are the target of extraction, as they involve antecedent
proteins.
The best-performing system in the COREF shared task

found 22.2% of the anaphoric protein references at the
precision of 73.3% (34.1% F-score). The system is basi-
cally a re-engineered version of existing coreference res-
olution system that was originally developed for the
newswire domain. While the core resolution engine was
remained as the same, modifications were mostly made
to the processing for markable detection and the post-
processing for outputting coreference links according to
the task definition [13]. When it was evaluated using
the MUC score [14], the system’s performance dropped
from 66.38% for newspaper texts to 49.65% for biol-
ogy texts [13,15], which was perhaps caused by domain
differences.
A detailed analysis on the final submission to the

COREF task was reported [7,16], of which the results
of the top 4 systems are also shown in Table 1. In
this analysis, the submitted predictions on the test data
set of the COREF shared task are analyzed accord-
ing to four types of anaphoric expressions: DNP for
definite noun phrases, RELAT for relative pronouns,
PRON for other pronouns including personal, posses-
sive, and demonstrative pronouns, and OTHER for catch-

all type. Examples of the coreference types are outlined
below:

• “the phosphorylation status of [TRAF2] had
significant effects on the ability of [the protein] to
bind to CD40,” (DNP)

• “Subnuclear fractionation reveals that there are [two
ATF1 isoforms] [which] appear to differ with respect
to DNA binding activity,” (RELAT)

• “This ability of [CIITA] to facilitate promoter
occupation is undissociable from [its] transactivation
potential,” (PRON)

An analysis of the results indicated that the best resolu-
tion results for definite noun phrases (the DNP type), and
several pronouns of the PRON type was 27.5% F-score and
10.1% F-score, respectively; the scores were much lower
than the F-score for relative pronouns (the RELAT type),
which yielded a 66.2% F-score. Thus, it can be inferred
that it is more difficult to resolve definite noun phrases
and pronouns than relative pronouns.
In this paper, we compare the contributions of differ-

ent features in coreference resolution: discourse prefer-
ence, number-agreement, and domain-specific semantic
information. While discourse preference and number-
agreement are two features that are often used in corefer-
ence resolution, and easy to be transferred across different
domains, the use of domain-specific semantic information
is varied [10,17,18]. We implemented a protein coref-
erence system that makes use of syntactic information
from the parser output, and protein-indicated informa-
tion encoded in rule-based semantic classification. Exper-
imental results showed that domain-specific semantic
information is important for coreference resolution, and
that simple semantic classification using semantic fea-
tures helped our system to outperform the best-reported
system results in the shared task.

Related works
Several works on anaphora and coreference resolution
have been carried out for the biological domain. Castano
et al. [19] used a salience measure to select the best can-
didate antecedent. A main finding of this work is that
the coercion of a verb on the semantic types of its argu-
ment plays an important role in the pronoun resolution
for this domain. 46 and 54 MEDLINE abstracts were used
for system development and test, respectively. Kim et al.
[20] introduced BioAR, a biomedical anaphora resolution
system, a system which relates entity mentions in text
with their corresponding Swiss-Prot entries. This system
resolves pronouns by using heuristic rules and seven pat-
terns for parallelism. Gasperin and Briscoe [21] solved
coreference resolution for full-text biological articles. This
work employed a complex Naive-bayes model to train a
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Table 1 Performance evaluation on the test data set which contains 284 protein coreference links

PRON (R, P, F) DNP (R, P, F) RELAT (R, P, F) ALL (R, P, F)

UU 12.0 79.0 20.8 5.5 66.7 10.1 56.0 71.2 62.7 22.2 73.3 34.1

UZ 17.6 62.9 27.5 4.1 12.5 6.2 46.7 71.4 56.5 21.5 55.5 31.0

CU —–—–—– —–—–—– 64.6 68.0 66.2 19.4 63.2 29.7

UT 12.8 72.7 21.8 1.4 14.3 2.5 29.3 73.3 41.9 14.4 67.2 23.8

RB-MIN 28.0 40.2 33.0 9.6 31.8 14.7 76.0 62.0 68.3 35.6 49.0 41.2

RB-MIN+1, 3 43.2 53.5 47.8 19.2 38.9 25.7 76.0 60.6 67.5 44.7 54.3 49.0

RB-MIN+1, 2, 3 48.0 50.4 49.2 41.1 37.0 39.0 76.0 60.6 67.5 52.5 50.2 51.3

The first four rows show the top performances in BioNLP-ST 2011, row 5, 6 and 7 are our system results with different combination of rules.

multi-class classifer to classify the relation of expression
pair. Recently, Markov Logic Network (MLN) [22,23] has
been employed in Yoshikawa et al. [3] to predict corefer-
ence relation jointly with event extraction. They compared
a pairwise classifier model, which is similar to Soon’s
model [24], with the MLN model, and concluded that lat-
ter is better for event extraction application. However, it is
difficult to fairly compare different anaphora/coreference
resolution. BioNLP-ST 2011 included a task for corefer-
ence resolution with an aim to implement a fair evaluation
and comparison of protein coreference resolution [7].

Methods
In order to acquire an insight into the coreference reso-
lution problem, we took a rule-based approach, analyzing
the training data of BioNLP-ST 2011 COREF task. The
performance of the system evaluated on the official test
data set of the COREF task shows a significant improve-
ment over the official winning system of the task. This
section presents the overview and the performance evalu-
ation of our system.

System overview
Figure 2 shows the overall design of the system, which
includes five main components: preprocessing, markable
detection, anaphor selection, antecedent candidate selec-
tion, and antecedent prediction. Processing of each com-
ponent is briefly described below.

Step 0 - Preprocessing: The input text is
preprocessed using NLP tools for sentence
segmentation, and syntactic parsing. We used the
Genia Sentence Splitter and Enju Parsera [25] for
sentence segmentation and syntactic parsing,
respectively. Row 1 in the example of Table 2 shows
three sentences as the output from the Genia
Sentence Splitter, and noun phrases as the output
from the Enju Parser for the sentence, S3. Due to the
limited space, only a part of the phrases are shown in
the table. The full parse tree for this sentence is
separately shown in Figure 3.

Step 1 - Markable detection: Text chunks that are
candidate coreferential expressions, which are also
called markables following the jargon of MUC-7, are
collected. For the set of markables, noun phrases,
which do not include a subordinate clause, are
collected as they are analyzed by a syntactic parser
(in our case, Enju). Pronouns are also collected as
markables. Then, for chunks that share the same

Figure 2 Protein coreference resolution workflow.
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Table 2 Illustration example for the systemworkflow of protein coreference resolution

Example text (PMID-7964516) T cell hybridomas respond to activation signals by undergoing apoptotic cell death, and this is likely to
represent comparable events related to tolerance induction in immature andmature T cells in vivo. Previous
studies using antisense oligonucleotides implicated the c-Myc protein in the phenomenon of activation-
induced apoptosis. This role for c-Myc in apoptosis is now confirmed in studies using a dominant negative
form of its heterodimeric binding partner, Max, which we show here inhibits activation-induced apoptosis.

Preprocessing results: sen-
tences and chunks (partially)
(Step 0)

S1: T cell hybridomas respond to activation signals by undergoing apoptotic cell death, and this is likely
to represent comparable events related to tolerance induction in immature and mature T cells in vivo.
S2: Previous studies using antisense oligonucleotides implicated the c-Myc protein in the phenomenon
of activation-induced apoptosis. S3: [This [[role] for [c-Myc] in [apoptosis]]] is now confirmed in [[studies]
using a dominant negative form of its heterodimeric binding partner, Max, which we show here inhibits
activation-induced apoptosis].

Markables (Step 1) S1: [T cell hybridomas] respond to [activation signals] by undergoing [apoptotic cell death], and this is likely
to represent [comparable events related to tolerance induction] in [immature and mature T cells [in vivo]].
S2: [Previous studies using [antisense oligonucleotides]] implicated [the c-Myc protein] in [the phenomenon
of [activation-induced apoptosis]]. S3: [This role for [c-Myc] in [apoptosis]] is now confirmed in [studies] using
a [dominant negative form of [[its] heterodimeric binding partner,[Max]]], [which] [we] show here inhibits
[activation-induced apoptosis].

Anaphors (Step 2) S1: T cell hybridomas respond to activation signals by undergoing apoptotic cell death, and [this] is likely
to represent comparable events related to tolerance induction in immature and mature T cells in vivo.
S2: Previous studies using antisense oligonucleotides implicated the c-Myc protein in the phenomenon
of activation-induced apoptosis. S3: This role for c-Myc in apoptosis is now confirmed in studies using
a dominant negative form of [its] heterodimeric binding partner, Max, [which] we show here inhibits
activation-induced apoptosis.

Antecedent candidates of its
(Step 3)

S1: [T cell hybridomas] respond to [activation signals] by undergoing [apoptotic cell death], and this is likely
to represent [comparable events related to tolerance induction] in [immature and mature T cells [in vivo]].
S2: [Previous studies using [antisense oligonucleotides]] implicated [the c-Myc protein] in [the phenomenon
of [activation-induced apoptosis]]. S3: [This role for [c-Myc] in [apoptosis]] is now confirmed in [studies]
using [a dominant negative form of its heterodimeric binding partner, Max], which we show here inhibits
activation-induced apoptosis.

Predicted antecedent of its
(Step 4)

S1: T cell hybridomas respond to activation signals by undergoing apoptotic cell death, and this is likely
to represent comparable events related to tolerance induction in immature and mature T cells in vivo.
S2: Previous studies using antisense oligonucleotides implicated the c-Myc protein in the phenomenon
of activation-induced apoptosis. S3: This role for [c-Myc] in apoptosis is now confirmed in studies using
a dominant negative form of its heterodimeric binding partner, Max, which we show here inhibits
activation-induced apoptosis.

The resulted items of each step are shown in square brackets, and the whole syntactic parse tree of the sentence S3 is shown in a separated figure.

head-word, which is normally the main noun of a
noun phrase, only the longest chunk is taken. Since
the Enju parser outputs head-word information for
every noun phrase, we make use of this information
for our processing, without any modification. The
third row of Table 2 shows the result of markable
detection for the sample text. In the sentence S3,
three noun phrases recognized by the NX and NP
tags of the Enju output, role, role for c-Myc in
apoptosis, and this role for c-Myc in apoptosis (Step 0
results) share the same head-word role; thus, only the
longest noun phrase this role for c-Myc in apoptosis
is selected. However, between studies and studies
using ... apoptosis, the former chunk is selected, since
the latter contains a subordinate clause.
Step 2 - Anaphor selection: Candidate anaphoric
expressions, which are basically pronouns and
definite noun phrases are determined. A minority of
anaphors are indefinite noun phrases or entity
names, which act as appositions. The system first
considers all pronouns and definite noun phrases in

the markable set as anaphors. Then, several filters are
applied to remove anaphors that are not relevant to
the task definition. We implemented two types of
filters: syntactic and semantic. Syntactic filters are
used to filter out pleonastic its, or pronouns, like he,
she, which are not expected to refer to proteins.
Moreover, because our task focuses on protein
references, semantic filters can be used to filter out
non-protein anaphors at this stage. In practice, for
definite noun phrase type of anaphors, this is
accomplished, by using a list of possible head-words
of protein references; for pronouns, their context
words are used. More details of these methods can be
found in the following section.
Step 3 - Antecedent candidate selection: For each
anaphor, this component collects the antecedent
candidates from the preceding expressions. One of
the candidates will become the response antecedent,
as a result of the antecedent prediction step. In
theory, all expressions in the set of markables can
become antecedent candidates; however, too many
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Figure 3 Illustration of Enju parse output. Enju parse output for the sentence “This role for c-Myc in apoptosis is now confirmed in studies using a
dominant negative form of its heterodimeric binding partner, Max, which we show here inhibits activation-induced apoptosis.” The red boxes show
syntactic relations between of and its two arguments arg1 and arg2.

candidates makes it difficult to achieve correct
antecedent prediction. Moreover, we also filter out
candidates that violate syntactic or semantic
constraints raised by the anaphor. In our system, this
is done by using a particular window size in
sentences, together with several syntactic filters.
One of the syntactic filters is based on syntactic
relations among phrases outputted from the parser.
The idea behind this filter is that some types of
syntactic relations imply the impossibility of
coreference relations between its argument noun
phrases and the inclusive expressions of these noun
phrases. For example, the two expressions: dominant
negative form and its in our example in Table 2, can
not be coreferential with each other, since they are
connected via the preposition of.
Another syntactic filter removes pronouns that are
not in the same pronoun family as the anaphor. This
results in the disappearance of this in candidate
antecedents of its. Pronouns in the same family as its
are its, it, and itself.
Step 4 - Antecedent prediction: To produce a
coreference link, the antecedent candidates are
sorted according to a set of preference rules, then the

best candidate is chosen (Figure 4). For the sorting,
the following four rules are used:

• Rule 1 (Number agreement - NUM-AGREE): The
candidate, which does not conflict in number with
the anaphor, is preferred.

• Rule 2 (Semantic constraint - SEM-CONS): If the
anaphor is a protein reference, then a protein
candidate is preferred.

• Rule 3 (Discourse preference - DISC-PREF):
According to the anaphor type, the farther candidate
is preferred.

• Default rule (Default discourse preference -
DEFAULT): The closer candidate is preferred.

The rules are implemented using different features of
expressions, such as syntactic types of expressions, head
noun, semantic types, etc., in a similar way to [11]. Each
rule in the decision list compares two candidates, and
returns the preferable candidate in concern with the
anaphor. If equility happens, the next rule in the list is
applied. The default and also last rule in the decision
rule list is different from the other rules in that depend-
ing on the anaphor, it prefers the closer or the farther
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Figure 4 Illustration of the decision list used in antecedent
prediction.

candidate. Because of this particular rule, the decision list
never results in the equility result. In this way, candidates
can be sorted, and the best candidate is selected as the
antecedent. Figure 4 illustrates how the decision list works
when comparing two candidates: A and B.
More details concerning the implementation of the

main components of our system shown in Figure 2 are
presented below.

Anaphor selection
In this step, we want to filter out those pronouns and def-
inite noun phrases that are not a target of this task. The
expressions are comprised of two types: non-anaphoric
expressions, and anaphoric expressions, which do not
point to proteins. The term anaphoric is used with
the common sense in the NLP community. Anaphoric
expression refers to an expression with a noun phrase as
antecedent. Thus, expressions with a sentence or phrase
antecedents, or nominal but successive antecedents, are
not our target and should be filtered out.
Non-anaphoric expressions include first and second-

person pronouns such as I, we, you, and pleonastic it.
First and second-person pronouns are easily recognized
by the part-of-speech tags; thus, we use part-of-speech
information for the filtering. For pleonastic it, we make
use of the following four patterns, which are similar
to [26]

It be [Adj|Adv| verb]∗ that
It be Adj [for NP] to VP

It [seems|appears|means|follows] [that]∗

NP [makes|finds|take] it [Adj]∗ [for NP]∗ [to
VP—Ving]

To recognize and filter anaphoric expressions that do not
point to proteins, the system is based on the protein
semantic classification results determined by the method
presented below.

Antecedent candidate selection
For each anaphoric markable, the system collects a list
of antecedent candidates, and select the most probable
candidate to be the antecedent of the anaphor. Basically,
all of the expressions detected in the initial expression
set are an antecedent candidate, with the exception of
anaphoric pronouns. However, if the list contains too
many candidates, then it may be more difficult for the
later antecedent-selection algorithm. Therefore, candi-
dates that are not probable to be an antecedent of the
anaphor should be filtered out. There are several filters
that can be used:
Window size Borders are set to include or exclude

antecedent candidates. This is a common method for
antecedent candidate filtering, as seen in the previous
work [24,27,28]. Since our task focuses on anaphoric
coreference, antecedent expressions normally appear rel-
atively close to the anaphors. Thus, using window sizes is
a proper technique.
Syntactic dependency relations Since arguments of

some dependency relations (such as poss-arg12 and prep-
arg12) do not corefer with each other, they can be used to
correctly eliminate the number of antecedent candidates.
For instance, two such truncated forms definitely cannot
be an antecedent of the protein in this context: two such
truncated forms of the protein.

Antecedent prediction
After filtering non-relevant antecedent candidates for an
anaphor in the step above, depending on the anaphor type,
the remaining candidates are ranked by fixed rules, or by
using a pairwise comparison procedure:

Fixed rules for relative pronouns
The relative pronoun can be said to be the easiest type of
coreference resolution, because its antecedent expression
is very close to the anaphor, and in many cases, it is right
before the anaphor. For these types of anaphors, any syn-
tactic parser can be used to find the relation between rel-
ative pronouns and their arguments. Our system accom-
plishes this task. It simply produces coreference links
between the relative pronouns and their arguments.
However, a disadvantage to using this method is that

when the parser does not find the correct arguments, the
coreference also fails. This is exemplified in the follow-
ing: “...of transcription factor NF-kappa B also encodes
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a p70 I kappa B protein, I kappa B gamma, which is
identical to the C-terminal 607 amino acids of...”

Antecedent candidate ranking based on pairwise comparison
rules
This procedure compares two candidate expressions at a
time with respect to preferences raised by the anaphor.
The most probable antecedent expression is selected to
form a response coreference link. In particular, a list of
rules is used to compare two candidates of an anaphor in
a deterministic manner. For each rule, both of the candi-
dates are checked against the condition hold by the rule.
If one candidate satisfies the condition and the other does
not, the procedure ends with the result that the former
will be preferable over the latter. If both candidates sat-
isfy or do not satisfy the rule, the procedure proceeds to
the next rule and the candidates will be checked against
the condition in the same manner. The rules are applied
in a successive order, one after another, until the inequal-
ity occurs, or until the end-of-the-rule list is reached. The
default rule of the procedure, is in the preference of the
closer antecedent candidate.

Semantic type classification in coreference resolution
By definition, two coreferential expressions are idential,
which implies a semantic-constraint on coreference rela-
tionship. In other words, semantic types of coreferents
must be compatible. In practice, this compatibility is ver-
ified based on a given taxonomy of semantic classes in
the followingmanner: two semantic classes are considered
compatible or agreed with each other, when they have a
synonym relation, or hypernym-hyponym relation. In this
work, we only focus on the protein type, ignoring other
possible semantic types, the structure of the taxonomy
is not taken into account. Therefore, the likelihood that
two expressions are semantically compatible, is definitely
beneficial for antecedent prediction. Focusing on specific
entity types, i.e., protein type, enables us to find a proper
method for determining the likelihood, and method for
encoding the likelihood in coreference resolution.

Accurate semantic type classification based on given
Pronounmentions, for nominal expressions (ANTE-SEM)
Since gold-standard (gold, hereafter) protein annotations
are provided as input to the task, we can use them in
combination with syntactic information to judge whether
an expression is a protein-referential expression or not.
If an expression is a noun phrase with a single head-
word, and it contains a protein mention that completely
overlaps with the head-word, then the expression is clas-
sified as a protein reference. In another case, when the
head-noun of an expression is either protein or gene, and
has a protein mention as its premodifier, such as the Tax
protein, the expression is also a protein reference. For a

coordinated noun phrase, if one of its constituents is clas-
sified as protein, then that noun phrase is also classified as
protein.

Semantic type classification for pronominal anaphors
(PRO-ANA-SEM)
Pronouns, in particular, possessive pronouns, occupy
the majority of anaphoric pronouns in biological texts
(Table 3). However, they do not contain in themselves very
much useful information for the resolution; thus, we need
to acquire more information from its context [29]. The
analysis of BioNLP-ST 2011 also showed that we need
a different strategy to resolve such pronouns [16]. For-
tunately, the key to this problem lies in the context of
pronouns.
We implemented a simple function to classify the

semantic type of a possessive pronoun, based on its con-
text word. In particular, we check the noun phrase in
which the determiner is its or their; if the noun phrase
contains a protein key word then the inclusive pronoun is
classified into the protein semantic type. Protein key words
can be a verb, a noun or an adjective that co-occurred
with protein mentions, and can be used as a clue to dis-
tinguish the protein type from other semantic types. For
example, the word binding in the following noun phrases:
its heterodimeric binding partner, or its binding site, is a
clue to infer that it must be a protein reference. For our
preliminary experiment, we collect these key words man-
ually by checking the noun phrases containing its and
their in the training data. Our final protein key word set
includes 12 words: binding, expression, interaction, regu-
lation, phosphatase activity, localization, gene, sequence,
region, phosphorylation, transactivation, and transcrip-
tion. In future, the protein key words can be collected

Table 3 Anaphor types in descending order of percentage
measured on the training data set

Type Percentage Number Examples

Possessive pronoun 25.3 222 its, their

Relative pronoun 18.6 163 that, which

Demonstrative noun phrase 15.2 133 these genes

Demonstrative pronoun 13.6 119 this, those

The- definite noun phrase 10.9 96 the protein,
this factor

Personal pronoun 9.6 84 it, they, them

Other definite noun phrase 2.2 19 both-NP

Indefinite noun phrase 1.6 14 a factor

Proper name 1.5 13 IL-2

Other pronoun 0.8 7 both, either

Reflexive pronoun 0.8 7 itself

Total 877
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automatically using the term corpus, or other resources of
proteins.

Semantic type classification for definite noun phrase
anaphors (DEFNP-ANA-SEM)
Definite noun phrases do not always have an antecedent
in textual context. In particular, in biomedical scien-
tific papers, many definite noun phrases do not have
antecedents, since the referenced concepts can include
any concept that is understood by subject matter experts
in the domain. Distinguishing such non-anaphoric defi-
nite noun phrases from anaphoric ones is a difficult task.
Knowing their semantic type helps to filter out irrele-
vant candidate antecedents, thereby increasing the chance
of picking up the right antecedent, and increasing the
precision of antecedent prediction.
In our implementation, the decision to keep an

anaphoric expression for further processing steps for an
anaphoric definite noun phrase is based on a protein head
word list. We tested two different head word lists: one is
built automatically from the gold anaphoric nominals in
gold data; the other word list contains the top seven com-
mon head words: protein, gene, factor, molecule, element,
family, inhibitor, and receptor. Using this head-word list
and premodifiers, the system covers 83.5 percent of the
coreference links.

Encoding semantic types in coreference resolution
Semantic type information can be used in coreference
resolution in several ways. First, in anaphor selection,
semantic information can be used to filter out non-protein
anaphoric expressions. Second, in antecedent candidate
filtering, semantic agreement between the antecedent
candidates and the anaphoric expression is verified .
Those candidates that are not in agreement with the
anaphor in semantics are filtered out. For example, if
an anaphor is classified as a protein referent, then the
non-protein antecedent candidates are removed from the
candidate set of the anaphor. Finally, in antecedent predic-
tion: semantic agreement can again be used as a constraint
when comparing two antecedent candidates to select the
more probable candidate.

Results
Performance evaluation
Our minimal system configuration RB-MIN includes all
of the processing and filters from step 0 to step 3, as
explained in the Methods section. To keep the minimal
configuration simple, step 4 - antecedent selection of the
baseline only uses the default comparison rule, which
assures that the closest antecedent candidate is selected.
For antecedent candidate selection, the window size used
in step 4 is set to 2, which means that antecedent can-
didates are collected in the two nearest sentences from

the anaphor, and the sentence embedding the anaphor.
The statistics measured on the training set of the cor-
pus shows that 97.0% percent of protein coreference links
have antecedents appearing in within 2 sentences. With
this window size, the average number of candidates per
anaphor is 6.1. Also, experiments with wider window sizes
did not improve performance.
Table 1 compares our system with the top four offi-

cial results of the COREF shared task in BioNLP-ST 2011
[16]: UU [13], UZ [30], CU, and UT [31]. The scoring
scheme used throughout this paper is the protein coref-
erence evaluation, the primary evaluation method of the
COREF shared task [16]. This primary evaluationmethod,
which was particularly designed for the shared task, is
based on protein coreference links that have been auto-
matically generated from manually annotated coreference
links. The last columnALL shows the overall results, while
its preceding three columns PRON, DNP, and RELAT
shows the protein resolution results by three major sub-
types of anaphors: pronouns, definite noun phrase and
relative pronouns, respectively. Note that the results from
RB-MIN with minimal configuration already surpasses
the best results obtained by the UU team, with up to 7.1%
higher performance in F-score. Since RB-MIN uses sim-
ilar preprocessing tools as UU [13], but less information
in antecedent prediction, this gap in performance is likely
caused by the different markable detection methods. UU
pointed in their paper that markable detection is one of
the challenges of this task [13]. In their system, UU used a
machine learning approach, and tested two distinguished
models for markable detection: one solved both anaphors
and antecedents together, the other treated anaphors and
antecedents separately. Meanwhile, our method is basi-
cally based on the boundary of noun phrases and pro-
nouns, as is outputted from the parser. The patterns used
to extract the proper noun phrases and pronouns, are
manually designed in relation to the markable boundaries
annotated in the training data.
Breaking down the system performance by the different

types of anaphors provides us with insight into what has
been accomplished/solved by our methods, and also pro-
vides us with improvement opportunities. Concerning the
RELAT type of coreference, we can see that RB-MIN and
RB-FULL both achieve comparable results with the best-
performing team in BioNLP-ST 2011. However, it should
be noted that our antecedent prediction for the RELAT
type is based solely on the output of the Enju parser for
the RELAT type, so in order to improve this type of coref-
erence, we have to find ways to overcome the parse errors
on noun phrase boundary detection and relative clause
attachment (see Section Discussions).
The increase in system performance on the PRON and

DNP types by RB-FULL demonstrate the effectiveness of
discourse and semantic information in the performance
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of protein coreference resolution. Comparing RB-MIN,
RB-FULL and RB-MIN+1, 3, we found that rule 3,
which stands for discourse preference, works well for the
PRON type (2). On the other hand, the major contri-
bution to the improvement of DNP resolution is from
rule 2. This rule successfully utilizes the domain-specific
information, which shows that coreference resolution
requires domain-specific information. To further explore
the elements contributed to this significant improve-
ment, we analyzed our system in more detail. The anal-
yses of the results are provided in the section entitled
Discussions.

Discussions
Contribution of rules
Table 4 compares various configurations of our system.
The first row in the table, RB-MIN, is the minimal config-
uration of the system. The following three rows show con-
tribution of the three rules, NUM-AGREE, SEM-CONS,
and DISC-PREF. RB-FULL is the full system. To empha-
size the contribution of the semantic rules, it also shows
RB-FULL-sem system.
The full combination of rule 1, 2 and 3 resulted in a

62.4% F-score (RB-MIN+1, 2, 3) (Table 4). In this full con-
figuration, rule 2 contributes a 4-point F-score increase
in the development set, and 2.3-point F-score increase
on the test set, when comparing RB-MIN+1, 3 and RB-
MIN+1, 2, 3. However, the result of RB-MIN is still
more than 7 points higher than in state-of-the-art perfor-
mance. This gain is due to the fact that the rule ensures
that the semantic type of antecedents is the same as for
their anaphors, thus enabling the correct detection of
antecedents. In other words, if an anaphor is classified as a
protein reference, then the antecedent must also be a pro-
tein reference. The following examples illustrate the way
rule 2 works.

• “Therefore, [IRF-1] may be an important contributor
to IL-12 signaling, and we speculate that the defective
IL-12 responses seen in IRF-1-/- mice might be

Table 4 Contribution of different antecedent prediction
rules in coreference system

EX R P F

RB-MIN 37.7 61.6 46.8

RB-MIN + 1 (NUM-AGREE) 39.7 64.8 49.2

RB-MIN + 2 (SEM-CONS) 47.1 58.2 52.0

RB-MIN + 3 (DISC-PREF) 46.6 65.1 54.3

RB-MIN + 1, 2, 3 (RB-FULL) 57.8 67.8 62.4

RB-MIN + 1, 3 50.5 69.1 58.4

Performance was measured on the development data set which contains 204
protein coreference links.

attributable, in part, to the absence of [this
transcription factor].”b (PMID-10358173)

Coreference examples in this paper are represented
as below: gold anaphoric and antecedent expressions
are bracketed, antecedents before anaphors; gold pro-
tein mentions are underlined; and incorrect response
antecedents are in italics.
In the example above, without rule 2, the faulty response

antecedent of this transcription factor is part because it is
the closet antecedent candidate agreeing with the anaphor
on the singular number. Meanwhile, since this transcrip-
tion factor is recognized as a protein reference, its closest
protein antecedent IRF-1 was successfully detected by
RB-FULL.
Another example is:

• “This role for [c-Myc] in apoptosis is now confirmed
in studies using a dominant negative form of [its]
heterodimeric binding partner, Max, which ...”
(PMID-7964516)

Concerning the anaphoric pronoun its in this example,
there are several antecedent candidates: this role, c-Myc,
apoptosis, studies, a dominant negative form of its het-
erodimeric binding partner. Although studies and a dom-
inant negative form of its heterodimeric binding partner
have been crossed out because of disagreement in num-
bers, and violation of abandoned syntactic constraints,
correspondingly, the system would return the incorrect
antecedent apoptosis instead of c-Myc. Fortunately, the
containing noun phrase of the anaphor its has themodifier
word binding, which is a clue for classifying its as a protein
reference (See Semantic type classification for pronomi-
nal anaphors (PRO-ANA-SEM)). Rule 2 utilizes semantic
classification result to make the correct selection.

Contribution of semantic information in anaphor selection
In our system, domain-specific semantic information is
utilized in two places: anaphor selection and antecedent
prediction. The effect of semantic information in
antecedent prediction has been analyzed in the sections
above. In this subsection, we are going to explore the con-
tribution of semantic information in the anaphor selection
step.
To classify anaphors into protein or non-protein refer-

ence, our system employs a head-word based classifier for
definite noun phrases, DEFNP-ANA-SEM, and a context-
based classifier for pronouns, PRO-ANA-SEM (Section
Methods). Without limiting the number of anaphors by
using semantic information-based filtering, the preci-
sion significantly drops, causing a big decrease in the
F-score (Table 5, RB-FULL without DEFNP-ANA-SEM).
This decrease is due to the fact that the semantic filter
is the only method for filtering out definite noun phrase
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Table 5 Influence of semantic information used in anaphor
selection step on coreference resolution system

EX R P F

RB-FULL 57.8 67.8 62.4

RB-FULL w/o PRO-ANA-SEM 55.4 66.9 60.6

RB-FULL w/o DEFNP-ANA-SEM 55.9 14.5 23.0

RB-FULL w/o DEFNP-ANA-SEM + PRO-ANA-SEM 53.4 13.9 22.1

Performance was measured on the development data set which contains 204
protein coreference links.

anaphors. Without the filter, all definite expressions,
which include a substantial amount of non-anaphoric
expressions, are considered as anaphors. Besides the
anaphoric use, definite noun phrases are also used to refer
to entities or concepts in the common domain knowl-
edge shared between readers and writers. Statistics in [32]
show that only around 30% of definite noun phrases are
anaphoric, and the other uses according to their classifica-
tion include associative, unfamiliar/larger situation, idiom
and doubt. Distinguishing such non-anaphoric definite
noun phrases from anaphoric ones is extremely difficult.
In our system, contextual information of possessive pro-

nouns is utilized through the protein key words (Section
Methods), and this contributed to a 1.8% gain in F-score
(Table 5, RB-FULL without PRO-ANA-SEM). This gain
is a good indication for seeking a systematic method to
develop and include such contextual information in coref-
erence resolution. Examples showing the effectiveness of
semantic information from the context of pronouns is
provided below:

• “This role for [c-Myc] in apoptosis is now confirmed
in studies using a dominant negative form of [its]
heterodimeric binding partner, Max, which ...”
(MID-7964516)

• “This ability of [CIITA] to facilitate promoter
occupation is undissociable from [its] transactivation
potential.” (PMID-10221658)

• “In transient transfectin experiments, [BCL6] can
repress transcription from promoters linked to [its]
DNA target sequence and this activity is ...”
(PMID-8692924)

• “[Human immunodeficiency virus type 1 (HIV-1)
Tat], an early regulatory protein that is critical for
viral gene expression and replication, transactivates
the HIV-1 long terminal repeat (LTR) via [its]
binding to the transactivation response element
(TAR) and, ...” (PMID-9261367)

In all the examples above, the appearance of words such
as binding, transactivation, DNA target sequence in the
noun phrases for which the anaphor plays a role as a
determiner, is a contextual indicator for the protein type.

Since the anaphors are predicted as protein reference from
their context, the system correctly detects their protein
antecedents.

Comparing with the existing scoring schemes
So far, several scoring schemes have been proposed to
evaluate coreference resolution. The MUC score [14] is
based on the assumption that coreference links effec-
tively partition the entity references. The precision, recall,
and F-score are then calculated based on the minimal
number of the required insertion or deletion opera-
tions on the coreference links to transform the partition
by the response coreference links to the one by gold
links. Bagga and Baldwin [33] proposed the B-cubed
(B3) score, which is calculated based on the individ-
ual coreference links, not the resulting partitions.. Luo
proposed the CEAF score which is calculated based on
the best mapping between coreference expressions or
entities, thus results in two types of CEAF: expression-
based (CEAF-M) and entity-based (CEAF-E) [34]. The
best expression mapping used in CEAF is found using
Kuhn-Munkres algorithm. Recently, the BLANC score
was introduced [35], to be used for the CoNLL coreference
resolution shared task [36]. BLANC makes use of a clus-
tering evaluation metric called Rand index [37] to mea-
sure the similarity between two partitions of coreference
expressions.
We compared the BioNLP-ST scoring scheme with the

existing schemes mentioned above. The scores for MUC,
B3, CEAF-M, CEAF-E, and BLANC were achieved using
the scorer of CoNLL shared task [36]. The comparison
result is shown in Table 6. It is observed that the BioNLP,
BLANC and CEAF scores are relatively similar to each
other, which makes sense considering that all the three are
calculated based on the number of individual coreference
links in the response and gold links. On the other hand,
the MUC score is much lower, and the B3 score is much
higher than the BioNLP-ST score. These results agree with
the criticisms on the shortcomings of MUC-score and the
looseness of B3 [38].

Table 6 Evaluation of RB-FULL systemwith different
coreference evaluation scores

Score R P F

BioNLP-ST 57.8 67.8 62.4

MUC 28.9 32.4 30.5

B3 72.9 77.2 75.0

BLANC 61.3 63.4 62.2

CEAF-M 68.2 68.2 68.2

CEAF-E 66.6 62.5 64.5

Performance was measured on the development data set which contains 204
protein coreference links.
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Other issues
Other challenges specific to the protein coreference
task Number agreement is a constraint in English writ-
ing. However, in the data, we found several coreferential
expressions that violate this constraint. The anaphor and
antecedent in the following is an instance of this violation:

• “...for OTF-2 in DRA gene transcription. In contrast,
[OTF-1-enriched protein fractions] did not affect
DRA gene transcription although [it] functionally
enhanced the transcription of another ...”
(PMID-1560002)

Coreference annotation and evaluation Therefore,
when the proteins appear in premodifiers or postmodifers
of noun phrases as [cDNAs encoding EBF or a cova-
lent homodimer of E47] in the following example, such
proteins might not be the correct antecedent proteins.

• “With the aim of identifying genetic targets for these
transcription factors, we stably transfected [cDNAs
encoding EBF or a covalent homodimer of E47],
individually or together, into immature
hematopoietic Ba/F3 cells, which lack [both factors].”
(PMID-9252117)

Parse error Coreference expression boundary is deter-
mined mostly based on noun phrase boundary output
from the parser. Therefore, parse error on noun phrase
boundary strongly affects the performance of corefer-
ence resolution. Examining the data, we found that many
antecedent expressions of plural anaphors are coordi-
nated noun phrases, which are unfortunately difficult
cases to many parsers including Enju. Incorporation of
recent works for coordination resolution like [39] should
be useful for improving the performance of the parser.
The following example shows a coordination-structured
antecedent AML1/CBF beta, C/EBP, Ets, c-Myb, HOX,
and MZF-1 that failed to be detected by the parser. The
spurious response expression is transcription factors from
several families.

• “granulocytic and monocytic lineages, transcription
factors from several families are active, including
[AML1 /CBF beta, C/EBP, Ets, c-Myb, HOX, and
MZF-1]. Few of [these factors] are expressed
exclusively in myeloid cells;...” (PMID-9291089)

Conclusions
From the results of the BioNLP-ST COREF task, it is
analyzed that the use of semantic information is neces-
sary to improve the performance of protein coreference
resolution. This paper presented an improvement of pro-
tein coreference resolution by particularly using domain-
specific semantic information. Other popular techniques

for coference resolution, e.g., number agreement check-
ing and distance-based preference, were also implemented
and tested.
Experimental results show that those techniques can

improve the coreference resolution performance signifi-
cantly. Nevertheless, the current performance is still far
from satisfaction (50.2 % precision, and 52.5% recall), and
there is a much room for improvement. Future works
include more elaborate acquisition and use of semantic
knowledge.

Endnotes
aEnju parser comes with a default tokenizer and part-of-
speech tagger for biological text.
bCoreference examples in this paper are represented
as below: gold anaphoric and antecedent expressions
are bracketed, antecedents before anaphors; gold pro-
tein mentions are underlined; and incorrect response
antecedents are in italics.
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