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Abstract

In many marine fish species, the spermatozoa are immotile in the testis and seminal
plasma, and motility is induced when they are released in the aqueous environment.
It is well known that the extracellular factors (hyperosmolality or sperm-activating
peptides), controlling sperm motility in marine fish, act on the axonemal apparatus
through signal transduction across the plasma membrane. To better understand the
molecular mechanism regulating axoneme activation in marine fish, the present
review examines the existing literature, with particular emphasis on protein
phosphorylation/dephosphorylation process.
The present review suggests that: (1) there is no single model that can explain the
molecular activation and regulation of sperm motility of the marine fish; (2) only in
some species (puffer fish, tilapia, gilthead sea bream, and striped sea bream) protein
phosphorylation/dephosphorylation has been shown to be involved in flagellar
motility regulation; (3) only a few proteins were identified, which show a change in
their state of phosphorylation following sperm activation.
A model of molecular mechanism controlling the activation of sperm motility in
gilthead sea bream is being proposed here, which could be a useful model to clarify
the sperm motility activation process in other species.
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Review
In fish with external fertilization, spermatozoa are usually immotile in the seminal tract

(Stoss 1983). The seminal plasma, whose osmolality and composition depends on the

species, protects and immobilizes spermatozoa until they are ejaculated and their motility

is initiated (Morisawa 1985). Many environmental stimuli control sperm activation by

triggering the different transduction pathways. In salmonids (Baynes et al. 1981; Billard

1983; Morisawa et al. 1983a; Stoss 1983; Morisawa 1985) and sturgeons (Gallis et al. 1991;

Toth et al. 1997; Alavi et al. 2004), the reduction of the external K+ concentration, upon

dilution of semen, initiates sperm motility. Hypotonic exposure after dilution into fresh-

water is the trigger signal in non-salmonid freshwater fish (Morisawa and Suzuki 1980;

Morisawa et al. 1983b; Stoss 1983; Morita et al. 2003; Krasznai et al. 2003b), while hyper-

tonic exposure initiates sperm motility in many marine fishes (Morisawa and Suzuki 1980;

Oda and Morisawa 1993; Detweiler and Thomas 1998; Krasznai et al. 2003a). It has been also

reported that an egg-associated molecule triggers sperm activation in herring (Yanagimachi

and Kanoh 1953; Yanagimachi 1957a, 1957b; Yanagimachi et al. 1992; Oda et al. 1998).
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All these factors lead to the activation of the axoneme through signal transduction across

the plasma membrane. Second messengers, such as cAMP and Ca2+, play key roles in the

initiation of sperm motility in fish (Morisawa and Okuno 1982; Krasznai et al. 2000;

Morita et al. 2003; Zilli et al. 2008a), as well as mammals (Lindemann 1978; Tash and

Means 1982; Okamura et al. 1985), sea urchin (Cook et al. 1994), mussel (Stephens and

Prior 1992), and tunicate (Opresko and Brokaw 1983). The second messengers may trigger

the dynein-mediated sliding of the axonemal outer-doublet microtubules through different

mechanisms such as protein phosphorylation/dephosphorylation (Hayashi et al. 1987;

Lindemann and Kanous 1989; Inaba et al. 1999; Nomura et al. 2000 Itoh et al. 2001; Zilli

et al. 2008a), ADP—binding to dyneine (Lesich et al. 2008; Hayashi and Shingyoji 2009) or

ionic strength (Cosson et al. 2008a). This review is focused on the molecular mechanisms

that enable environmental stimuli to determine the activation of the axoneme, with

emphasis on the role of proteins with phosphorylation/dephosphorylation activity.

Sperm motility activation is mediated by an increase in intracellular calcium

In marine teleosts with external fertilization, three different mechanisms for motility initi-

ation are known. (1) In flatfish species (Inaba et al. 2003), although osmolarity is the

primary factor that regulates the initiation of sperm motility, the intracellular HCO3
− con-

centration plays a key role in this process (higher levels of bicarbonate inhibits motility).

The intracellular level of bicarbonate is controlled by a cytosolic carbonic anhydrase that

convert intracellular HCO3
− into CO2 which lead to decrease in concentration of bicarbon-

ate (CO2 diffuses outside the spermatozoa); (2) in herring, Clupea pallasii spermatozoa mo-

tility is initiated by the presence of a sperm motility initiation factor (SMIF), a 105-kDa

basic glycoprotein that is localized to the micropylar region of the herring egg (Yanagimachi

and Kanoh 1953; Yanagimachi 1957a, 1957b; Yanagimachi et al. 1992; Pillai et al. 1993); (3)

in several marine species (including sea bass Dicentrarchus labrax, tuna Thunnus thynnus,

gilthead sea bream Sparus aurata, striped sea bream Lithognathus mormyrus, puffer fish

Tetraodontidae, flounder Paralichthys orbignyanus, Atlantic croacker Micropogonias undu-

latus, hake Merluccius merluccius, and cod Gadus morhua) hyperosmolality regulates

sperm activation (Morisawa and Suzuki 1980; Oda and Morisawa 1993; Detweiler and Tho-

mas 1998; Krasznai et al. 2003a; Zilli et al. 2008a; Cosson et al. 2008a, 2008b). Moreover, it

has been shown that calcium ions also play a key role in the initiation of sperm motility.

Three different mechanisms of action have been proposed for physiological roles of Ca2+:

(a) Ca2+ acts directly on the axonemal structures (sea bass and tuna, Cosson et al. 2008a,

2008b); (b) Ca2+ regulates Ca2+/calmodulin-dependent protein phosphorylation that in turn

activates the axoneme (for example in puffer fish or seawater-acclimated euryhaline tilapia

Oreochromis mossambicus) (Krasznai et al. 2003a; Morita et al. 2004); (c) Ca2+ leads to a

cAMP-dependent protein phosphorylation that activates axoneme in gilthead sea bream

and striped sea bream (Zilli et al. 2008a). In all suggested mechanisms, the hyperosmolality

signal firstly increases intracellular Ca2+ concentration (Oda and Morisawa 1993), which is

similar to what happens in freshwater fish (Cosson et al. 1989; Krasznai et al. 2000) and

tunicates (Izumi et al. 1999). This increase could be due to a calcium influx across the

plasma membrane, or to a calcium release from intracellular store, or to a cytosol concen-

tration following massive water efflux by aquaporins.

Calcium influx across the plasma membranes has been demonstrated in spermatozoa

of seawater-acclimated Tilapia mossambicus,(Linhart et al. 1999; Morita et al. 2004), sea
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bass,and tuna (Cosson et al. 2008a, 2008b). In vertebrates and invertebrates, an ATP-driven

Ca2+ pump and a Na+/Ca2+exchangers (Wennemuth et al. 2003) together with many types

of calcium channels (Wiesner et al. 1998; Arnoult et al. 1999; Serrano et al. 1999; Westen-

broek and Babcock 1999; Krasznai et al. 2000; Wennemuth et al. 2000; Jungnickel et al.

2001; Quill et al. 2001; Jagannathan et al. 2002; Nikpoor et al. 2004) allow the calcium flux

throughout the plasma membranes of spermatozoa. Up to date, only one calcium trans-

porter has been identified in the plasma membranes of fish spermatozoa. This is a reverse-

Na+/Ca2+exchange that causes an efflux of Na+ and an influx of Ca2+ during ligand-induced

motility initiation in herring sperm (Vines et al. 2002).

The increase of intracellular calcium concentration could be also a consequence of

stretch-activated channel (SAC) activation, when changes in the osmotic pressure occur

(Krasznai et al. 2003a; Cosson et al. 2008a, 2008b). It is known that SAC may modify the

activity of certain membrane proteins (Vandorpe et al. 1994); therefore, they may increase

the calcium membrane conductivity by direct influx of this ion (together with K+) or by

the activation of calcium channels as observed in carp (Krasznai et al. 2003b).

The increase of the intracellular (spermatozoa) calcium concentration, following hyper-

osmotic signal, could be also due to the release of Ca2+ from intracellular stores that has

been demonstrated in puffer fish (Krasznai et al. 2003a). Although spermatozoa lack endo-

plasmic reticulum, it seems that the limited set of organelles that could work as intracellular

Ca2+ stores (Naaby-Hansen et al. 2001; Ho and Suarez 2003; Publicover et al. 2007). The

role of mitochondria in the calcium storage is still unclear. In sea urchin sperm, a Ca2+

ATPase (SPCA) has been localized into the giant mitochondrion in the midpiece, thus sug-

gesting a possible role of this organelle as Ca2+ store (Gunaratne and Vacquier 2006).

Another membrane protein involved in the sperm motility initiation in marine fish is

aquaporin that could determine an increase of intracellular calcium as a consequence of

cytosol concentration due to massive water efflux after hyper-osmotic signal (Cosson et al.

1999; Zilli et al. 2009). In particular, two kinds of aquaporins have been identified in

gilthead sea bream spermatozoa: aquaporin1a (Aqp1a) and S. aurata aquaglyceroporin

(Glp); the last one has been recently identified as Aqp10b (Zilli et al. 2009; Cerda and Finn

2010). Aqp1a and Aqp10b are localized in the plasma membrane of the head and flagellum

of spermatozoa. Immunostaining technique demonstrated that the expression of aquapor-

ins increases after motility activation, which suggests a possible recruitment of aquaporins

into the plasma membrane from intracellular vesicles following hyperosmotic signal

(Figure 1). Aqp1a and Aqp10b could play different roles during the process of sperm acti-

vation in sea bream. It is suggested that the Aqp1a mediates sperm activation, and Aqp10b

involves in the maintenance of motility, as suggested for Aqp7 in human spermatozoa

(Saito et al. 2004). The physiological role of aquaglyceroporins during sperm motility in

vertebrates, however, is not well understood, although it is known that mammalian sperm-

atozoa are able to use glycerol aerobically (Mann and White 1956; Aalbers et al. 1961) and

that organic alcohols (including glycerol) induce protein phosphorylation for motility initi-

ation in chum salmon Oncorhynchus keta (Morita et al. 2005).

Flagellar axoneme activation: final event in the mechanism of sperm motility activation in

marine fish

The final event in the mechanism of sperm motility initiation is the activation of the axo-

neme. This is a microtubule-based, highly organized, and conserved structure composed



Figure 1 Immunolocalization of S. aurata Aqp10b and S. aurata Aqp1a. Immunolocalization of S.
aurata Aqp10b (A) and S. aurata Aqp1a (B) in activated and non-activated spermatozoa of gilthead sea
bream. Immunostaining of non-activated spermatozoa (1), activated spermatozoa (2), and negative
control without primary antibody (3). Reduced from original magnification x100; bar = 6 μm.
(Modified from Zilli et al., Biol Reprod. 2009).
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by more than 250 kinds of proteins. For motility activation, the activity of dynein (the mo-

lecular motor) has to be started (and regulated) to produce the coordinated sliding of

microtubules in the axoneme (Brokaw 1989; King 2000).

In marine fish, the activation of axoneme is achieved by different mechanisms. In sea

bass and tuna spermatozoa, the key factor to start the beating of the flagella is the vari-

ation of ionic strength (Alavi and Cosson 2006; Cosson et al. 2008a). In particular, Cos-

son et al. (2008a) proposed the following model. The water efflux due to the

hyperosmotic shock could cause a local membrane distortion that activates SAC. The

activation of the SAC could lead to the activation of water channels resulting in rapid

release of water from the cells. The result of this process would increase the ionic

strength of intracellular fluids leading to the activation of dynein. In flatfish, HCO3
− ion

appears to act directly on the axonemal machinery itself since it inhibits the movement

of demembranated spermatozoa (Inaba et al. 2003).

In herring sperm, increasing concentration of calcium ions is the main factor that

determines the activation of the axoneme. In particular, sperm motility initiation factor

(SMIF) induces calcium influx by opening the voltage-gated calcium channels and acti-

vating a reverse Na+/Ca2+ exchange (Vines et al. 2002). SMIF determines approximately

fourfold increase in Ca2+ concentration that acts on the axoneme inducing motility

(Pillai et al. 1993; Vines et al. 2002; Cherr et al. 2008).

In some fish species, protein phosphorylation/dephosphorylation is involved in flagellar

motility regulation. In puffer fish and tilapia sperm, the activity of the flagellar axoneme is
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regulated by Ca2+/calmodulin-dependent protein phosphorylation, while in gilthead sea

bream and striped sea bream by cAMP-dependent protein phosphorylation (Morita et al.

2003; Krasznai et al. 2003a; Zilli et al. 2008a, 2009). The major targets of protein phosphor-

ylation/dephosphorylation causing the activation of sperm motility are structural compo-

nents of dynein arms (inner and outer), kinases, and phosphatases anchored in the

axoneme and in the radial spoke proteins (Dey and Brokaw 1991; Hamasaki et al. 1991;

Porter and Sale 2000; Yang et al. 2001). Kinases and phosphatases are required for local

control of motor activity (Porter and Sale 2000; Aparicio et al. 2007), and radial spoke pro-

teins regulate inner arm dynein by phosphorylation/dephosphorylation (Smith and

Lefebvre 1997; Porter and Sale 2000). However, only few proteins involved in the initiation

of motility in marine fish spermatozoa have been identified. Morita et al. (2004) have

demonstrated, using demembranated tilapia spermatozoa, that calcium not only initiates

flagellar motility but also modulates the flagellar waveform. The same researchers identi-

fied a Ca2+-binding protein (CaM) with MW of 18 kDa and pI 4.0 that regulates the flagel-

lar motility in a calcium dependent manner by modifying both the sliding velocity and

flagellar waveform (Morita et al. 2003, 2004, 2006). The same researchers also identified in

tilapia spermatozoa a Ca2+/CaM-dependent protein kinase IV (CaMKIV), localized along

the flagellum and sleeve structure, that is involved in the activation and regulation of

sperm flagellar motility through a Ca2+/CaM-dependent phosphorylation of seven axo-

nemal proteins. In gilthead sea bream, three proteins have been identified that change their

phosphorylation state after sperm activation and play a role in the initiation of sperm mo-

tility (Zilli et al. 2008a, 2009):

(1) An A-kinase anchor proteins (AKAP) have the function of binding to the

regulatory subunits (RI and RII) of protein kinase A (PKA) and confining the enzyme

to discrete locations within the cell. Therefore, cAMP levels temporally regulate PKA,

whereas the spatial regulation within the cell occurs through compartmentalization by

binding to AKAP, thus assuring specificity of PKA function. The role of AKAP as a key

regulator of sperm motility has been already established (Vijayaraghavan et al. 1997). In

addition, a recent study demonstrated that phosphorylation of AKAP in human sperm

results in tail recruitment of PKA and increase of sperm motility, providing evidence

for a functional role of phosphorylation of AKAP (Luconi et al. 2004);

(2) The acetyl-CoA synthetase activates acetate to acetyl-CoA, and provides the cell

with the two carbon metabolite used in many anabolic and energy generation

processes. Therefore, this enzyme could be activated in motile sperm to increase the

level of ATP, which is necessary for flagellar movement;

(3) A novel protein similar to phosphatase and actin regulator 3 of Danio rerio that

may be a protein phosphatase inhibitor.
In striped sea bream, two proteins involved in the activation of sperm motility have

been identified: myotubularin-related protein 1 and dual-specificity tyrosine phosphor-

ylation-regulated kinase 3 (DYRK3) (Zilli et al. 2008a). The myotubularin-related pro-

tein 1 belongs to the protein-tyrosine phosphatase family, and DYRK3 is a protein

kinase auto-phosphorylated on tyrosine residues belonging to the dual-specificity tyro-

sine phosphorylated and regulated kinase family. Many studies have demonstrated that

the development and maintenance of motility is regulated by a complex balance
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between kinase and phosphatase activities (Tash and Bracho 1994; Porter and Sale

2000, King 2000; Aparicio et al. 2007).

From the above report, it clearly emerges that there are different mechanisms of

sperm motility initiation in marine fish. They are species-specific, and they reflect the

adaptation to species life histories/environment, and only parts of which have been

studied in the different species. The identified proteins that play a role in this mechan-

ism in marine fish are summarized in Table 1, where possible homologues in freshwater

fish, invertebrate, and mammalian have been also reported.

S. aurata spermatozoa as a model to study the molecular mechanism of sperm motility

activation

The molecular mechanism that determines sperm motility activation in gilthead sea bream

has many similarities with the mechanisms observed in many animals (sea urchin, salmo-

nids, and mammals). This is not surprising since that internal microtubule-based struc-

tures of the axoneme have been well conserved during evolution. For this reason, the

identification of proteins that change their phosphorylation state following sperm motility

activation and the understanding of signaling pathways among these in gilthead sea bream

spermatozoa could be interesting to clarify this process in other species.

In S. aurata, a drastic change of the environmental osmolality is the signal that triggers

sperm motility activation. The transduction of this event in axoneme activation requires

action of many intracellular mediators. First event is the water efflux that leads to local dis-

tortions of the flagellar membrane that, in turn, activates water channels. Recent study

(Zilli et al. 2011) confirms the important role of aquaporins in initiating sperm motility; in

fact, when these proteins are inhibited by HgCl2, the phosphorylation of some proteins

(174 kDa protein of head; 147, 97, and 33 kDa proteins of flagella), following the hyper-
Table 1 Proteins involved in sperm motility activation and their homologues in fish,
invertebrates, and mammals

Protein Marine fish species Fresh water fish species/
invertebrate and/mammalian
homologues

Ca2+-binding protein O. mossambicus
(Morita et al. 2009)

Homo sapiens (Marín-Briggiler et al. 2005);
A. digitifera (Morita et al. 2009); Ciona
intestinalis (Nomura et al., 2000, 2004);

Ca2+/CaM dependent protein kinase IV O. mossambicus
(Morita et al. 2006)

H. sapiens (Marín-Briggiler et al. 2005);
A. digitifera (Morita et al. 2009)

A-kinase anchor proteins S. aurata
(Zilli et al. 2008a)

H. sapiens (Carr et al. 2007; Luconi
et al. 2011);Bos taurus, Mus musculus
(Moss et al. 1999)

Acetyl-CoA synthetase S. aurata
(Zilli et al. 2008)

_

Novel protein similar to phosphatase
and actin regulator 3 of D. rerio

S. aurata
(Zilli et al. 2008)

_

Myotubularin-related protein 1 L. mormyrus
(` et al. 2008)

_

Dual-specificity tyrosine
phosphorylation-regulated kinase 3

L. mormyrus
(Zilli et al. 2008)

Rattus norvegicus (Becker et al. 1998)

Aquaporin S. aurata
(Zilli et al. 2009)

H. sapiens, M. musculus (Chen et al. 2011);
B. taurus (Ma et al. 2011);Macaca radiata
(Shayu et al. 2005)
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osmotic shock, is also completely or partially inhibited. However, more than one transduc-

tion pathways could be activated when sea bream spermatozoa are ejaculated in seawater,

since numerous proteins showed an HgCl2 (Aqps)-independent phosphorylation state after

sperm activation.

As reported in Figure 2 in gilthead sea bream spermatozoa, the rapid water efflux across

AQPs determines a reduction in cell volume with the increase in intracellular ionic concen-

tration. It is known that adenylyl cyclase is activated by different mechanisms, such as mem-

brane hyperpolarization (Beltran et al. 1996; Izumi et al. 1999) and/or increase in Ca2+ and

HCO3
− concentration (Visconti and Kopf 1998). The cAMP signaling pathway starts the acti-

vation of sperm motility by phosphorylation of some proteins. This post-transductional

modification in sperm motility activation was recently (Zilli et al. 2011) confirmed by obser-

vation that a higher number of protein bands underwent a change of their phosphorylation

state at flagella level with respect to the head level in gilthead sea bream. However, it must

be underlined that the proposed model fits well to the gilthead sea bream sperm activation

but cannot generalize to other marine fish species. A cAMP-dependent protein phosphoryl-

ation, involved in sperm motility activation, has been also demonstrated in chum salmon

(Itoh et al. 2001) and trout (Hayashi et al. 1987). In many species, some proteins phosphory-

lated in PKA-dependent manner have been identified as the light (from 8 to 30 kDa) or

heavy (approximately 500 kDa) chains of the outer arm dynein of sperm flagellum, such as

the 21 kDa protein of chum salmon (Inaba et al. 1999), the 32 and the 500 kDa proteins in

sea urchin spermatozoa (Bracho et al. 1998), the 21 and the 26 kDa proteins in ascidian
Figure 2 Proposed model for sea bream spermatozoa motility activation. The hyperosmotic shock
triggers water efflux from spermatozoa via aquaporins (GLP and Aqp1a). The water efflux determines the cell
volume reduction and, in turn, the rise in the intracellular concentration of ions. This increase could lead to the
activation of membrane-embedded adenylyl cyclase and/or soluble adenylyl cyclase (sAC)and of the cAMP-
signaling pathway, causing the phosphorylation of the flagellar proteins and, then, the initiation of sperm
motility. PKA, protein kinase A; RS, regulatory subunits; CS, catalytic subunits; ACS, acetyl-CoA synthetase.
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spermatozoa (Nomura et al. 2000), the 27 and the 20 kDa proteins of mussel spermatozoa

(Stephens and Prior 1992), and the 18 to 20 kDa protein in C. intestinalis sperm (Dey and

Brokaw 1991). In addition, in salmonid fish, a 48 kDa protein, phosphorylated in a cAMP-

dependent manner, was identified as regulatory subunit of PKA (Itoh et al. 2003). In S.

aurata, an AKAP protein that anchors the regulatory subunit of PKA for tethering of pro-

tein kinases in close proximity to their target proteins has been identified. Different types

of AKAP have been found in spermatozoa, localized into the fibrous sheath of the princi-

pal piece (Moss and Gerton 2001). In mammals, it has been demonstrated that, among the

proteins phosphorylated during epididymal maturation, there are several mitochondrial

proteins (Aitken et al. 2007) and a protein phospahatase PP1γ2 (Chakrabarti et al. 2007).

This is in agreement with a previous finding regarding proteins phosphorylated after mo-

tility initiation in gilthead sea bream spermatozoa that are precisely one mitochondrial

protein (acetyl-CoA synthetase) and one protein that may be a protein phosphatase inhibi-

tor; in addition in striped sea bream, two proteins were identified, a phospatase and a kin-

ase, that are involved in sperm motility activation (Zilli et al. 2008a). The activation of

proteins of sperm mitochondria could be important to provide the energy for sperm motil-

ity; in fact, fish sperm quality is correlated with ATP content (Christen et al. 1987; Zilli

et al. 2004). Mature spermatozoa are highly specialized cells, transcriptionally inactive and

unable to synthesize new proteins; for this reason, protein phosphorylation/dephosphory-

lation has to rely on regulation of many processes that is greater than in many other types

of cell (Urner and Sakkas 2003).
Conclusions
From this review emerges plainly that a complex universal mechanism for sperm motil-

ity initiation in marine fish does not exist, but there are different mechanisms that are

species-specific, only parts of which have been studied in the different species. In par-

ticular, in some of these species (puffer fish, tilapia, gilthead sea bream, and striped sea

bream), protein phosphorylation/dephosphorylation has been shown to be involved in

flagellar motility regulation and present many similarities with the mechanisms of axo-

neme activation of marine invertebrate and mammal spermatozoa.
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