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Abstract This paper deals with the problem of the rigorous
determination of a marine boundary line between two or more
countries, both from the theoretical and the algorithmic point
of view. Through suitable simplifications, also the problem of
the determination of the territorial limit is discussed and
solved. Both the applications above are surely important from
the geomatic and geo-political point of view, also outside the
peculiar problems relevant to the marine environment.
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Introduction

The need for an unambiguous, rigorous, and easily testable
definition of equidistant point (EP) which can be exploited
for the determination of marine boundary lines and
territorial limits requires the development of methods for
the determination of the geometric locus of points equidis-
tant from two or more point sets.

Since such point sets as coastlines and baselines1 are
dealt with, which in general are not easily represented

analytically, the use of numerical calculus appears neces-
sary in order to develop a satisfactory algorithm suitable to
the different precision requirements which can be con-
ceived in view of the specific purposes.

On the other hand, the definition of equidistant line or
median line (the median line is a line every point of which
is equidistant from nearest points on the baselines of two
states; IHO, IAG, IOC 2006) explicitly applies the equi-
distance criteria to the points belonging to the baselines in
addition to the median line points. As a consequence, to
conceive the coastlines as point sets, and to deal with them
accordingly, is necessary and central to the method
presented in this work.

The classical method

The method adopted by the Italian Navy Hydrographic
Institute, which is widely adopted internationally as well,
makes reference to the method developed by the British Navy
Commander R.H. Kennedy and presented at the Geneva
Conference of the year 1958 by the British delegation in a
paper describing the practical construction of an equidistance
line both in the case of opposite coasts and in the case of
contiguous ones: that paper represented for the cartographers
the only and most valid reference for a long time (Francalanci
and Spanio 2000).

The nautical map represents mostly the sea including its
coastal boundaries and the relevant hydrographic and
morphologic features. At a small scale, one can have a
large view which allows to decide if a boundary line
divides the space in a more or less fair manner; anyway, a
geometric procedure must make reference to well defined
and represented fixed points (a condition which often is not
fulfilled due to the main features of a cartographic

1 This term generally indicates the line from which the amplitude of
the territorial limit is measured. The types of baselines conceived by
the international rules depending on the geographic situation of the
specific area are: (a) the “normal baseline” coinciding with the low-
tide line along the coast; (b) the “straight baseline”, connecting
suitable points along the coast; (c) the “archipelagic baseline”,
consisting in a special straight baseline connecting the extreme points
of the islands and the external rocks of an archipelagic country.
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document); on the other hand, the large-scale maps usually
deal with coastal regions with limited sea areas.

Thus, in the 1958 Convention, two main criteria were
discussed in order to solve the boundary problems:

– the agreements between neighboring countries;
– the equidistance line as a limit which no one is allowed

to trespass.

As a matter of fact, the equidistance line cannot be the
only method which provides the solutions to every
problems; indeed, since the first 1958 document the
equidistance line is considered “in case of lack of specific
agreement, unless another boundary line can be chosen
according to special circumstances”; therefore, a suitably
determined equidistance line can represent the first ap-
proach towards the definition of a median line (often used a
synonym) which, in particular cases, can result fair and
acceptable to both parties and, in principle, can be
applicable to almost all cases.

The concept of median line has been well known since
long time to surveyors (or, to be more precise from the
etymological point of view, to geodesists) who had to
determine the limits of different private territory areas
placed on opposite edges of lakes and rivers.

Of course, the curves of the rivers and the irregularities
of the coastlines were being considered in order to get a
result which could take into account possible anomalies and
the lengths of the relevant coastlines.

Concerning the sea, the problem was—and actually is—
more complex, first of all due to the practical impossibility
of a direct measure of the distances between one coast and
the other and due to the different cartographic representa-
tions of the coastlines. Nowadays, the problem can be
solved using satellite positioning and remote sensing
techniques; anyway, the present situation is still influenced
by the heritage of the past—mostly graphical—procedures.

As far as is known to the authors, many present bilateral
agreements have been stipulated making reference to an
equidistance line graphically drawn on the nautical maps
existing at the agreement epoch, because it was felt
necessary first to agree on the principle, and then to
represent visually the limit line determined according to
that principle. In fact, using the positioning procedures
adopted until recently, it was practically impossible to
determine the position of a boat with a precision greater
than several hundred meters (and the nautical maps did not
have a greater precision). Navigation criteria were thus
followed, rather than geodetic precision procedures; as a
consequence, the graphically drawn equidistance line was
to be considered sufficient and suitable to the purpose.

Basically, the Kennedy method consists in a geometrical
construction using circles and segments, based on the
concept of fixed—or control—point. Fig. 1 shows an

example of the graphical construction for the determination
of some points which can help to describe the procedure
(IHO, IAG, IOC 2006):

“Taking points a and b and the segment ab, a perpendic-
ular bisector op of ab is drawn with m being the precise
bisector point of the line ab. Proceed towards p until a circle
passing through a and b and with center in a point q of the
segment op will be tangent at the coastline of one of the two
States. In the figure that point is c in State A. We have that c,
a and b are equidistant from q. Now taking b and c and the
segment bc, a perpendicular bisector o′p′ is drawn similar to
the latter case. This intersects the first baseline bisector op at
q. Then proceed towards p′ until a circle passing through b
and c and with center in a point r of the segment o′p′ will be
tangent at the coastline of one of the two States. In the figure
that point is d in the State B. By proceeding to the right in
this way the segments of the median line will be constructed
until the total median line is derived.”

Although in general the system fulfills the specific
needs, it is lacking from the objectivity and rigor viewpoint,
because the choice of the fixed points (above all the initial
couple of fixed points) is operator dependent. That choice is
indeed based on the consideration of the nearest points,
which is often a difficult task, especially in the case that
some parts of the coast (e.g., the islands’ coastlines) have to
be differently weighted in the computations. If this is the
case, the complication of the construction increases
dramatically, together with the production times.

In addition to the objectivity and rigor needs, one has to
take into account also the efficiency of the process. As will
be clear in the following, the computing times are in the
order of some tens of minutes, while the manual procedure
is in the order of tens of hours.

Fig. 1 Median line obtained with the classical method
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Moreover, it has to be pointed out that the method works
on the cartographic representation on the interested area and
neglects the relevant deformations. That is completely
justified from a practical viewpoint, especially considering
the small scales concerned and the consequent high amount
of graphic error (0.2/0.4 mm at the map scale); however, it
cannot be sufficiently justified in view of the existing
computation abilities and of the possibility of adopting
greater scales when particularly critical boundary situations
are dealt with or when satellite positioning methods are used.

The reference system and the estimation of the geodesic
distance

The above problem finds its natural environment within a
geodetic reference system, always coming together with a
“mathematical” surface intended to represent the earth
physical surface2 as much effectively as possible. The
geometric surface almost always used for that purpose
within the geomatic and hydrographic applications is the
biaxial (or rotation) ellipsoid, suitably sized and shaped, as
a reference for the curvilinear coordinates: latitude 8 and
longitude λ. A significant example of the above definitions
is the modern system ETRS89 (European Terrestrial
Reference System 1989) which has been adopted by almost
all the European Countries: to this system, the geocentric
biaxial ellipsoid GRS80 (Geodetic Reference System 1980)
is associated and to this system are currently referred the
absolute and relative position determinations obtained by
the global positioning system (GPS)3; other examples of a
geodetic reference system are the classical national geodetic
systems (in Italy, the Roma’40 system) to which generally
non-geocentric biaxial ellipsoids are associated (in Italy, the
Hayford ellipsoid).

Thus, assuming to work with reference to, e.g., the
GRS80 ellipsoid, it is useful here to briefly examine the
concept of distance on the ellipsoid, intended as the length
of a geodesic line on that surface.

The geodesic line on the ellipsoid

Let there be given a biaxial ellipsoid of equation

x2 þ y2 þ z2

1� e2ð Þ � a2 ¼ 0

where a=semi-major axis e=
ffiffiffiffiffiffiffiffiffiffi

a2�b2
a2

q

=first eccentricity (b=
semi-minor axis) (for the GRS80—a=6,378,137.0 m, e2=
6.694380023×10-3).

A geodesic line is defined as a curve of the ellipsoidal
surface such that, for each point P of the curve, the
principal normal n to the curve at P and the normal N to the
surface at P coincide:

n ¼ N ð1Þ
In simpler terms, since the direction of the principal

normal of a space curve at P is that direction along which
an observer would see rectilinear the curve in a neighbor-
hood of the point, the above condition applies that property
on the ellipsoidal surface, which means that a geodesic line
is a locally rectilinear curve with respect to the ellipsoidal
surface. Furthermore, one can prove that a geodesic line is a
curve with minimum length4 and it is just this feature which
makes it geometrically suitable to represent a distance.

The length of a geodesic line can be computed very
accurately—even for very long lines—using suitable
numerical methods which can be easily implemented in
effective software codes (see, for instance, Birardi 1988).

However, for the purposes of the present work, it can be
sufficient to adopt, e.g., the simpler procedure described in
(Coticchia and Surace 1978) which uses more concise
formulas and provides the length of an ellipsoidal geodesic
line with a precision of few centimeters upon distances up
to 100 km.

The method of the equidistant point (EP)

Consider now a single point and two point sets on a surface
whatsoever, provided with a metric d. In general, the
distance d(X, α) between a point X and a point set α is
meant as the infimum (in mathematical terms) of the
distances between X and each of the points belonging to
α. Then we can state the following definition:

Given a family Ω={αi : i=1,…,N} of point sets αi, X0 is
called an equidistant point (EP) if:

1. ∃j, k∈{1, …, N}:d(X0,αj)=d(X0, αk );
2. ∀i∈{1, …, N} with i≠ j and i≠k:d(X0, αi)≥d(X0,αj).

The determination of X0 of course depends on the
definition of the particular metric which is being adopted.
However the concept of EP is clearly independent, and also
the case of a different weighting of certain point sets (in
order to reduce or increase the computed distance depend-
ing on the circumstances) can be included whatever the
choice of the metric.

2 With the term earth physical surface we mean the geoid, which is a
particular equipotential surface of the earth’s gravity field.
3 As a matter of fact, the system ETRS89 can be considered as an
European “realization” of the system WGS84 (World Geodetic System
1984), which is closely connected to the GPS. 4 For surfaces whatsoever that is true just in a local, finite sense.
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In the practical applications, which will be illustrated in
the following sections, the notion of geodesic distance
presented in the section ‘The reference system and the
estimation of the geodesic distance’ for the WGS84
(ETRS89) ellipsoid has been adopted.

The EP determination

The case of two coastlines

Consider two different point sets (we shall see that the case
with more than two point sets can be reduced to this one)
and apply the procedure to particular point sets, such as the
coastlines, belonging to an ellipsoidal surface. We shall
adopt the usual geographic reference system with latitude
and longitude coordinates.

Consider first the case with two coastlines, which is the
most frequent scenario.

It is essential to introduce a bi-dimensional mesh of points
with a defined interval ΔΦ in latitude and ΔΛ in longitude.5

As will result clearer in the following, the method which is
being illustrated here—on which the relevant algorithm is
based—consists in the examination of each of the mesh points
in order to verify (or not) the equidistance condition from the
two point sets representing the two coastlines, respectively.

Before proceeding further, anyway, it seems necessary to
give an approximate estimation of the error which will
affect the coordinates of the EP which are being determined
with this procedure. That can be obtained on the basis of
the following semi-rigorous considerations: assuming for a
moment that the coastline points coordinates are error free,
since the intervals of the mesh have a finite length, it is
evident that the condition of equidistance can be verified
with a maximum “mesh error” of � 1

2RΔΦ in latitude and
of � 1

2RcosΦΔΛ in longitude, where R is the radius of the
local sphere at the latitude Φ. Anyway, the coastline points
coordinates are affected also by the position errors and, in
particular, the coordinates of the points, called FP1 and FP2
(fixed, or control, points), of the two coastlines for which
the condition of equidistance to EP is verified. As a
consequence, we have to consider also the mean square
errors (m.s.e.) �sϕ

FP and �sl
FP relevant to the latitude and

to the longitude, respectively, of those points6. As a matter
of fact, such position errors reflect on the corresponding
position errors relevant to the point EP in the following
way: Let dxEP be the true error, along any direction, of the

position of EP: it is clear that, due to the equidistance of EP
from FP1 and FP2, such error is given by

dxEP ¼ dxFP1 þ dxFP2
2

ð2Þ

where dxFP1 and dxFP2 respectively represent the true errors
of FP1 and FP2 along the same direction. From Eq. (2),
according to the error propagation law, we get

s2
EP ¼ 1

4
s2
FP1 þ

1

4
s2
FP2 ¼

1

2
s2
FP ð3Þ

where the last equality is a consequence of the simplifying
hypothesis (see the previous Note 6). Applying again the m.
s.e. propagation law, and including also the mesh errors, the
following total errors can be found for the latitude and the
longitude, respectively:

sϕ
EP ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2ΔΦ2 þ 2 sϕ
FPð Þ2

q

and

slEP ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2cos2ΦΔΛ2 þ 2 sl
FPð Þ2

q

As already noted, the above values provide just an
approximate estimation of the error of the coordinates of EP.

Just for the sake of illustration, Fig. 2 shows a possible
dislocation of “EP candidates” (belonging to the mesh)
around the ideal equidistance line.

Taking into account the above considerations, it appears even
more essential here to complete the notion of point with
the uncertainty of its determination (on the surface or even in the
space). As is well known, such uncertainty is covered, on the
maps, by the “graphic error”7; anyway, considering a digital,
vectorial representation of a surface, like the ellipsoid, in the
space, the scale and graphic error notions lose much of their
importance and the measured position of a point, together with
its uncertainty, becomes fully significant instead.

Therefore, the main feature of this method is to consider
the equidistance line and the coastlines as point sets and not
as lines. It is not a restriction at all because, graphically, the
coastline is always represented by a polygonal line which,
of course, can be substituted by a more or less dense point
set, depending on the chosen accuracy. If the purpose is just
to determine the point set constituting the median line with
a given accuracy, it is immediately understandable the
advantage of a method which does not need to rest on
geometrical/analytical considerations. As a matter of fact,
methods resting on analytical formulas (Wahl 1990—Milan
Horemuž et al. 1999—Murphy et al. 1999) are essentially
based on the computation of the turning points (TP)

5 As will be better explained in the following, such intervals can be
reduced conveniently depending on possible needs of greater
graphical details.
6 Here we suppose, for simplicity, that the coordinates of all points of
both the coastlines are affected by the same error in latitude and by the
same error in longitude.

7 The “graphic error” on a technical map is defined as the minimum
distance at which two points can be seen by the human eye as
separated. Usually it amounts to 0.2 mm.
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considering a number of basepoints, not more than five
points each time, on the coastlines and distinguishing
among the different reference surfaces with different
topologies. That approach, although sensibly contributing
to the solution of the problem from an analytical viewpoint,
does not seem convenient, in computational terms, with
respect to the one based on numerical methods; it should
also be taken into account the complexity of the coastlines
and the considerable amount of points (of the order of
thousands) which are necessary to describe them. Instead,
the method which is being discussed here does not start
from the basepoints in order to search for the TP: it simply
tests all the surface points in the mesh to find out which of
them are good candidates as TP and, as already noted, does
not depend on the choice of the topology. Therefore, this
method is basically operational and, implemented in a
simple algorithm (Fig. 3), is well suited to be translated into
a software.

Of course, it is also conceivable to develop optimized
procedures for the search of the EPs. It is possible, e.g., to
start from a mesh with large-sized intervals and then to
decrease the size more and more until converging to the
EPs with a minimum mesh error (obviously it will not be
possible to decrease the amount of the position errors of the
FPs).

The development of the test software has been carried
out with the platform C++.NET using a convergence
criterion for the progressive refinement of the mesh interval
size.

Using a normally equipped PC (AMD Athlon 64-bit
2 GHz—2 GB RAM) and working on two coastlines
composed by 4,991 and 8,000, respectively, on an area of
amplitude 2°30′, a mesh interval of 0.1° both in latitude and
in longitude and a test precision of 0.00001°, a line
composed by 4,183 points was obtained (having established
that the indeterminacy should not be greater than 1 m along

the meridian and along the parallel). The total computation
time was around 10 min. The coastlines in the following
examples are real coastlines but their locations may be
fictitious in order to obtain the different cases of study. The

Fig. 3 The algorithm of the EP method

Fig. 2 Median line obtained
with the EP method
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graphical output for the case of the two coastlines is
reported in Fig. 4.

In Fig. 5, the case of two adjacent coastlines is
represented. On the coastlines, the control points are
indicated in red, i.e., those couples of points on the
coastlines which are located at a minimum distance from
an EP on the median line and which are computed together
with the EPs.

Furthermore, a comparison has been performed with the
results obtained through the graphical procedure based on
the conventional method cited in ‘The classical method’.
For practical reasons, due to the long time required to
obtain an equidistant line with the classical method, we
took a previous work, so the coastlines of Fig. 6 do not
resemble any of the previous ones.

The comparison results are presented in Figs. 6 and 7. In
both figures, the purple squares are the points obtained with
the graphical procedure, while the cyan ones are those
obtained with the present method. The dimensions of the
rectangle considered in Fig. 6 are 1° in latitude and 1°31′ in
longitude.

The construction lines have been omitted in order to
make the graphics more understandable. Figure 7 reports a
detail which evidences the substantial coincidence of the

Fig. 4 The case of two coastlines

Fig. 5 The case of two adjacent
coastlines

Fig. 6 The comparison between the EP (cyan) and the classical
method (purple)
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two methods, with the exception of the cusp zone where the
graphical method shows a difference in the “critical” cusp
point. Such point is the well-known turning point (TP).

The present method and the turning points (TP)

In the method based on the geometrical construction, the
median line turns out to be a polygonal line connecting the
TPs. As already noted, they are the points at which the median
line changes its direction depending on the profiles of the near
parts of the coastlines. With the present method, instead,
substantially based on numerical computations, the median
line is composed by a point set whose density can be freely
chosen and which does not include, in general, the TP. Then,
similarly to the results obtained with the graphical method,
one could include a control in the algorithm for identifying a
TP among the EPs depending on the variation of one of the
two fixed points, in order to get only the TPs as output. As an

alternative, the formulas by Sjöberg et al. (Sjöberg 2001;
Carrera 1987; Horemuž et al. 1999) for the computation of
the TPs could be used, where the three necessary points
are the two fixed points plus the point which is varied on
one of the two coastlines.

In any case, it should be observed that the present
method has been conceived mainly to fulfill an operational
need, which is to obtain a satisfactory result within the
given precision.

On the other hand, also the exploitation of exact
geometric formulas for the electronic computation of the
TPs should be done through numerical methods in order to
apply to the resulting median line all the previous

Fig. 7 Zooming a turning point. The mean distance between cyan
points is 250 m

Fig. 8 The case of three coastlines

Fig. 9 The simplified case of four coastlines

Fig. 10 The case of weighted coastline (blue)
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considerations on the precision. As a matter of fact, the
coastlines may have whatever shapes and one often finds
many—and very close each other—TPs. That mostly
happens if the coastlines are sufficiently smooth and close
each other, or if they have an evident curvilinear profile
(see Fig. 8, near to the islands), so that in such cases the
median line results in a curve rather than a polygonal.

Moreover, this method uses a more direct approach with
no need to apply formulas other than those for the
computation of the geodesic distance between two points.

The case with more than two coastlines

In case we have a situation with three coastlines, a simple
remark is in order: if two median lines intersect in a
(equidistant) point P, then the third median line passes
through P too. In fact, call A, B, and C the point sets in this
situation and suppose that the intersecting lines are the two
median lines between A and B and between B and C.
Indicating with La, Lb, and Lc, the distances between the
intersection point P and the point sets A, B, and C,

respectively, we have La=Lb and Lb=Lc, due to the
definition of P as an equidistant point between A and B and
between B and C, from which it follows La=Lc. Thus, P is
also equidistant between A and C (Lp=La=Lb=Lc, where
Lp represents the equal distance of P from each of the three
coastlines). This elementary result of course is true
independently from the adopted topology. This fact implies
that the case with three coastlines can always be treated as
that with two coastlines, considering all the possible
combinations of them. Then all the median lines will
intersect in a point P and the residual part of a median line
between, e.g., A and B “going beyond” that point can be
cut off, because the distance of those points from the third
coastline C is lesser than the distance (Lp) of point P
(according to the second condition of the algorithm
criterion; see ‘The method of the equidistant point (EP)’).
Figure 8 presents an example illustrating the above
situation with P representing the intersection of the three
median lines.

If we have more than three coastlines, the complication
of the problem’s geometry increases and we cannot say
anymore that the median lines obtained from the fourth
coastline on and the others intersect into the same point as
before. Figure 9 shows a simplified example of this
situation with four coastlines from which it follows that
we can have intersections made at most by three median
lines at the points P1 and P2 (and where the points P3 and P4
also represent intersections of median lines which, never-
theless, have to be discarded together with the dotted lines
in the figure because they do not fulfill the second
condition of ‘The method of the equidistant point (EP)’).

Fig. 11 The explanation of the weighting method

Fig. 12 The computation of the
territorial line
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We will not proceed to consider cases with more than four
coastlines due to the obviously increasing complication of
the relevant geometry and also taking into account that a
situation with four coastlines is already a very rare case.
Nevertheless, the above situations have been mentioned here
just to point out the effectiveness of the present method
which, as already observed, can give up considering the
specific geometry of the particular case.

The case of the weighted distance

It often happens that some parts of a coastline, or in most
cases the islands, must be considered with a minor weight
with respect to the rest of the coastline. In Fig. 10, a case is
shown in which the islands of coast C have been given a
weight such that the median line passes at a distance from
them which is one third of its distance from coastline A,
instead of passing at the same distance as in Fig. 8; note
that also in this case we still have the intersection of the
three median lines at a point P.

In general, if C and I represent two coastlines and M is
the mesh point to be tested, the “weighted” result is
obtained simply multiplying by a given factor n the value
d of the distance MI between the point M and the coastline
I and then submitting that scaled distance to the “EP test”.
Figure 11 shows the situation with n=2. In general, the
median line will pass at a fraction 1/(1+n) of the distance
MI + MC from I, where n is the weight of the coastline I
(Fig. 11).

In the determination of the median lines are also used the
baselines, which usually “rectify” some parts of the coast-
lines or “close” bays or gulfs. In order to take into account
the baselines in the algorithm, one can replace them with a
set of points suitably spaced one from another depending
on the precision needs.

The determination of the territorial line

The present method can also be used to determine a line
located at a fixed distance from the coastline. In this
case, of course it does not exist a point set representing
the other coastline, so one can simply choose as EPs all
those points whose distance from the coastline is the
chosen distance.

With this method is also possible to determine the so-
called waterlines (Christensen 2002) defined as “lines
representing water, drawn parallel with the edge of a water
feature, which decrease in proximity and strength away
from this edge” (Neumann 1997). The most natural
application is the determination of the territorial limits
(Fig. 12).

Conclusions

Basically, the present method differs from the previous ones
due to the starting data which in this case are the sea points
which are tested. The other methods, presented in the
references, always start with the points on the coastlines
and then provides the TPs or the EPs (Carrera 1987).

Another peculiar feature of the method is its conceptual
simplicity and its independence from the environment
topology. From a theoretical point of view, it would be
also possible to extend the method to the space, simply
considering surfaces instead of lines (at present, however,
there are no applications).

To summarize, the present method fulfills the followings
requirements:

1. Objectivity. The definitions and the procedure adopted
are unambiguous (and used in an algorithm).

2. Precision. The error can be defined and evaluated.
3. Effectiveness. The computation times are much less than

those typical of a work carried out with CAD softwares.
4. Flexibility. The method can be applied in every

circumstances and scenarios of coastlines, including
islands. Moreover, it provides solutions in all the
situations concerning the computation of distances
from the coastlines, including the cases of the territorial
limits and the waterlines.
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