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1 Introduction

Perturbative calculations of high-energy processes typically start from the calculation of

one or more Matrix Elements (MEs) for specific signal and background processes. By

virtue of the factorization theorem, such “hard” or “short-distance” partonic processes can

be factored off from lower-scale physics and computed in a systematic way. At Leading

Order (LO), the procedure is standard textbook material and it has also by now been

highly automated, by the advent of general-purpose tools like CalcHep [1], CompHep [2],

MadGraph [3], and others [4–8].

To the simple LO picture, several corrections must be added in order to obtain more

realistic and accurate descriptions that can be compared with experimental observables.

On the perturbative side, one may access these corrections either by computing more

coefficients in the fixed-order expansion explicitly — as in higher-order calculations — or

by approximating them via infinite-order resummations — as in parton showers.

To help illustrate the complementarity of these two approaches, for an arbitrary final

state, “F”, we shall use diagrams such as the ones shown in figure 1, from [9], in which

the horizontal and vertical axes indicate the numbers of additional legs (k) and loops (`)
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Figure 1. Illustration of the part of the perturbative series covered by (left) a calculation at LO,

(middle) a calculation at NLO, and (right) a calculation at LO combined with an LL resummation.

Darker shaded (green) boxes indicate exact coefficients while lighter shaded (yellow) boxes indicate

LL approximations to them.
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F @ (NLO+LOn)×LL

`
(l

o
op

s)

2 σ
(2)
0 σ

(2)
1

. . .

1 σ
(1)
0 σ

(1)
1 σ

(1)
2

. . .

0 σ
(0)
0 σ

(0)
1 σ

(0)
2 σ

(0)
3

. . .

0 1 2 3 . . .
k (legs)

(b) GKS

Figure 2. Illustration of the part of the perturbative series covered by (left) MLM & (L)-CKKW

matching, and (right) GKS matching.

beyond LO, respectively. The notation σ
(`)
k is used to represent the sum of contributions to

the cross section for fixed k and `. These are separately divergent for k + ` ≥ 1, and only

the sum over all coefficients with fixed k + ` = n is finite. (See [9] for a more pedagogical

introduction to this type of diagrams.)

In the left-hand pane of figure 1, the part of the series covered by the LO matrix

element has been shaded. In a Next-to-Leading-Order (NLO) calculation, two further

coefficients are computed exactly, as illustrated in the middle pane, but all other coefficients

are neglected. Conversely, in a Leading-Logarithmic (LL) resummation, infinite numbers of

both legs and loops can be included, but only the leading singular parts of each coefficient

will be correctly accounted for, which we illustrate by giving the boxes corresponding to

coefficients with k + ` ≥ 1 a lighter (yellow) shading in the right-hand pane of figure 1.

Several approaches for “matching” the two kinds of approaches are already in widespread

use. Here, we shall focus on the matching of parton showers to LO matrix elements with

large numbers of additional legs. For this problem, there are essentially two dominant

approaches, called MLM (see [10] for a description) and (L)-CKKW [11–15], see [16] for

a recent pedagogical review. Two main limiting factors in these approaches are that the

computational speed falls off steeply with the number of matched partons, and that both

approaches only apply matching above a certain “matching scale”, below which the pure

shower is used for all multiplicities. This is illustrated in figure 2a, in which the matched

multiplicities are shown with half light (yellow) and half dark (green) shading.
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An alternative multileg matching strategy was recently proposed by GKS [17]. This

algorithm uses an antenna-based parton shower [18, 19] as its underlying phase-space gen-

erator.1 Matching to matrix elements is performed by applying multiplicative corrections

to the branching probability at each step of the algorithm, an approach that was first

pioneered in [22] for matching to a single additional parton in PYTHIA [23]. The gener-

alization to multiple legs proposed in [17] relies explicitly on unitarity to remove the need

for a matching scale also beyond the first matched leg. In principle, it can therefore be

applied over all of phase-space up to the highest matched multiplicity, though for reasons

of algorithmic speed, a low matching scale may still be imposed beyond the first few ad-

ditional legs. The part of the perturbative series that can be covered by this approach is

illustrated in figure 2b. We note that the one-loop correction to the lowest multiplicity can

also be included (as indicated on the figure), since the GKS formalism essentially reduces

to the POWHEG one [24, 25] at this order.

In terms of algorithmic speed, the number of individual shower paths that populate

each n-parton phase-space point is a deciding factor within the GKS formalism, since

at least one (n − 1)-parton matrix element has to be evaluated for each path. Showers

based on partons and/or partitioned dipoles (such as Altarelli-Parisi [26–29] or Catani-

Seymour [30–33] ones) produce one term per color charge in the event, i.e., one per quark

and two per gluon. Showers based on antennae [18, 34–36] are slightly more economic,

producing only one term per color-connected pair of color charges. This difference is still

comparatively insignificant, however, compared to the proliferation of terms caused by the

fact that only strongly ordered paths can contribute (using whatever definition of ordering

the particular shower algorithm’s authors prefer): to see which paths actually contribute

to each n-parton configuration, one must check the ordering condition all the way back to

the Born configuration, including the effects of any previous matching steps. Even for the

antenna-based showers, this makes the number of paths contributing to the mth branching

grow like m!, which quickly becomes intractable. The main improvement proposed in [17]

was to replace the strong-ordering condition by a smoothly damped and strictly Markovian

equivalent, which eliminates the factorial. This brings the number of terms produced at

each order down to a linear dependence on m, resulting in substantial speed gains for high

parton multiplicities.

There is, however, an alternative formulation of the antenna language [37, 38], for which

only one term contributes to each phase-space point. We refer to this as “sector” antennae,

to distinguish them from the “global” antennae used in [17, 39]. The two kinds differ in how

the collinear singularities of gluons are partitioned among neighboring antennae. In the

global approach, the gluon-collinear singularity is partitioned such that two neigbouring

antennae each contain “half” of it; their sum reproduces the full singularity. In the sector

case, both of the neighboring antennae contain the full collinear singularity, but only one of

them (typically the most singular one) is allowed to contribute to each (n+1)-parton phase-

space point. This divides up the (n + 1)-parton phase-space into a number of “sectors”

inside each of which only a single antenna contributes.

1The idea of using a shower for phase-space generation also underlies the SARGE [20] and GENEVA [21]

algorithms.
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In this paper, we present a complete shower formalism based on such sector antennae,

including an adaptation and implementation of GKS matching. We note that another

formalism dealing with sector showers has also been proposed [40, 41]. While those works

also treat polarization and mass effects, which are neglected here, they do not contain an

explicit implementation or matching strategy, which are included here and have been made

publicly available in the VINCIA code [42], a plug-in to the PYTHIA 8 event generator [43],

starting from VINCIA version 1.0.26.

In section 2, we briefly summarize some convenient notation choices we shall use in the

remainder of the paper. In section 3, we present the sector antenna functions that have been

implemented in VINCIA, including a discussion of their ambiguous non-singular terms and

the choice of sector decomposition criterion. Some comparisons to higher-multiplicity tree-

level matrix elements are also given, to investigate how the quality of the approximation

evolves with parton multiplicity. In section 4, we adapt the VINCIA shower formalism to

sector antennae, including trial branchings and GKS matching. Section 5 contains some

basic validation comparisons, to show that the implementation gives sensible results. We

also present a speed comparison between various different matching strategies, quantifying

the improvement obtained for the GKS matching in the sector case. Finally, in section 6,

we round off with conclusions and an outlook.

2 Conventions

Dipole-antenna showers [18, 34–36] are based on nested 2 → 3 splitting processes, with

an on-shell, Lorentz-invariant phase-space factorization taking place at each step [37, 38].

Following [17, 39], we label the participants in a 2 → 3 dipole-antenna branching by

IK → ijk. By energy-momentum conservation we have sijk = sIK = (pI + pK)2 ≡ s. We

denote the dimensionless (scaled) post-branching invariants by

yij =
sij
s

=
2pi · pj
s

yjk =
sjk
s

=
2pj · pk

s
, (2.1)

and we define the p⊥ of a 2→ 3 splitting process in the same way as in Ariadne [35],

p2
⊥ =

sijsjk
s

= yij yjk s . (2.2)

Contours of constant value of 4p2
⊥/s (normalized so that its maximal value is unity) are

illustrated in the left-hand pane of figure 3. For comparison, contours of constant m2
jk,

which we shall use for processes involving g → qq̄ splittings below, are illustrated in the

right-hand pane of the figure.

For the 2 → 3 antenna functions, we shall use the following general notation, which

is intended to be analogous to that used for parton distribution functions (PDFs), for the

emission of a parton of type j from a parent dipole of type IK,

a
type(order)
j/IK (pi, pj , pk) (2.3)

where “type(order)” specifies the type (sector or global) and loop order of the function,

and the arguments pi, pj , and pk represent the final-state momenta of the corresponding
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Figure 3. Contours of constant value of the variables 4p2
⊥/s and m2

jk/s over the IK → ijk

phase-space triangle, with yij = sij/s and yjk = sjk/s on the x and y axes, respectively.

Branching Compact Global GGG [39] Sector
type form form notation form

qq̄ → qgq̄ : ag/qq̄ a
gl(0)
g/qq̄ a0

3 a
sct(0)
g/qq̄

qg → qgg : ag/qg a
gl(0)
g/qg d0

3 a
sct(0)
g/qg

qg → qq̄′q′ : aq̄′/qg a
gl(0)
q̄′/qg

1
2E

0
3 a

sct(0)
q̄′/qg

gg → ggg : ag/gg a
gl(0)
g/gg f0

3 a
sct(0)
g/gg

gg → gq̄q : aq̄/gg a
gl(0)
q̄/gg

1
2G

0
3 a

sct(0)
q̄/gg

Table 1. Notation for antenna functions, including comparisons to the notation used in [39].

color-ordered post-branching particles. As is the case for PDFs, one or more of the super-

and subscripts can be omitted when they are obvious from context. This results in a fully

general but nevertheless quite compact notation, which we summarize in table 1, including

a comparison to the notation used for global antennae in [39]. Part of the motivation for

introducing this notation, apart from the desire to be able to distinguish clearly between

sector and global functions when necessary, is that it generalizes easily to include more

branching types, such as ones involving photons in QED, and to higher-order antenna

functions, such as 2→ 4 ones. We also note that, e.g., ag/qg = ag/gq̄, by charge conjugation,

with the appropriate permutation of invariants (sqg ↔ sgq̄).

The antenna functions have dimension GeV−2. It is often convenient to work with a

color- and coupling-stripped variant, which we label ā, defined by

aj/IK = g2
sCj/IK āj/IK (2.4)

where g2
s = 4παs and Cj/IK is the color factor assigned to the IK → ijk branching, defined

in the normalization convention of [17], such that, in the leading-color limit, Cg → NC

and Cq → 1.

– 5 –



J
H
E
P
1
1
(
2
0
1
1
)
1
5
0

When comparing to collinear (Altarelli-Parisi) splitting functions [26], we define z as

the momentum fraction of the radiated parton in the collinear limit:

z ≡ Ej
Ej + Ek

=
Ej
EK

, for pj‖pk (2.5)

≡ Ej
Ei + Ej

=
Ej
EI
, for pi‖pj , (2.6)

The AP splitting functions for g → gg and g → qq̄ are then

Pgg→G(z) = 2

[
z

(1− z)
+

(1− z)
z

+ z(1− z)
]
, (2.7)

Pqq̄→G(z) =
[
z2 + (1− z)2

]
, (2.8)

which we shall use when analyzing the collinear singular limits of the corresponding global

and sector antenna functions below.

3 The sector antennae

In the sector approach, only one antenna contributes to any given phase-space point, as

opposed to several overlapping ones in the global antenna case. The three different phase-

space sectors that occur for gg → ggg (with cyclic color connections, as in H → gg) are

illustrated in figure 4 [17]. In a global shower, the IK → ijk antenna, shown in the left-

hand pane, would be allowed to fill the entire branching phase-space, which is defined by

the triangle yij + yjk ≤ 1. In the sector case, however, it only fills the part of phase-space

in which the transverse momentum of j with respect to i and k is smaller than that of

either of the two other possible combinations (assuming transverse momentum is what is

used to separate the sectors, a point we return to below). The remaining part of phase-

space is not empty — it is filled by the two complementary permutations of the i, j, and

k partons, as shown in the middle and right-hand panes of the figure. The coefficients

of the singular terms of the antenna functions must necessarily reflect this reorganization.

The double pole, located at the origin of the plots in figure 4, is contained entirely within

the IK → ijk antenna, and can therefore be carried over from the global case without

modification. The single-pole terms, however, change to account for collinear radiation

now being produced by a single antenna rather than two overlapping ones.

In section 3.1, we discuss how the singularity structure of the individual antennae

is modified and derive a complete set of sector antenna functions. In section 3.2, we

compare these functions to fixed-order matrix elements for Z → 4, 5, and 6 partons.

In section 3.3, we discuss the ambiguities remaining concerning non-singular (and non-

universal) terms. Finally, in section 3.4, we compare various options for how to partition

phase-space into sectors.

3.1 Singularity structure

In the so-called “planar” (leading-color) limit, which is used to represent color flow in

parton-shower event generators, gluons are viewed as composed of a triplet and an an-

titriplet color charge, which are part of two separate color dipoles. For instance, in a qgq̄

– 6 –
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Figure 4. Illustration of the three phase-space sectors in a color-singlet gigjgk configuration, using

transverse momentum to discriminate between sectors [17].

configuration, there will be one color dipole stretched between the qg pair and one stretched

between the gq̄ pair. The full collinear singularity of the gluon is obtained by summing

over the two. In the global antenna approach, radiation from both pairs is allowed to

contribute over all of phase-space. In the sector approach, either the qg pair or the gq̄ one

contributes to each qggq̄ phase-space point. In order for the two approaches to reproduce

the same collinear limit, the sector antennae must include those collinear terms that would

be generated by their neighbors in the global case.

As our starting point, we take the GGG global antennae [39]. The qq̄ → qgq̄ antenna

is the same for global and sector decompositions, since there are no neighboring antennae

in this case. In the terminology of our conventions,

asct
g/qq̄ = agl

g/qq̄. (3.1)

In the qg → qgg (or gq̄ → ggq̄) case, there is the collinear limit on the edge of the parent

gluon to be dealt with. In this limit there is a mapping z → 1 − z between the antenna

and its neighboring antenna. A single global antenna thus compares to the full g → gg

splitting function in the collinear limit as follows [39],

āgl
g/qg(pi, pj , pk)

sjk→0
−→ 1

sjk

(
Pgg→G(z)− 2z

1− z
− z(1− z)

)
+ O(1), (3.2)

where the O(1) ambiguity due to non-singular terms is unimportant for the limiting be-

havior. For a corresponding sector antenna, we would want to reproduce the full splitting

function in this limit, i.e., just the first term in the equation above. We ensure this by sim-

ply adding back the “missing” singular pieces to agl
g/qg. In the collinear limit, for massless

particles pj‖pk, we have

yij ≡
sij
s
→ pi · pj

pi · (pj + pk)
=

Ej
Ej + Ek

≡ z . (3.3)

Thus, we obtain for asct
g/qg,

āsct
g/qg(pi, pj , pk) ≡ ā

gl
g/qg(pi, pj , pk) +

1

s

1

yjk

(
2yij

1− yij
+ yij(1− yij)

)
. (3.4)
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The gg → ggg antenna is analogous to the previous one, simply considering both edges

instead of just one. We define the sector antenna as

āsct
g/gg ≡ ā

gl
g/gg +

1

s

[
1

yjk

(
2yij

1− yij
+ yij(1− yij)

)
+

1

yij

(
2yjk

1− yjk
+ yjk(1− yjk)

)]
. (3.5)

With a small amount of algebra, we arrive at the following generic sector generalization of

global gluon emission antennae,

āsct
g (pi, pj , pk) ≡ āgl

g (pi, pj , pk) +
1

sijk

[
δIg

(
2

yij(1− yjk)
− 2

yij
+ (1− yjk)

yjk
yij

)

+ δKg

(
2

yjk(1− yij)
− 2

yjk
+ (1− yij)

yij
yjk

)]
, (3.6)

with δIg = 1 (δKg = 1) if parton I (K) is a gluon and 0 otherwise. We note that, for the

results reported on later in this paper, we set the finite terms in the global-antenna parts,

āgl
g , to zero, in the parametrization of [19].

For the antennae that involve splitting of a gluon into quarks, the only divergence

is the one associated with the collinear limit in which the quark-antiquark pair become

collinear (partons denoted as j and k). Moreover, this limit is represented by the splitting

function Pqq̄→G(z). One can then take the following definition for these sector antennae,

which has the correct limit:

āsct
q̄′/qg(pi, pj , pk) = āsct

q̄′/gg(pi, pj , pk) ≡
1

s

[
y2
ij + y2

ik

yjk

]
. (3.7)

The corresponding global antennae are identical to these, modulo a factor 1/2 due to

the fact that two neighboring antennae add up to the same limit.

With this notation for the coefficients, our sector antennae can be expressed as in

table 2 (under “VS”), where we also compare to three global antenna sets, including the

default Vincia ones [19], the ones used by Gehrman-Gehrman-Glover (GGG) [39], and

the set used by Ariadne [34, 35]. We also note that the singular coefficients given here

agree with those obtained for polarized sector antennae in [40, Tab. 1], when the latter are

summed over polarizations.

3.2 Comparison to tree-level matrix elements

In order to examine the quality of the approximation furnished by a shower based on the

antennae derived in the previous subsection, independently of the shower code itself, we

follow the approach used for global antennae in [17, 44, 45]. That is, we use Rambo [46] (an

implementation of which has been included in Vincia) to generate a large number of evenly

distributed 4-, 5-, and 6-parton phase-space points. For each phase-space point, we use

MadGraph [3, 47] to evaluate the leading-color Z → n matrix element squared (suitably

modified to be able to switch subleading color terms on and off). We then compute the

corresponding antenna-shower approximation, expanded to tree level, in the same phase-

space point, in the following way: using a clustering algorithm that contains the exact

– 8 –
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× 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2jk
yij

y2ij
yjk

1
yjk(1−yij)

1
yij(1−yjk) 1 yij yjk

VS (sector)

qq̄ → qgq̄ 2 -2 -2 1 1 0 0 0 0 0 0 0

qg → qgg 2 -2 -4 1 2 0 -2 2 0 0 0 0

gg → ggg 2 -4 -4 2 2 -2 -2 2 2 0 0 0

qg → qq̄′q′ 0 0 1 0 -2 0 2 0 0 -2 2 1

gg → gq̄q 0 0 1 0 -2 0 2 0 0 -2 2 1

GRS (global; default in Vincia)

qq̄ → qgq̄ 2 -2 -2 1 1 0 0 0 0 0 0 0

qg → qgg 2 -2 -2 1 1 0 -1 0 0 2 −1 0

gg → ggg 2 -2 -2 1 1 -1 -1 0 0 2 0 0

qg → qq̄′q′ 0 0 1
2 0 -1 0 1 0 0 −0.7 1 1

2

gg → gq̄q 0 0 1
2 0 -1 0 1 0 0 −0.7 1 1

2

GGG (global)

qq̄ → qgq̄ 2 -2 -2 1 1 0 0 0 0 0 0 0

qg → qgg 2 -2 -2 1 1 0 -1 0 0 5
2 -1 -1

2

gg → ggg 2 -2 -2 1 1 -1 -1 0 0 8
3 -1 -1

qg → qq̄′q′ 0 0 1
2 0 -1 0 1 0 0 -1

2 1 0

gg → gq̄q 0 0 1
2 0 -1 0 1 0 0 -1 1 1

2

Ariadne (global)

qq̄ → qgq̄ 2 -2 -2 1 1 0 0 0 0 0 0 0

qg → qgg 2 -2 -3 1 3 0 -1 0 0 0 0 0

gg → ggg 2 -3 -3 3 3 -1 -1 0 0 0 0 0

qg → qq̄′q′ 0 0 1
2 0 -1 0 1 0 0 -1 1 1

2

gg → gq̄q 0 0 1
2 0 -1 0 1 0 0 -1 1 1

2

Table 2. Table of coefficients for sector (VS) and global (GRS [19], GGG [39], Ariadne [35])

antenna functions.

inverse of the default Vincia 2 → 3 kinematics map [18], we perform m clusterings of

the type (i, j, k) → (I,K) in a way that exactly reconstructs the intermediate (n − m)-

parton configurations that would have been part of the shower history for each n-parton

test configuration. Summing over all possible such clusterings (in the global case), we may

compute the nested products of 2→ 3 antenna functions that produce the tree-level shower

approximation. Finally, we form the ratio between this approximation and the LO matrix

element, as a measure of the amount of over- or under-counting by the shower, with values

greater than unity corresponding to over-counting and vice versa.

The sector approach is characterized by the existence of only one possible path from a

given final parton configuration back to any previous step in the shower, resulting in an un-

equivocal clustering sequence, which in turn produces a single nested product of antennae.
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To define which sector is clustered in each step, one must choose a partitioning variable.

Our default sector decomposition prescription (studied in more detail in section 3.4) is

based on the variable

Q2
sj ≡


p2
⊥j =

sijsjk
s for j a gluon

s̃jk = sjk
√
sij

2
√
s

for (j, k) a quark-antiquark pair

s̃ij = sij
√
sjk

2
√
s

for (i, j) a quark-antiquark pair,

(3.8)

which is calculated for each set of three color-connected partons in the configuration (treat-

ing same-flavor q̄q combinations as being color-connected for this purpose). The three-

parton cluster with the smallest value of Q2
s gets clustered. The aforementioned shower-

to-matrix-element ratio, for the reaction Z → q1g2g3q̄4, is then

Rsct
4 =



(
asct
g/qg(1, 2, 3) asct

g/qq̄(1̂2, 2̂3, 4)
)
|M2(E2

cm)|2

|M4(1, 2, 3, 4)|2
, if p2

⊥2 < p2
⊥3(

asct
g/gq̄(2, 3, 4) asct

g/qq̄(1, 2̂3, 3̂4)
)
|M2(E2

cm)|2

|M4(1, 2, 3, 4)|2
, otherwise

(3.9)

where hatted variables ı̂ denote clustered momenta, |Mn|2 denote the color-ordered n-

parton matrix elements and Ecm = mZ is the total invariant mass of the n-parton system.

The numerators of eq. (3.9) thus reproduce the shower approximation expanded to tree

level, phase-space point by phase-space point, for an arbitrary choice of kinematics map,

(i, j, k)→ (ı̂, ̂k). For compactness, we do not give the explicit forms of R5 and R6, to which

we shall also compare in the following; the relevant generalizations are straightforward.

(Note: we do not consider R3, since the qq̄ → qgq̄ antenna functions can be chosen to

reproduce the Z → 3 LO matrix element exactly.)

We compare to three different variants of the global approach [17]: unordered, strongly

ordered, and smoothly ordered, as follows.

Firstly, we consider an “unordered” shower, where all possible histories/paths are

allowed. The R4 ratio above then becomes [44]

Rgl.unord
4 =

|M2(E2
cm)|2

(
agl
g/qg(1, 2, 3)agl

g/qq̄(1̂2, 2̂3, 4) + agl
g/gq̄(2, 3, 4)agl

g/qq̄(1, 2̂3, 3̂4)
)

|M4(1, 2, 3, 4)|2
. (3.10)

In figure 5, the sector shower approximation, eq. (3.9), using the “VS” sector antennae

defined in the previous subsection, is shown as a filled solid histogram, for Z → qq̄ + 2 (left),

3 (middle), and 4 (right) gluons. The unordered global approximation, eq. (3.10), using

the default Vincia antenna functions [19], is shown with dashed lines The x axis shows

the distribution of log10(Rn) obtained in the flat phase-space scan, with the middle (zero)

corresponding to Rn = PS/ME = 1. One sees that the “naive” unordered global approach

(dashed histogram) generates a large tail of overcounting of the matrix elements, to the

right of zero, and that this overcounting grows worse with parton multiplicity, whereas

the sector antennae produce a more evenly distributed ratio, whose central value is fairly
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Figure 5. Comparison between global unordered and sector shower approximations to LO matrix

elements for Z → qq̄+ gluons. Distributions of log10(PS/ME) in a flat phase-space scan, normalized

to unity.

stable as the number of partons increases, while only its width grows (reflecting the added

uncertainty coming from having several branchings in a row).

For the global showers, it is essentially the overcounting illustrated by the dashed

histograms in figure 5 that makes it mandatory to impose an ordering condition in the

shower (beyond that of energy-momentum conservation, which is already present in the

nested antenna phase-spaces), to obtain a reasonable average approximation. In Vincia,

two types of ordering of the global shower algorithm are possible, called strong and smooth,

see [17, 48] for details. With strong ordering in p⊥, for instance, the p⊥ of each consecutive

radiation has to be strictly smaller than that of the previous one. Therefore not all histories

or paths are allowed; there even exist points in phase-space for which no path can possibly

contribute, called “dead zones”. Again, for the reaction Z → q1g2g3q̄4, we have

Rgl.ord
4 =

|M2(E2
cm)|2

|M4(1, 2, 3, 4)|2
(

Θ(p⊥2̂3 − p⊥2)agl
g/qg(1, 2, 3)agl

g/qq̄(1̂2, 2̂3, 4)

+ Θ(p′⊥2̂3
− p⊥3)agl

g/gq̄(2, 3, 4)agl
g/qq̄(1, 2̂3, 3̂4)

)
, (3.11)

where the ordering conditions depend on

p⊥2 = p⊥(1, 2, 3) ; p⊥2̂3 = p⊥(1̂2, 2̂3, 4)

p⊥3 = p⊥(2, 3, 4) ; p′
⊥2̂3

= p⊥(1, 2̂3, 3̂4)
. (3.12)

Smooth ordering basically replaces the strong-ordering Θ functions above by a smooth

suppression factor that goes to unity in the strongly ordered soft/collinear limits and to

zero for highly “unordered” branchings, see [17, 45, 48] for further details. In this case,

there are no strict dead zones; unordered branchings are merely suppressed, not forbidden.

In figure 6, we show the same sector approximation as above, while the global approx-

imation has been replaced by strong (solid lines) and smooth (dashed lines) ordering in

p⊥, respectively. Here, we see that the ordered global showers also generate peaks that

extend roughly symmetrically around log(R) = 0, although the strong-ordering condition

does produce a tail of large undercounting at higher multiplicities. We also see that the

distributions generated by the global showers are somewhat narrower, indicating a slightly
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Figure 6. Comparison between global strong, global smooth and sector shower approximations

to LO matrix elements, for Z → qq̄+ gluons. Distributions of log10(PS/ME) in a flat phase-space

scan. Spikes on the far left represent the underflow bin — dead zones in the shower approximations.
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Figure 7. Comparison between global smooth and sector shower matched approximations to LO

matrix elements, for Z → qq̄+ gluons. Distributions of log10(PS/ME) in a flat phase-space scan.

better average agreement, than those of their sector counterparts. For the strongly ordered

case, this comes at the price of a dead zone, of course, illustrated at the far left-hand edge

of each panes.

The trend that the smoothly ordered global shower gives a somewhat narrower dis-

tribution remains when we include matching through to the (n − 1)-parton LO matrix

element at each step (see section 4.2). This is illustrated in figure 7, in which each pane

thus only reflects the last branching step, rather than the whole shower history. Note that,

since GKS matching has only been developed for the smoothly ordered shower, strong or-

dering is not shown in this figure. Despite the slightly wider tails, we nonetheless conclude

that the sector shower furnishes an acceptable overall approximation, without any dead or

substantially under- or overcounted tails.

Secondly, we look at processes for which the gluon-splitting antennae qg → qq̄q and

gq̄ → q̄qq̄ contribute. Specifically, we compare to the leading-color matrix elements squared

for Z → qq̄qq̄ and Z → qgq̄qq̄, with the other color-ordering, Z → qq̄qgq̄, identical by

charge conjugation. Since the leading singular structure of gluon-splitting antennae is less

pronounced (a single pole, as compared to the double pole for gluon emission), mismatches

at the subleading level become relatively more important. We therefore expect an overall

worse agreement with the matrix elements than in the gluon-emission case.
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Figure 8. Comparison between global strong, global smooth and sector shower approximations

to LO matrix elements, for processes involving a g → qq̄ splitting, without applying the Ariadne

factor to the shower approximation. Spikes on the far left represent the underflow bin.

A naive application of gluon-splitting antennae, in the same way as in eq. (3.11), results

in the distributions shown in figure 8. Clearly, a large overcounting is produced already at

the first order of the g → qq̄ process, shown in the left-hand pane. Within the Lund dipole

model, this was identified as due to gluon-screening effects between neighboring dipole-

antennae, which are not taken properly into account when adding them independently. The

perturbative cascade implemented in the Ariadne program therefore uses the following

factor to modify its gluon splitting probabilities [35],

Pari =
2m2

N

m2
P +m2

N

, (3.13)

where m2
P = m2

IK = s is the invariant mass squared of the parent dipole-antenna and m2
N

is that of the neigboring one that shares the splitting gluon. Thus, e.g., if the preceding

branching was collinear, with m2
N → 0, this factor produces a very strong suppression

also inside the m2
P antenna. See also [45] for more discussion of this issue in the global-

shower context.

In figure 9, we include the “Ariadne factor”, PAri, on the gluon-splitting antennae.

While the resulting distributions are still significantly broader than their gluon-emission

counterparts in figure 6, they now show a significantly more symmetric peak around

log(R) ∼ 0. For completeness, we also show the alternative color-ordering, Z → qq̄qgq̄

in the right-hand pane, noting that it is indeed identical to the Z → qgq̄qq̄ one within the

statistical precision. Finally, in figure 10, we show how the distribution at the 5-parton

level changes when matching to 4 partons is included. The peak then becomes significantly

sharper than at the 4-parton level, primarily due to the greater relative accuracy of the

gluon-emission antenna that fills one of the phase-space sectors in that step.

3.3 Finite terms

The arbitrariness of all non-singular (“finite”) terms in the antenna functions was already

mentioned in section 3.1: the universal leading-logarithmic approximation furnished by the

shower is only exact in the soft and collinear regions; in the hard region of phase-space,
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Figure 9. Comparison between global strong, global smooth and sector shower approximations to

LO matrix elements, for processes involving a g → qq̄ splitting, including the Ariadne factor in the

shower approximation. Spikes on the far left represent the underflow bin. The configurations qgq̄gq̄

and qq̄qgq̄ are related by charge conjugation and give the same result up to statistical precision; we

will only plot one of them in the following.
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Figure 10. Comparison between global smooth and sector shower approximations to LO matrix

elements, for processes involving a g → qq̄ splitting, including the Ariadne factor in the shower

approximation.

process-dependent subleading terms become important. In order to fully specify a set of

antenna functions, their finite terms must therefore also be defined, keeping in mind that

even zero is as arbitrary a choice as any other, and that the choice depends explicitly on

the parametrization used to write the singular parts of the antennae.

To cite a few examples, the finite parts of the GGG antennae [39] are simply the left-

overs from the specific matrix elements that were used to derive those functions in [49–51].

In the Ariadne and Vincia codes, the current defaults are based on comparisons to Z

decay matrix elements. They should thus work especially well for that process, chosen

since it is the main reference for final-state showering, but they could in principle do less

well for other processes.

For simplicity, we here set all finite coefficients of the gluon-emission antennae to zero,

as summarized in table 2. To illustrate the indeterminacy associated with this choice, we

compare this choice (labeled “central”) with two other sets2 labeled “minus” and “plus”,

2The choices for the finite-terms of the gluon splitting antennae in table 2 situate them at the edge of the

positivity condition in some regions of phase-space; we do not consider a “minus” set for these antennae.
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Figure 11. Illustration of the impact of finite terms in the sector shower approximation, for

Z → qq̄+ gluons. The default sector antennae are shown in the solid filled histogram, with “minus”

(solid lines) and “plus” (dashed lines) variations defined in the text.
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Figure 12. Illustration of the impact of finite-term variations, for processes involving a g → qq̄

splitting. The default sector antennae are shown in the solid filled histogram, with “minus” (solid

lines) and “plus” (dashed lines) variations defined in the text.

defined by

gluon emission : āplus/minus
g = ācentral

g ±
yij + yjk

s
, (3.14)

gluon splitting : āplus
q = ācentral

q +
1

2s
, (3.15)

with finite-term variations motivated partly by the finite terms of the other antenna sets

listed in table 2.

Note that this plus/minus variation is not intended to represent any conservative

max/min range, but merely to illustrate what the consequence of moderate finite-term vari-

ations is for the matrix-element comparisons that were considered in the previous subsec-

tion. This is done in figures 11 and 12, for gluon emission and gluon splitting, respectively.

These distributions do not include matching beyond Z → 3 partons, hence the variation

grows with multiplicity. For gluon emission, we see that the central choice stays relatively

well centred on log(R) ∼ 0, while for gluon splittings, a choice intermediate between

the central and the minus variation would appear to generate the best agreement, for

this particular process. We emphasize that matching to matrix elements removes these

ambiguties, up to the matched order. Also note that we are showing flat phase-space
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scans, which do not represent the actual weighing induced by the shower, where soft and

collinear regions (in which the agreement is generally better) are strongly privileged.

3.4 Choice of sector decomposition

The default variable we use to partition phase-space into sectors3 was defined in eq. (3.8).

It basically amounts to finding the sector with the smallest value of p⊥ for gluon emissions,

which is modified to a p⊥-weighted virtuality for gluon splittings.4 That choice is not

unique. The basic criterion is that if any of the partons of the configuration is approaching

the soft limit, or a pair of them approaches the collinear limit, we must select an antenna

that contains the appropriate divergent terms. This ensures that the shower will achieve

at least LL precision in every phase-space point. Beyond that, different choices will lead

to different subleading behavior.

For simplicity, we first focus on gluon emission only, i.e., without the additional compli-

cation of interleaved gluon splittings. Since the sector-decomposition variable must isolate

the leading singular regions, we have explored three possible variations that can be con-

structed from the soft eikonal factor. Thus, the prescription is to select the sector which

minizes either of the three following measures:

1. Transverse momentum, p2
⊥ = yijyjks,

2. Scaled transverse momentum, yE = p2
⊥/s = yijyjk (dimensionless),

3. Inverse eikonal, p2
Eik ≡

p2⊥
yik

=
yijyjk
yik

s.

The difference between these choices can be characterized as follows. For a branching

that occurs inside a small-mass dipole-antenna, the dimensionful p⊥ will always associate a

small scale, even if the branching is relatively hard compared with the parent mass, while

the scaled variant only considers the hardness of the branching relative to its parent. The

inverse eikonal represents a variation of p⊥ which has the same singular limit but which goes

to infinity along the (non-singular) boundary yik → 0, while p⊥ remains bounded by
√
s/2.

The comparison of the sector-shower expansion to matrix elements, using each of these

choices, is illustrated in figure 13. We see that the dimensionless choice, yE (thin solid

lines), produces the worst description, with large tails towards overcounting of the matrix

elements. We ascribe this to the scaled yE only including information about the unresolved

limit within the current antenna (it always prioritizes the most singular one, regardless of

size) while the presence of s in the dimensionful p⊥ (solid filled histogram), introduces an

additional information, the size of the ijk dipole-antenna itself, which is implicitly related

to the singularity structure of the previous branching. Changing between p⊥ and the full

eikonal (dashed histograms) has a smaller effect, with p⊥ coming out slightly better, at

least for this process. This is the motivation for using p⊥ as the sector-decomposition

variable for gluon emissions.

3I.e., to decide which ijk → IK clustering to perform, or, equivalently, whether to accept a given

IK → ijk trial branching during the shower.
4Since the virtuality, sij , only involves two partons, the virtuality alone cannot be used to distinguish

between two neigboring 3-parton clusterings that share the same small invariant. The choice represented
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Figure 13. Illustration of various sector decomposition variables, for Z → qq̄+ gluons: dimension-

ful p⊥, dimensionless p⊥/s and pEik.
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Figure 14. Illustration of two sector decomposition variables: p⊥ and QS , for processes involving

a g → qq̄ splitting, including the Ariadne factor in the shower approximation.

To include gluon splittings, the simplest would be to just use p⊥ for all partons.

Alternatively, the Vincia default choice defined in eq. (3.8), attempts to reflect the different

structure of gluon splittings in the choice of measure computed for clusterings involving

such a splitting. These two choices are compared in a flat phase-space scan in figure 14.

One basically sees no difference between them. Note, however, that there is really no

competition going on between different sectors until the Z → 5 level. For Z → 4 (in the

left-hand pane), the evolution sequence is fixed to a gluon emission followed by a gluon

splitting. p⊥ and QS then produce the same sectors, as is also evident from the plot. At

Z → 5, the g → qq̄ splitting can happen either in the second or third evolution step, with

QS and p⊥ now classifying the sectors differently. Nonetheless, only very small differences

are visible also on the right-hand pane of figure 14.

However, for the parametrization of the gluon-splitting antennae we have chosen, there

is actually an important subtlety connected with this choice, which can be illustrated by

considering the color-ordered structure X − g− q̄− q, with X an arbitrary colored parton.

The gq̄-collinear limit, sgq̄ → 0, is singular in the Xq̄ → Xgq̄ antenna, but not in the

gg → gq̄q one. Since the parametrization chosen for our gluon-splitting antennae does not

allow any “spillover terms” from neigboring gluon-emission sectors, the entire gq̄-collinear

limit should therefore be classified as belonging to the Xq̄ → Xgq̄ sector, in order to

by eq. (3.8) is therefore essentially the geometric mean of p⊥ and sij .
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Figure 15. Illustration of two sector decomposition variables, p⊥ and QS , in a particular region of

phase-space: the collinear region of the pair gq̄ in the configuration qgq̄qq̄. The actual values for the

figure are m2
gq̄ < 0.02 GeV2 and Ecm = 70 GeV. The spike on the far left represent the underflow

bin.

correctly reproduce the full collinear gluon-emission singularity. Since this is only a single

pole, as compared to the leading double pole for gluon emission, it does not show up clearly

in figure 14.

We may isolate the potentially problematic region in phase-space, by plotting only

phase-space points for which m2
gq̄ < 0.02 GeV2. This is done in figure 15. Once we “zoom

in” on the problematic region in this way, it is immediately apparent that using p⊥ only

produces the “correct” answer for half of the accepted phase-space points (the dotted his-

togram does still have a peak at log(R) ∼ 0, but only half of the phase-space points populate

it), while the other half (those corresponding to the “wrong” clustering, which does not

have a gq̄ singularity) is significantly undercounted. This is the fundamental reason we

choose QS as the partitioning variable for the sector-shower implementation in Vincia.5

4 The shower algorithm

The implementation of the sector shower in Vincia is based on the global shower setup.

The latter is extensively discussed in [17, 18] and will not be repeated here. For a general

introduction to shower Monte Carlos including use of the veto algorithm and related topics,

see [16]. Here, we focus exclusively on the modifications to the showering algorithm that

occur when going from the global to the sector case. In section 4.1, we consider the basic

sector shower, built from sequences of 2 → 3 branchings. In section 4.2, we describe the

small modification that is required to adapt GKS matching to the sector case.

4.1 (2→ 3): the basic trial generator

Our fundamental building block for showering purposes is the evolution integral:

A(s,Q2
E1, Q

2
E2) =

∫ Q2
E1

Q2
E2

dsijdsjk
16π2s

a(s, sij , sjk) ; Q2
E2 < Q2

E1 , (4.1)

5We thank D. Kosower for pointing out this subtlety and for suggesting the modification necessary to

cure it.
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which represents the integrated tree-level splitting probability between the scales QE1 and

QE2, for an arbitrary “infrared sensible” [44] definition of the evolution variable QE . As

in [17], we perform a change of variables to recast the integral in such a way that the

evolution variable appears explicitly as an integration variable,

A(s,Q2
E1, Q

2
E2) =

1

16π2s

∫ Q2
E1

Q2
E2

dQ2
Edζ |J | a(s, sij , sjk) , (4.2)

where |J | is the Jacobian associated with the transformation from (sij , sjk) to (Q2
E , ζ).

The default choice in Vincia is to use QE = 2p⊥ for gluon emission and QE = mqq̄ for

gluon splitting, with phase-space contours as illustrated in section 2. In the global case,

several alternative options have been implemented for gluon emission, while the choice of

QE for gluon splitting is fixed, see [45]. In the sector implementation, we have so far only

considered the default choices for both antenna types. We return to the choice of ζ below,

for which we shall require some extensions relative to the global case.

As in all shower implementations, we make use of the veto algorithm to replace the

integrand, a, by a simpler function, atrial, called the “trial function”. Provided our trial

function is larger than the actual integrand, the veto algorithm will allow us to recover

the exact integral post facto. So far, we also rely on the veto algorithm to implement

the restriction to phase-space sectors; that is, for each antenna we start by generating

trial branchings over all of phase-space (as in the global shower), and then veto those

which do not have the smallest value of QS in their respective would-be post-branching

parton configurations.

The simplest case to describe is actually that of gluon splitting, for which the only

difference with respect to the global case (apart from the sector veto) is the overall factor of

2 on both trial and “physical” antenna functions, cf. table 2. Since applying a multiplicative

factor to the branching generator is trivial, we refer the reader to [45], where the formalism

for generating gluon splittings is described in detail for the global shower.

For gluon emission, the additional gluon-collinear terms that appear in the sector case,

see section 3.1, necessitate a further manipulation of the shower algorithm. Essentially, we

shall treat the additional terms as separate sub-antenna functions, assigning them their

own trial functions and ζ definitions. The remaining terms, which include the eikonal,

correspond exactly to the global case and are carried over directly from there.

The qq̄ → qgq̄ antenna does not change, since none of the parents are gluons. The

trial function for this antenna is therefore identical to the one used for all gluon emission-

antennae in the global case,

asct
trial-emit

16π2
=
agl

trial-emit

16π2
=
α̂s
4π
CA

2s

sijsjk
. (4.3)

For qg → qgg, we split the physical sector antenna function into two sub-antennae,

consisting of the global part and an additional gluon-collinear piece,

α̂s
4π
CA

(
āgl
g/qg +

1

s

[
2

yjk(1− yij)
+
−2

yjk
+
yij
yjk

+
−y2

ij

yjk

])
, (4.4)
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with the trial function for the global part the same as in the global case (i.e., identical to

the one for qq̄ → qgq̄ above), and the one for the additional piece being

asct
trial−coll−K

16π2
=
α̂s
4π
CA

2s

sjk(s− sij)
(4.5)

Finally, we split the gg → ggg antenna into three sub-antennae, again consisting of

a global part but now with two additional collinear pieces, corresponding to each of the

parent gluons, I and K, respectively. The physical and trial terms are defined analogously

to those in eqs. (4.4) and (4.5), respectively, with the I-collinear ones obtained by the

replacement i↔ k.

One can check that the sum of the coefficients of the same powers of yij and yjk among

the sub-antennae makes up the total coefficients of the sector antennae displayed in table 2.

The fact that the first sub-antenna of each process corresponds to the global case makes it

possible to rely on the properties that have already been put to test in the global shower

implementation, simplifying the sector shower case to the addition of the extra I- and K-

collinear sub-antennae. In fact, the ultimate reason for this splitting is that the integrals

for these sub-antennae are separately treatable in an analytic way.

The overall normalization of the trial function can be adjusted, should the finite terms

associated with, e.g., matrix-element matching, render the physical function bigger than

the trial one in some corner of phase-space. We emphasize that there is no trace of the

overestimator present in the final results, and the only sensitivity to its shape and normal-

ization is in the speed of the calculation.

As mentioned above, we restrict our attention to QE = 2p⊥ for gluon emissions. For

the ζ variable appearing in eq. (4.2), we make a separate choice for each type of trial

function,

ζ =


ζ− = yij K-collinear trial function

ζ0 = yij/(yij + yjk) Eikonal (global) trial function

ζ+ = yjk I-collinear trial function

. (4.6)

The associated Jacobians for these different cases are, correspondingly,

|J | =


|J−| = s

4yij

|J0| =
s(yij+yjk)2

8 yijyjk

|J+| = s
4yjk

. (4.7)

These ζ definitions share the same limits of the ζ-integrals in expression (4.2), since the

relevant boundary of phase-space is defined by the condition yij + yjk = 1, as can be

inferred, e.g., from the illustration of p⊥ contours that was given in figure 3. Specifically,

we have

ζmin(Q2
E) =

1−
√

1−Q2
E/s

2
, ζmax(Q2

E) =
1 +

√
1−Q2

E/s

2
(4.8)
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To derive an analytical expression for the ζ integral in eq. (4.2), we make two simplifi-

cations. First, we neglect any possible dependence of αs on ζ (i.e., we shall take the trial α̂s
either to be a constant or to depend only on QE). Second, we shall generate trial branch-

ings in a larger phase-space region than the physically allowed one, again using the veto

algorithm to reject trials that are generated in the unphysical region. The overestimate of

phase-space is divided into several distinct windows in QE , given in table 3; in each such

window, we replace the QE-dependent ζ limits in the ζ-integral of (4.2) by constant ones,

ζmin(Q2
E) = ζmin(Q2

Emin) , ζmax(Q2
E) = ζmax(Q2

Emin) , (4.9)

where QEmin is the value of QE at the end of the current window (e.g., the next flavor

threshold or, ultimately, the hadronization scale). This is illustrated in figure 16, for the ζ0

(left) and ζ+ (right) definitions, with the physical region of phase-space shown with lighter

shading and the unphysical one with darker shading. Note: the axes are logarithmic in the

scaled invariants yij and yjk, hence the boundary of the physical phase-space does not look

like a triangle here. The dark diagonal strips correspond to a window of trial generations,

again with the lighter part corresponding to trials inside the physical phase-space and

the darker part to ones outside it. In the right-hand pane, the tail of trial generations

extending towards large yij and small yjk is not a problem for efficiency, since it is only

used in combination with the I-collinear trial function, which is strongly peaked in the

opposite region of yij .

During the evolution, the progression between different evolution windows happens

as follows; if none of the generated trials fall within the current evolution window, the

evolution is restarted at QE = QEmin, upon which the QEmin and ζ boundaries is updated

to correspond to those of the next evolution window.

With these simplifications, the ζ integrals are

Iζ,0 ≡
∫ ζmax

ζmin

dζ0
1

ζ0(1− ζ0)
= ln

(
ζmax(1− ζmin)

ζmin(1− ζmax)

)
(4.10)

Iζ,− ≡
∫ ζmax

ζmin

dζ−
1

(1− ζ−)
= ln

(
1− ζmin

1− ζmax

)
(4.11)

Iζ,+ ≡
∫ ζmax

ζmin

dζ+
1

(1− ζ+)
= ln

(
1− ζmin

1− ζmax

)
(4.12)

Defining a one-loop running α̂s for trial branchings by

α̂s(kµQE) =
1

b0 ln
(
x2
E

) , (4.13)

with

b0 =
33− 2nf

12π
, (4.14)

xE =
kµQE
ΛQCD

, (4.15)
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Vincia Evolution Windows

i [QEmin , QEmax] nf
0 [0 , mc] 3

1 [mc , mb] 4

2 [mb ,
√
mbmt] 5

3 [
√
mbmt , mt] 5

4 [mt , ∞] 6

Table 3. The evolution windows used in Vincia, with the QE boundaries and active number

of flavors corresponding to each. The number of active flavors is the same for windows 2 and 3,

but the ζ boundaries for trials are different, due to the different QEmin values. This improves the

efficiency of the generator. The first window will not actually extend down to zero in practice, but

will instead be cut off by the hadronization scale.

Figure 16. Illustrations of the ζ choice for (left) the global antenna part, ζ0, and (right) the

additional I-collinear sector trial function, ζ+ (the K-collinear one, ζ−, is obtained by swapping the

invariants). Axes are logarithmic in the yij and yjk phase-space variables. The physical phase-space

is shown with lighter shading, while the overestimate of phase-space used for trial branchings is

shown with darker shading.

and kµ an arbitrary scale factor that can be used to adjust the effective renormalization

scale up or down, the integrals over QE , defined in eq. (4.1), can now finally be expressed

as

• for α̂s
4πCA

2s
sijsjk

(ζ0 used):

A(s,Q2
E1, Q

2
E2) =

CA
4πb0

[
ln

(
ln(x2

E1)

ln(x2
E2)

)
Iζ,0(ζmin, ζmax)

]
, (4.16)

• for α̂s
4πCA

2s
sjk(s−sij) (ζ− used):

A(s,Q2
E1, Q

2
E2) =

CA
4πb0

[
2 ln

(
ln(x2

E1)

ln(x2
E2)

)
Iζ,−(ζmin, ζmax)

]
, (4.17)

• for α̂s
4πCA

2s
sij(s−sjk) (ζ+ used):

A(s,Q2
E1, Q

2
E2) =

CA
4πb0

[
2 ln

(
ln(x2

E1)

ln(x2
E2)

)
Iζ,+(ζmin, ζmax)

]
, (4.18)
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in which the ln(ln(x)) structure comes from folding the trial-function singularities with the

Landau pole in α̂s. Note: to use a constant trial α̂s instead in these expressions, make the

replacements 1/b0 → α̂s and ln(xE) → QE . To include running beyond one loop in the

trial function, see [17].

For gluon splitting, we again emphasize that the only change is a factor 2 relative to

the global case, and refer to [45] for details.

The actual generating function for the shower is constructed from these integrals via

the Sudakov form factor:

∆(Q2
E1, Q

2
E2) = exp

(
−A(Q2

E1, Q
2
E2)
)
, (4.19)

where we may substitute for A either of the expressions eqs. (4.16), (4.17), (4.18). Trial

branchings are generated according to this Sudakov by solving the equation

R = ∆(Q2
E1, Q

2
E2) (4.20)

for QE2, where R ∈ [0, 1] is a uniform random number and QE1 is the “(re)starting” scale

for the evolution. If the evolution is being started from scratch, the (re)start scale is
√
s, the

invariant mass of the dipole-antenna. If the evolution is being continued after an accepted

branching, the restart scale is likewise set to
√
s. This is equivalent to the “unordered”

global case, discussed in section 3.2, but here with the sector veto protecting us from

overcounting, as was illustrated in figure 5. In practice, since the sector veto will reject any

trial generated above the smallest QS scale that remains unchanged by the branching, the

restart scale after a preceding accepted trial is actually reduced to Qunc
Smin ≤

√
s, defined as

the smallest QS scale among all possible clusterings not involving any of the parent partons

of the dipole-antenna under consideration. This speeds up the algorithm by eliminating the

time spent generating trials in the region above Qunc
Smin, none of which would be accepted

anyway. Lastly, if the preceding trial was rejected, the restarting scale is the scale of that

failed branching.

Due to the simple structure of the trial Sudakov, eq. (4.19), solving eq. (4.20) is

straightforward, yielding solutions of the type [17]

x2
E2 = (x2

E1)R
B′

(4.21)

for a one-loop running trial α̂s, with xE defined by eq. (4.15), and the exponents

B′0 =
4πb0

CAIζ,0(ζmin(Q2
Emin), ζmax(Q2

Emin))
, (4.22)

B′± =
4πb0

2CAIζ,±(ζmin(Q2
Emin), ζmax(Q2

Emin))
, (4.23)

for each of the trial-function types, respectively, while for a constant α̂s, the solution is

even simpler,

Q2
E2 = Q2

E1R
B , (4.24)

– 23 –



J
H
E
P
1
1
(
2
0
1
1
)
1
5
0

with the exponents

B0 =
4π

α̂sCAIζ,0(ζmin(Q2
Emin), ζmax(Q2

Emin))
, (4.25)

B± =
4π

2α̂sCAIζ,±(ζmin(Q2
Emin), ζmax(Q2

Emin))
. (4.26)

Note that the coefficients B0 and B′0 for the global trial function are identical to those

denoted b and b′ in [17]. We used capital letters here in order not to confuse the exponents

with the b0 coefficient used in the running of αs, eq. (4.13).

Given any set of branching variables (Q2
E , ζ) we may obtain the invariants (sij , sjk)

without ambiguity. Thus, the next step is to generate a random ζ value distributed accord-

ing to the integrand of the Iζ integrals, eqs. (4.10), (4.11), (4.12). This is done by solving

the

Rζ =
Iζ(ζmin, ζ)

Iζ(ζmin, ζmax)
(4.27)

for ζ, where Rζ ∈ [0, 1] is another uniform random number and ζmin(QEmin) is given by

the evolution windows, table 3, and by the ζ limits, eq. (4.8).

Following [17], we solve eq. (4.27) by first translating to an auxiliary variable r, ex-

tending the treatment to cover also the new ζ± variables,

r0,max =
1

1− ζ0,max
, r0,min =

1

1− ζ0,min
, (4.28)

r±,max =
1

1− ζ±,max
, r±,min =

1

1− ζ±,min
; (4.29)

we then generate a random value for r

r = rmin

(
rmax

rmin

)Rζ
, (4.30)

and finally solve for ζ,

ζ0 =
r0

1 + r0
, (4.31)

ζ± = 1− 1

r±
. (4.32)

If the ζ generated in this way falls outside the physical phase space,

ζ < ζmin(Q2
E) ∨ ζ > ζmax(Q2

E) (4.33)

the branching is vetoed and a new one generated, with QE as restart scale.

If the branching is inside the physical phase-space, the next step is to obtain values for

the pair of phase-space invariants (sij , sjk) in terms of which we cast the original evolution

equation, eq. (4.1). We quote here the relevant inversions:

• for ζ0

sij =
QE
√
s
√
ζ0

2
√

1− ζ0
; sjk =

QE
√
s
√

1− ζ0

2
√
ζ0

(4.34)
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• for ζ−

sij = s ζ− ; sjk =
Q2
E

4ζ−
(4.35)

• for ζ+

sij =
Q2
E

4ζ+
; sjk = s ζ+ (4.36)

Finally, the full kinematics (4-momenta) for the trial branching can be constructed, from

the explicit formulae given in [18, 45]. The last step is to check the sector veto, i.e., whether

the sector represented by partons ijk has the smallest value of QS in the tentative (n+ 1)-

parton momentum configuration that would arise if the branching is accepted. If not, the

trial is rejected and a new one generated starting from QE .

To obtain an LL shower from the trial branchings generated according to the expres-

sions above, it suffices to accept each trial branching with a probability

PLL =
αs
α̂s

Cijk
Ĉijk

āsct
LL(s, sij , sjk)

ātrial(s, sij , sjk)
, (4.37)

where the αs/α̂s ratio takes into account the possibility that the trial generator could be

using a nominally larger αs than the physically desired one, the C/Ĉ factor represents the

same for color factors, and the antenna function ratio matches the trial function onto the

desired physical splitting antenna for the relevant 2→ 3 branching. We must also require

āLL to be non-negative in order that the ratio here be interpretable as probability. If

the branching is accepted, partons I and K are replaced by partons i, j, and k and the

evolution is restarted as discussed previously.

4.2 (2→ n): unitary matrix-element corrections

Briefly summarized, the GKS strategy [17] for matching to leading-order matrix elements

is as follows. Similarly to the Pythia [22] and Geneva [21] approaches, the Vincia

matching formalism relies on the antenna shower itself to provide an all-orders phase-

space generator that captures the leading behavior of full QCD by construction. At each

trial branching in the shower, the accept/reject probability can then be augmented by a

multiplicative factor that goes to unity in the collinear and soft limit, but which modifies

the branching probability outside those limits. The modification factor for global showers

is given in [17]. Since only a single path contributes to each phase-space point in the sector

case, the corresponding matching factor is simpler, and is given by

P sct
ME({p}n) =

|Mn({p}n)|2

g2
sCj/IK āsct

LL(pi, pj , pk)|Mn−1({p̂}n−1)|2
, (4.38)

with post- and pre-branching parton configurations denoted by

{p}n = (p1, . . . , pi, pj , pk, . . .) and {p̂}n−1 = (p1, . . . , pI , pK , . . .) , (4.39)
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respectively. The PME factor is thus constructed precisely such that the shower approx-

imation is matched (up or down) to the LO matrix-element squared at each order. The

prescription to include full-color matrix elements, by scaling the expression above by the

ratio of color-summed full- to leading-color matrix elements squared, is not modified from

the global case as given in [17].

Note also that since PME multiplies the trial-accept probability, eq. (4.37), the factor

āsct
LL actually cancels in the product, leaving no trace of the LL antenna function in the

final answer. The color-ordered matrix elements themselves instead act as the 2 → n

sector-antenna functions, up to the matched orders.

The approach relies heavily on unitarity and is qualitatively different from other

multi-leg approaches in the literature, such as the MLM (see [10] for a description) and

CKKW [11] ones. An important technical difference is that Vincia only requires a Born-

level phase-space generator, with all higher multiplicities being generated by the shower.

There is therefore no need for separate phase-space generators for the higher-multiplicity

matrix elements, which can result in significant speed gains, both in terms of initialization

time (virtually zero in Vincia), and in terms of running speed. We return to this issue in

section 5 below. We refer the reader to [17] for further details on the GKS formalism.

5 Results

In addition to the LO matrix-element comparisons given in section 3.2, we have performed

two basic tests of the all-orders sector shower implementation in Vincia interfaced to

Pythia 8. First, we compare results obtained with just the perturbative Vincia shower

(i.e., without switching on Pythia’s hadronization model) to a leading-logarithmic analyt-

ical resummation of the quark fragmentation function, similarly to what was done in [44].

We recall that the energy fraction is defined as

x =
2Eq√
s
. (5.1)

We use a constant value of αs = 0.1, a starting scale of
√
s = 1000 GeV, and an ending scale

of QIR = 1 GeV, for a perturbative evolution spanning three orders of magnitude in x. This

comparison is shown in Figure 17, with and without matching, and also compared to the

default (matched) global result, as a function of log10(1− x) on the x axis. The region on

the right-hand side of the plot, x→ 0, is dominated by hard emissions and is not expected

to be well reproduced by the analytical soft resummation. Likewise, energy-momentum

conservation effects are important, included in Vincia but neglected in the analytical

resummation. It is therefore not surprising the analytical calculation differs from all of the

Vincia ones in that region. On the left half of the plot, soft emissions dominate. One

observes that the unmatched sector shower is quite close to the analytical result. The

matching correction actually increases the difference slightly, which we interpret as due to

our matching corrections being applied also in the soft region. The difference is consistent

with similar variations observed by varying the LL finite terms in [44]. One also notes that

the two matched calculations (global and sector) are consistent with each other.
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Figure 17. The quark fragmentation function, D(x), in hadronic Z decays. Comparison of an

analytic LL resummation [44] (solid line) to Vincia with sector showers, without (long dashes) and

with (short dashes) matching through Z → 5 partons, and to the default (matched) global shower

in Vincia (dots).

As a second cross check, we include some comparisons to LEP event-shape data at√
s = mZ , using light-flavor (udsc) data taken by the L3 collaboration [52]. In all cases, we

include tree-level matching through Z → 5 partons, the default in Vincia. Between 1 and

2 million unweighted events were generated for each generator setting. These comparisons

necessarily include the effects of hadronization. We have not attempted to do a full-fledged

tuning of Pythia’s non-perturbative hadronization parameters for use with the sector

shower. Instead, the default Vincia tune (summarized in appendix B) is used, with the

same value of the infrared cutoff (1 GeV) as in the global case.

With this setup, replacing the default global shower by the sector one with antenna

functions as defined in this paper, we find that the sector shower produces slightly softer

event shapes than the global one. A first illustration of this is given in the left-hand panes

of figures 18 and 19, in which we compare the sector and global shower implementations in

Vincia to measurements of the Thrust and D-parameter event-shape variables, which arise

at O(αs) and O(α2
s) respectively (see [52] for a definition). For reference, the C parameter,

qualitatively similar to Thrust, is included in appendix A, as are the Wide and Total Jet

Broadening parameters. The result obtained with the sector shower is shown with thin

(blue) lines, the global one with thick (red) lines. The upper pane of each plot shows the

normalized event-shape distribution and the lower pane the ratio of the calculations to data.

In all the event shapes, the sector shower peaks at lower values than the corresponding

global distribution. Since both showers include matching through Z → 5 partons, their

tree-level expansions are equal up to the first three orders in αs. We therefore do not believe

finite-term contributions alone could be responsible for the apparent “softness” of the

sector shower relative to the global one. This conclusion is corroborated by the line labeled
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Figure 18. Normalized Thrust (1− T ) distribution. Vincia compared to L3 data for light-flavor

Z decays [52]. Left: sector (thin) vs. global (thick) showers, using default (global) Vincia tune.

Right: sector shower using αs(mZ) = 0.143 (thin) vs. “Max” antenna functions [19] (thick).
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Figure 19. Normalized D-parameter distribution. Vincia compared to L3 data for light-flavor

Z decays [52]. Left: sector (thin) vs. global (thick) showers, using default (global) Vincia tune.

Right: sector shower using αs(mZ) = 0.143 (thin) vs. “Max” antenna functions [19] (thick).
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“ant=Max” in the right-hand pane of the figures (thick blue line), for which we replaced

the sector antenna functions defined in this paper by the “Max” ones defined in [19], which

have large finite terms; the result can be seen not to vary substantially from the sector

curve shown in the left-hand panes, indicating that it is stable under finite-term variations.

Tentatively, our conclusion is that the difference between the distributions produced by

the two shower models owes to a difference between the perturbative corrections generated

beyond tree level, such as their αs choices and Sudakov form factors. To illustrate this,

the thin (red) curves in the right-hand panes of figures 18 and 19, labeled αs(mZ) = 0.143,

show what happens if the value used to define the 1-loop running coupling in Vincia is

changed from 0.139 to 0.143. (Note that these values should be interpreted in an LO scheme

defined by Vincia, hence they are not immediately interpretable as, e.g., MS values.) This

corresponds to a change in the 5-flavor value of ΛQCD from ∼ 250 MeV to ∼ 295 MeV and

is sufficient to bring the sector shower into agreement with the result obtained with the

global one. We note that this change may be connected with the question of whether it

is still correct to use p⊥ as the argument for αs in the sector shower, an issue we plan to

return to in the context of a separate study [53].

At the non-perturbative level, the intrinsic softness of the sector shower also has con-

sequences, as illustrated in the left-hand panes of figure 20, where we compare to the

distributions of the number (top row) and momentum fraction (bottom row) of charged

particles, with x = 2|p|/
√
s. The sector shower defined in this paper (thin blue lines)

produces a wider multiplicity distribution than the global one, with slightly more particles

having x ∼ 1. Again, the right-hand panes illustrate what happens when choosing larger

finite terms (thick curve) and when choosing a larger αs(mZ) value (thin lines). Similarly

to above, the variation of antenna-function finite terms does not lead to substantial differ-

ences, while changing the value of αs does. It is evident that the sector shower, even with

αs(mZ) = 0.143, could benefit from a slight retune of its non-perturbative parameters, e.g.,

to suppress the slightly overpopulated tails of low- and high-multiplicity events.

Further event-shape comparisons, and the production ratios of certain meson and

baryon species, normalized to the average charged multiplicity, are given in appendix A.

As emphasized in the preceding sections, one of the chief advantages of the sector

shower approach is the fact that it only generates a single contributing term per phase-

space point, for each order in perturbation theory. This makes it ideally suited for the

GKS matching strategy [17], which requires at least one matrix-element-evaluation per

contributing shower path. In table 4, we compare the number of milliseconds it takes to

generate one event, between various programs and matching algorithms, using a standard-

ized set-up. Since we are not interested in the speed of hadronization or hadron decay

algorithms, we leave hadronization switched off and define an “event” as a perturbative

cascade starting from a qq̄ dipole at
√
s = mZ (with q = udscb and using massive ma-

trix elements for b quarks), evolved down to the default perturbative cutoff scale in the

respective code, which is of order 1 GeV in all cases.

In Pythia 6 [23] and 8 [43], only matching to the Z → 3 decay matrix element is

available, hence speeds for higher multiplicity-matching are not shown in the table. We

note that, at least in this test, Pythia 8 generates events as fast as Pythia 6.
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Figure 20. Normalized charged-particle-mutiplicity (top) and momentum-fraction (bottom) dis-

tributions, with the latter using x = xp = 2|p|/
√
s. Vincia compared to L3 data for light-flavor

Z decays [52]. Left: sector (thin) vs. global (thick) showers, using default (global) Vincia tune.

Right: sector shower using αs(mZ) = 0.143 (thin) vs. “Max” antenna functions [19] (thick).

The default (global, smoothly ordered) shower implementation in Vincia (third row)

is slightly slower than the one in Pythia, which we regard as a consequence of the greater

flexibility built into Vincia (smooth ordering, with generic evolution variables, antenna
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Table 4. Comparison of the dependence of generator speed (measured in milliseconds per shower

under standardized circumstances, see text) on the number of matched orders for Pythia 6,

Pythia 8, Vincia (global and sector, with and without a “matching scale”), and Sherpa [54].

functions, and kinematics maps) combined with its more elaborate matching setup (taking

explicit ratios of leading- and full-color MadGraph matrix elements [3] and evaluating

them using Helas [47] routines). Using the GKS matching, however, Vincia’s matching

may be extended to higher multiplicities, shown in the third to sixth columns. (All com-

parisons use matching to full-color matrix elements.) Since the number of matrix-element

evaluations grows linearly with the multiplicity in the global approach, we see that the

speed decreases quite rapidly with multiplicity.

In the sector approach, on the other hand (fourth row), the perturbative evolution is

slightly slower at low matched multiplicities (basically since each gluon now requires two

separate trial functions, and since no optimization of the trial phase-space has yet been

implemented, relative to the global case), but the increase with multiplicity is less severe,

resulting in the sector approach being faster than the global one starting from matching

through Z → 5.

In order to compare directly with other multileg approaches, such as the CKKW

one [11] implemented in Sherpa [54], we have included the optional possibility to stop

applying matching corrections below a specific value of the evolution scale in Vincia, thus

emulating the “matching scale” that is present in the CKKW strategy. This obviously

speeds up the calculation somewhat, since lots of soft emissions no longer need to have

matching coefficients evaluated. For both Vincia and Sherpa, we set the matching scale

equal to 5 GeV, ignoring that the phase-space contours defined by that value do not exactly

match between the two codes. In the comparison to Sherpa, it is furthermore necessary

to divide the total event-generation time up on a non-negligible initialization stage and a

subsequent per-event time. In both Pythia and Vincia, the initialization time is essen-

tially zero, while it grows with final-state complexity in Sherpa, due to the necessity of

computing cross sections and initializing phase-space generators for each matrix-element
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configuration separately. The total event-generation time for Sherpa (bottom row in ta-

ble 4) is therefore divided up on two numbers, with the initialization duration reported

separately below the main per-event time. Even if one neglects the initialization com-

ponent, however, it is clear that there is a significant speed difference between the two

methods. Including the initialization time, the differences become even more pronounced.

For example, during the 22 minutes it takes to initialize the CKKW generator for matching

through Z → 5 partons (the default matching level in Vincia), the GKS implementation

has time to generate almost 1 million matched showers. We stress that Sherpa is still ob-

viously a much more versatile tool than Vincia, and hence this comparison is not intended

as an advertisement for one code over another, rather its purpose is to test the dependence

of the algorithmic speed on multiplicity, of the two matching prescriptions implemented in

the respective generators. Note also that, while Vincia currently relies on MadGraph

and Helas for its matrix elements, Sherpa uses the Comix generator [8]. We did not

attempt to calibrate for this difference in this comparison, hence it is possible that the

Vincia numbers, in particular for high matched multiplicities, could be reduced somewhat

by implementing a faster matrix-element method.

Note also that the relative increase in per-event time for Sherpa actually becomes

smaller with multiplicity. For instance, the per-event time only increases by a factor 2

when going from 5 to 6 partons, compared to factors of 4 and 10 at each of the preceding

orders, respectively. We interpret this as being due to the fact that the corresponding

cross sections, for n exclusively6 resolved partons above the matching scale, are becoming

increasingly small. Thus, once e.g. the 6-parton cross section has been computed (during

initialization, the time for which still increases by an order of magnitude from 5 to 6

partons), the time to actually generate additional events does not increase substantially.

This is very different from Vincia, in which the initialization time (zero) does not increase

substantially, but the per-event time does.

6 Conclusions

We have presented a formalism for parton showers based on sector antennae, accompanied

by an implementation in the Vincia plug-in [18] to the Pythia 8 event generator [43].

The main distinguishing feature of such showers is that only a single radiation antenna

contributes to each phase-space point, as compared to a sum over all radiators in traditional

“global” showers [16, 18, 34, 36]. The coefficients of the single poles of gluon antennae are

modified to reflect this reorganization. A similar formalism including mass and polarization

corrections has been developed in [40, 41], but has not yet been implemented in a publicly

available event generator.

At the analytical level, we have tested the formalism by comparing tree-level expansions

of it to fixed-order matrix elements for Z → 4, 5, and 6 partons. We find that the global

shower, with its many terms, is able to deliver a somewhat better average agreement at the

multileg level, in particular for processes involving g → qq̄ splittings. To our minds, the

advantage of the sector approach is therefore at present mainly a computational one, to be

sought in the consequences of its simpler structure. Since the sector shower only produces

6For the highest matched multiplicity, replace exclusively by inclusively.
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a single term per phase-space point, it gives a speed advantage over the global approach

when combined with the “GKS” matching formalism developed in [17], which requires at

least one matrix-element-evaluation per contributing path. We demonstrate this speed

gain by comparing global and sector showers matched to LO matrix elements through up

to four branchings in Vincia. For reference, we also compare to an implementation of the

CKKW method for multileg matching [11], using the Sherpa generator [54].

As a final cross-check, we have also compared the sector shower implementation in

Vincia, with and without matching, to an analytic resummation of the quark fragmen-

tation function and to experimental measurements of event shapes and related quantities

at LEP. We find that the present sector shower implementation appears to be consistent

with these distributions, within the expected precision, and hence consider it validated and

ready to be used for other phenomenology studies.

Nevertheless, since the sector shower a priori produces slightly more particles with

x→ 1 and somewhat softer event-shape distributions, we recommend to increase the value

of αs(mZ) from 0.139 in the default tune to ∼ 0.143 for use with the sector shower. This

results in good agreement with event shapes but still generates a slightly too broad charged-

particle multiplicity distribution. Depending on the application, a further iteration of the

non-perturbative tuning, focusing specifically on sector showers, could therefore also be

interesting to explore.
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A Additional LEP comparisons

This appendix contains some further comparisons of the sector shower with LEP distri-

butions, as follows: the C event-shape variable (figure 21), and the Wide and Total Jet

broadening parameters (figures 22 and 23, respectively), defined as in [52], to which we

compare. We also compare the production rates of selected identified baryon and meson

species, normalized to the average charged-particle multiplicity, to our own average over

the various identified-particle measurements performed at LEP [55, 56] (figure 24).
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Figure 21. Normalized C-parameter distribution. Vincia compared to L3 data for light-flavor

Z decays [52]. Left: sector (thin) vs. global (thick) showers, using default (global) Vincia tune.

Right: sector shower using αs(mZ) = 0.143 (thin) vs. “Max” antenna functions [19] (thick).
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Figure 22. Normalized Wide-Jet-Broadening (BW ) distribution. Vincia compared to L3 data

for light-flavor Z decays [52]. Left: sector (thin) vs. global (thick) showers, using default (global)

Vincia tune. Right: sector shower using αs(mZ) = 0.143 (thin) vs. “Max” antenna functions [19]

(thick).
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Figure 23. Normalized Total-Jet-Broadening (BT ) distribution. Vincia compared to L3 data

for light-flavor Z decays [52]. Left: sector (thin) vs. global (thick) showers, using default (global)

Vincia tune. Right: sector shower using αs(mZ) = 0.143 (thin) vs. “Max” antenna functions [19]

(thick).

±π
0

π η ±ρ
0

ρ ω

-310

-210

-110

1

10

Data

Vincia (sector)

Meson Fractions

Vincia 1.027 + MadGraph 4.426 + Pythia 8.154

±π 0
π ±K η ’η

±ρ
0

ρ ±*
K ω φ

T
he

or
y/

D
at

a

0.6

0.8

1

1.2

1.4
0 * *0

-410

-310

-210

-110

1

Data

Vincia (sector)

Baryon Fractions

Vincia 1.027 + MadGraph 4.426 + Pythia 8.154

p Λ /pΛ /KΛ ±Σ
0

Σ ∆
*

Σ ±Ξ
*0

Ξ Ω

T
he

or
y/

D
at

a

0.6

0.8

1

1.2

1.4

Figure 24. Selected meson and baryon rates, compiled from the numbers in [55, 56], expressed as

fractions of the average charged multiplicity.
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B Tune parameters

The default tune of Vincia 1.0.27 is “Jeppsson4”, an update of the original “Jeppsson”
tune presented in [17]. The parameters are optimized for use with the global shower (the
default in Vincia) but are here used for the sector shower as well, with comments as given
in section 5. The Jeppsson4 tune is characterized by the following parameters:

! * VINCIA alphaS

Vincia:alphaSValue = 0.139

Vincia:alphaSscaleFactor = 0.5

Vincia:alphaSorder = 1

Vincia:alphaSmode = 3

! * VINCIA Shower cutoff scale

Vincia:cutoffType = 1

Vincia:cutoffScale = 1.0

! * PYTHIA String fragmentation parameters

StringZ:aLund = 0.55

StringZ:bLund = 0.95

StringZ:aExtraDiquark = 1.0

StringPT:sigma = 0.275

StringPT:enhancedFraction = 0.01

StringPT:enhancedWidth = 2.0

! * PYTHIA String breakup flavor parameters

StringFlav:probStoUD = 0.20

StringFlav:mesonUDvector = 0.45

StringFlav:mesonSvector = 0.7

StringFlav:probQQtoQ = 0.085

StringFlav:probSQtoQQ = 1.00

StringFlav:probQQ1toQQ0 = 0.035

StringFlav:decupletSup = 1.0

StringFlav:etaSup = 0.68

StringFlav:etaPrimeSup = 0.085
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