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INTRODUCTION

Unlike animals, plants lack an adaptive immune system, and
entirely rely on innate immunity to resist numerous poten-
tial pathogens in their environment (Jones and Dangl, 2006;
Boller and Felix, 2009). They have evolved diverse immune
receptors to detect potential pathogenic microbes via recogni-
tion of pathogen-associated molecular patterns (PAMPs) and
effectors encoded by pathogens. PAMPs can be detected by
surface-localized pattern-recognition receptors (PRRs) that
are receptor kinases (RKs) or receptor proteins (RPs), thereby
activating pattern-triggered immunity (PTI). Plant PRRs are
structurally and functionally analogous to animal Toll-like re-
ceptors (TLRs). In addition to microbial molecules, some
PRRs can recognize damage-associated molecular patterns
(DAMPs) that are plant derived molecules released during
pathogen infection. Phytopathogens are capable of secreting
effectors into plant apoplast or cytoplasm to enhance viru-
lence. However, further evolution in plants has resulted in
PRRs that recognize apoplastic effectors and intracellular im-
mune receptors that recognize cytoplasmic effectors. Plant
intracellular immune receptors contain nucleotide-binding,
leucine-rich repeat domains and are homologous to animal
NOD-like receptors (NLRs). Immunity initiated by NLRs is
also referred to as effector-triggered immunity.
Plant receptor-like kinases (RLKs) and receptor-like pro-

teins (RLPs) play diverse role in plant growth, development,
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reproduction, adaptation to abiotic stress, symbiosis, and dis-
ease resistance (Morris and Walker, 2003; Tör et al., 2009).
To date, only a relatively small number of RLKs and RLPs,
such as XA21, FLS2, and EFR, have been shown to di-
rectly perceive ligands. They are referred to as RKs and
RPs in this review. Plant genomes encode a large number
of RLKs and RLPs, many of which show lineage-specific
expansion, suggesting a role in the adaptation to pathogens
(Shiu and Bleecker, 2001; Shin-Han and Bleecker, 2003). In-
deed, a growing number of RLKs and RLPs have been found
to be PRRs. Recent advances have uncovered commonalities
and differences concerning how PRRs recognize diverse
ligands to activate downstream signaling. In this review, we
discuss our current understanding of biological functions,
mechanisms of PRR activation, and dynamic regulation of
receptor complexes during immune signaling.

RLKS AND RLPS BELONG TO SUPER FAMI-
LIES IN HIGHER PLANTS

RLKs and RLPs mediate perception of a variety of en-
dogenous or exogenous signals (Tör et al., 2009). An
RLK contains a single-pass transmembrane domain, an
intracellular kinase domain, and an extracellular do-
main (ECD), which perceives extracellular molecules
(Gómez-Gómez and Boller, 2000; Li and Chory, 1997;
Zipfel et al., 2006). In contrast, RLPs only have a
very short intracellular domain and lack kinase domain
(Gust and Felix, 2014; Liebrand et al., 2014). The number
of RLKs and RLPs in plants far exceeds their counterparts in
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animals (Shiu and Bleecker, 2001). There are ~ 410 RLKs
and 170 RLPs in Arabidopsis, ~640 RLKs and 90 RLPs
in rice (Fritz-Laylin et al., 2005; Shiu and Bleecker, 2001;
Shiu et al., 2004) (Figure 1A and B), among which many
members are functionally unknown. The expansion of RLK
and RLP families in plants is likely linked to the sessile
nature of plants, which cannot escape from assaults from
their surrounding environment. And the presence of a large
number of RLKs and RLPs might have played a fundamental
role in the success of terrestrial plants.
RLKs and RLPs are divided into multiple subfamilies

according to their ECDs which include leucine-rich repeat
(LRR), lysin motif (LysM), Lectin, and epidermal growth
factor-like (EGF) domains (Macho and Zipfel, 2014).
The LRR subfamilies are the largest among RLKs and
RLPs (Figure 1B). Phylogenetic analyses showed that

the LRR-XII subfamily of Arabidopsis RLK, which con-
tains multiple PRRs, undergoes an expansion possibly as
a result of host-pathogen co-evolution (Shiu et al., 2004;
Wu and Zhou, 2013). Although the number of RLPs is
much smaller than RLKs, they also possess diverse ECDs,
and their expansion is similarly linked to host adaptation to
pathogens. Indeed, recent advances have identified several
RLPs as new PRRs (Albert et al., 2015; Jehle et al., 2013;
Zhang et al., 2013, 2014).

RKS AND RPS AS PRRS

Up to now, only a handful PRR-ligand pairs have been elu-
cidated. And different subfamilies of PRRs exhibit the com-
monalities and differences in recognition of diverse ligands.
LRR-containing RLKs are the largest subfamilies in Ara-

Figure 1         An expanded RLK/RLP gene families in plant kingdom. A, Phylogenetic tree of RLK/RLP in Arabidopsis. All known Arabidopsis RLK and RLP
sequences were retrieved from the genome database, and full length sequences were aligned to generate the neighbor-joining tree by ClustalX 2.0. B, The
number of genes with indicated extracellular domain in Arabidopsis.
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bidopsis genome with more than 230 members. Several
well-known PRRs are RKs belonging to these subfam-
ilies. The Arabidopsis RK FLS2 is the receptor of a
conserved 22 amino acid epitope (flg22) of bacterial flag-
ellin, defining the first plant PRR-PAMP pair to be identified
(Bauer et al., 2001; Gómez-Gómez and Boller, 2000).
Surprisingly, the mammalian immune receptor TLR5 also
recognizes bacterial flagellin through binding to a different
epitope (Hayashi et al., 2001; Yoon et al., 2012). Although
both TLR5 and FLS2 contain LRR ectodomains, they have
evolved independently and recognize different parts of
flagellin (Boller and Felix, 2009; Nürnberger et al., 2004).
Another well-studied PRR is the Arabidopsis LRR-RK
EFR that senses the N-acetylated peptide with 18 amino
acids of the N-terminus of elongation factor Tu (EF-Tu),
which is the most abundant protein in the bacterial cell
(Kunze et al., 2004; Zipfel et al., 2006). In addition, the
rice LRR-RK XA21 perceives the tyrosine-sulfated protein
RaxX from Xanthomonas oryzae pv. oryzae (Xoo) species
to trigger effective resistance to Xoo (Pruitt et al., 2015;
Wei et al., 2016). The Arabidopsis LRR-RKs PEPR1
and PEPR2 perceive conserved Pep sequence shared by a
small family of Arabidopsis ProPep proteins that are re-
leased during pathogen infection (Huffaker and Ryan, 2007;
Krol et al., 2010; Yamaguchi et al., 2010). Pep perception
not only amplifies the PTI signaling (Liu et al., 2013b;
Tintor et al., 2013), but also contributes to systemic acquired
resistance (Ross et al., 2014). Recent findings indicate that
Pep perception also allows plants to sense the perturbation of
immune system by pathogens (Yamada et al., 2016). Similar
to Pep, another plant endogenous peptide PIP1 was induced
by a variety of pathogens and PAMPs. The LRR-RK RLK7
can bind PIP1 and is required for PIP1-induced immune
signaling, suggesting that RLK7 is a potential PRR for PIP1
(Hou et al., 2014). RLK7 may cooperate with PEPR to
amplify the immune response triggered by PAMPs. Inter-
estingly, FLS2, EFR, PEPR, RLK7, and XA21 all belong
to subfamily LRR-XII of RLKs (Shiu et al., 2004), but they
bind different ligands, suggesting that this subfamily RLKs
might recognize diverse proteinaceous ligands for immune
activation.
Similar to LRR-RLKs, a large number of LRR-RLPs

(~100) were found existing in Arabidopsis genome. Sev-
eral LRR-RLPs have been identified as likely PRRs. The
Arabidopsis RLP1/ReMAX detects a Xanthomonas pro-
tein, although molecular identity of which is unknown
(Jehle et al., 2013). RLP30 recognizes an unknown pro-
teinaceous elicitor from the necrotrophic fungal pathogen
Sclerotinia sclerotiorum (Zhang et al., 2013). The Ara-
bidopsis RLP42, is required for the recognition of fungal
endopolygalacturonases (Zhang et al., 2014). The Ara-
bidopsis RLP23 recognizes necrosis and ethylene-inducing
peptide 1-like proteins, a large class of proteins secreted by

bacterial, fungal and oomycete pathogens, to activate immu-
nity in a manner dependent on RLKs SOBIR1 and BAK1
(Albert et al., 2015). Besides PAMPs, many filamentous phy-
topathogens apoplastic effectors are also perceived by RLPs
(de Jonge et al. 2011). The tomato Cf proteins are LRR-RLPs
that confer resistance to C. fulvum carrying cognate apoplas-
tic effectors (Joosten and de Wit, 1999). For instance, the
tomato RLP Cf-2 recognizes the C. fulvum apoplastic ef-
fector Avr2 to induce hypersensitive response, although the
ligand responsible for this recognition has yet to be identified
(Dixon et al., 1996; Kruger et al., 2002; Luderer et al., 2002;
Rooney et al., 2005). In addition, the tomato RLPs Cf-4,
Cf-9 and Cf-4E can perceive C. fulvum effectors Avr4, Avr9,
and Avr4E, respectively (Wulff et al., 2009). These findings
suggest that RKs and RPs with LRR ECDs specialized in the
recognition of proteinaceous ligands.
While Arabidopsis encodes only five LysM-containing

RLKs and three RLPs, more evidence showed that they
play important roles in triggering plant defenses by sensing
specific fungal chitin and bacterial peptidoglycan (PGN),
which are microbial N-acetylglucosamine (GlcNAc)-con-
taining glycans and can act as PAMPs (Silipo et al., 2010). In
rice, the LysM-RP CEBiP is the high affinity chitin receptor
(Kaku et al., 2006). Chitin-triggered immunity also requires
CERK1, a LysM-RLK (Shimizu et al., 2010). Arabidopsis
does not appear to carry a functional counterpart of CEBiP.
Instead, the Arabidopsis LysM-RK CERK1 has been shown
to bind chitin and is required for chitin-induced immunity
(Liu et al., 2012b; Miya et al., 2007; Petutschnig et al., 2010;
Wan et al., 2008). A recent report suggests that another
Arabidopsis LysM-RK, LYK5, is a high affinity chitin re-
ceptor (Cao et al., 2014). Likewise, PGN can elicit defense
responses in plants (Gust et al., 2007; Erbs et al., 2008).
In Arabidopsis, the LysM-RPs LYM1 and LYM3 specifi-
cally bind PGN to trigger resistance to bacterial pathogens
(Willmann et al., 2011; Shinya et al., 2012). CERK1,
although does not bind PGNs, is also required for PGN-in-
duced immunity (Shinya et al., 2012; Willmann et al., 2011).
Moreover, the rice LysM-RLPs LYP4 and LYP6 act together
with CERK1 for PGN-induced immunity (Liu et al., 2012a;
Gust, 2015). The LysM-mediated perception of PGN in
plants contrast PGN perception in mammals, which in-
volve structurally diverse immune receptors including the
founding members of NLR proteins NOD1 and NOD2,
TLR2, and PGN recognition proteins (PGRPs, PGLYRPs)
(Chamaillard et al., 2003; Dziarski and Gupta, 2010; Gi-
rardin et al., 2003; Kurata, 2010; Takeuchi et al., 1999).
In adition, RLKs or RLPs carrying LysM domain are also
involved in recognition of Nod factors (NFs) andMyc factors
(MFs), which are rhizobium/arbuscular mycorrhiza-derived
chitin-related lipochitooligosaccharides with short carbon
backbones (3-5 N-GlcNAc residues) (Gust et al., 2012). For
example, Lotus japonicus LysM-RKs NF receptor 1 (NFR1)

880 Li, L., et al.   Sci China Life Sci   September (2016)  Vol. 59  No. 9



and NFR5, Medicago truncatula NF perception (NFP) and
LYK3, andPisum sativum Sym37 and Sym10 are required for
recognizing NFs of Rhizobium (Amor et al., 2003; Limpens
et al., 2003; Madsen et al., 2003; Radutoiu et al., 2003;
Smit et al., 2007; Zhukov et al., 2008). Moreover,
Parasponia andersonii NFP and Medicago truncatula NFP
are also required for the perception of MFs during symbio-
sis with arbuscular mycorhiza (Op den Camp et al., 2011;
Maillet et al., 2011). These findings demonstrate that plant
LysM receptors are specialized in the recognition of Glc-
NAc-containing microbial signals to mediate plant immune
activation or symbiosis.
Arabidopsis encodes approximately 100 proteins with

Lectin ECDs, several of which have also been shown to play
an important role in plant immunity. LORE, an RK contain-
ing a plant specific B-type Lectin domain, senses lipopolysac-
charide (LPS), a major component of the outer membrane of
Gram-negative bacteria (Vaid et al., 2012; Ranf et al., 2015).
LPS are composed of O-antigen biological repeats, core
oligosaccharide, and lipid A (Knirel et al., 2006). LORE
binds LPS mainly through lipid A, which is similar to the
recognition of LPS lipid A moiety by mammalian immune
receptor TLR4 that activates proinflammatory responses
(Park et al., 2009; Tan and Kagan, 2014). However, TLR4
carries an LRR ECD instead of a Lectin ECD. It is unex-
pected that the lipid A moiety is recognized by receptors of
completely different structure in plants and mammals. One
possibility is that these receptors detect distinct acylation
patterns existing in plant and animal bacterial pathogens
(Ranf et al., 2015). Another Lectin family PRR LecRK-I.9
has been shown to perceive extracellular ATP (eATP) to
regulate cellular responses (Choi et al., 2014). As ATP is
probably released by plant cell into extracellular matrix
during wounding and infection of pathogen, ATP can be
considered as another DAMP. In addition, the Lectin-RLK
LecRK-VI.2 was found to act as a key modulator in plant
PTI responses, although the underlying mechanism remains
unknown (Singh et al., 2012). Recently, three G-type Lectin
family RLKs LecRK1, LecRK2 and LecRK3 were shown to
be required for brown planthopper resistance in rice (Liu et
al., 2015). Broad-spectrum bacteria and insect resistance of
LecRK-VI.2 in Arabidopsis and LecRK1-3 in rice indicate
that Lectin-RLKs prime PTI response to both pathogen
and insect attacks by either directly or indirectly perceiving
conserved microbe- or insect-derived elicitors or DAMP.
Arabidopsis contains 25 RLKs with EGF-like motif ectod-

main, among which wall-associated kinases (WAKs) play
key roles in plant immunity shown by previous findings
(Brutus et al., 2010; Delteil et al., 2016; Kohorn et al., 2009).
Plant cell wall component oligogalacturonides, a well-known
class of DAMPs released during pathogen attacks, are
sensed by WAK1 in Arabidopsis (Brutus et al., 2010;
Decreux and Messiaen, 2005; Decreux et al., 2006). Another

Arabidopsis EGF-like motif-containing RK, WAK2 can bind
pectin and activates the mitogen-activated protein kinases
(MPK) (Kohorn et al., 2009). Moreover, WAK14, WAK91
and WAK92 are required for quantitative resistance to the
rice blast disease (Delteil et al., 2016). These findings indi-
cate that perception of plant cell wall components is uniquely
important for plant disease resistance.

OLIGOMERIZATION AS A COMMONMECHA-
NISM FOR PRR ACTIVATION

Ligand-induced oligomerization between RKs and RLKs or
RPs and RLKs are a commonmechanism for the activation of
PRRs. In Arabidopsis, FLS2 and EFR can form heterodimer
with co-receptor SERK3/BAK1, an RLKbelonging to a small
family of RLKs called SERKs with 5 members, after flg22
and elf18 treatment, respectively (Chinchilla et al., 2007;
Heese et al., 2007; Schulze et al., 2010; Sun et al., 2013a).
The involvement of BAK1 as a co-receptor appears to be
common for LRR RKs. Indeed, a recent report showed that
Pep1 also induces PEPR1 heterodimerization with BAK1
(Tang et al., 2015). Moreover, phytosulfokine (PSK), a disul-
fated pentapeptide, promotes PSKR-SERK1/SERK2/BAK1
heterodimerization between PSKR and BAK1 or BAK1
paralogs SERK1 or SERK2 in the regulation of plant devel-
opment (Wang et al., 2015). BAK1 not only is required for
LRR-RKs function, but also for LRR-RP function. Recent
evidence indicated that the LRR-RLK suppressor of BIR1
(SOBIR1) as an adaptor interacts with multiple LRR RPs in
Arabidopsis (RLP1, RLP23, RLP30 and RLP42) and tomato
(Cf, Ve1, and Eix). It is now clear that BAK is also recruited
to RP/SOBIR1 complex to regulate immune signaling output
following ligand stimulation (Gust and Felix, 2014).
In contrast to LRR-RKs and RPs, LysM-RK and RPs do

not seem to require BAK1 for function with one exception
(Henty-Ridilla et al., 2013). In rice, chitin induced het-
erodimerization between CEBiP and CERK1 is necessary for
chitin-induced immune activation. Similarly, PGN induces
heterodimerization between LYM1/LYM3 and CERK1 in
Arabidopsis or LYP4/LYP6 and CERK1 in rice (Gust, 2015).
Together, the aforementioned findings indicate that ligand
induced oligomerization between RLK-RK or RLK-RP is a
universal mechanism for immune activation by plant PRRs.
Protein structure analyses have provided atomic level

understanding of ligand-induced activation of RKs. The
structures of the ECDs ofArabidopsis FLS2, BRI1, and carrot
PSKR LRR-RKs complexed with their cognate co-receptors
and ligands have been solved recently (Santiago et al., 2013;
Sun et al., 2013a, b; Wang et al., 2015). The structural studies
explain previous genetic data and provide mechanistic insight
concerning how the receptors recognize their cognate ligands.
The ECDs of FLS2, BRI1 and PSKR all adopt a right-hand
superhelical structure, which seems to be common to plant
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LRR-RKs (Zhang and Thomma, 2013; Han et al., 2014).
Equal proportion of receptor/ligand/co-receptor in the
complex of FLS2-flg22-BAK1, BRI1-BL-BAK1, and
PSKR-PSK-SERK2 was revealed by crystal structures
(Santiago et al., 2013; Sun et al., 2013a, b; Wang et al., 2015).
However, the ligands do not induce homo-oligomerization
of their receptors (Santiago et al., 2013; Sun et al., 2013a,
b; Wang et al., 2015), which is different from animal TLRs
(Song and Lee, 2012). Apart from the commonalities,
there are obvious differences in activation mechanisms
among the three receptor complexes. Flg22 and BL do
not induce conformation change of FLS2 and BRI1, and
both ligands are directly involved in the formation of het-
erodimerization by contacting with N-terminus of BAK1
LRR (Santiago et al., 2013; Sun et al., 2013a, b). A pro-
tuberance of non-LRR structure called island domain (ID)
interrupts ECDs of BRI1 and PSKR (Santiago et al., 2013;
Sun et al., 2013b; Wang et al., 2015) (Figure 2). The ID
is responsible for ligand binding, which is much larger in
BRI1 compared to that in PSKR (Wang et al., 2015). A
change of conformation occurs in PSK bound PSKRID,
which is more similar to BRIID compared with a free PSKRID

(Wang et al., 2015). Contrary to flg22 and BL, PSK does not
directly interact with SERK2, the N-terminus of which only
interacts with PSK bound PSKRID (Wang et al., 2015). As a
similar short ID also exists in other RLPs and RLKs, it will
be interesting to find whether they adopt the samemechanism
to activate receptor complex. The FLS2 LRR domain does
not contain an ID. Instead, 14 LRRs of FLS2 directly asso-
ciate with Flg22 (Sun et al., 2013a). The C-terminal flg22
residue Gly18 acts as “molecular glue” to mediate interaction
between FLS2LRR and BAK1LRR (Sun et al., 2013a).
Although the crystal structures of ECDs perfectly reveal

mechanisms by which cognate ligands induce receptor
complexes formation, they do not readily explain trans-phos-
phorylation of the intracellular kinase domain as ectodomain
structures do not reveal molecular event in kinase do-
main. Recent investigation of kinase domain revealed that
dimerization supports slight conformational change of the
intracellular domain (Yan et al., 2012; Bojar et al., 2014),
which may favor the trans-phosphorylation and activation
of kinase domain. In all, dimerization of ECDs induced
by ligands paves the way for juxtaposition of intracellular
kinase domain, which is a general activation strategy of plant
RLK/RLPs.

RLCKS LINK PRRSWITHDOWNSTREAM SIG-
NALING

A major challenge to the field of plant immunity is to under-
stand how the activation of PRRs leads to diverse defense
responses. Following the activation of PRR complexes,
many cellular responses are triggered, including reactive
oxygen species (ROS) production, Ca2+ burst, a rapid
activation of MPKs and the up-regulation of defense gene ex-
pression (Boller and Felix, 2009; Dodds and Rathjen, 2010;
Macho and Zipfel, 2014; Monaghan and Zipfel, 2012;
Wu and Zhou, 2013). These early signaling events are
responsible for orchestration of diverse defenses that ulti-
mately restrict pathogen progression. In recent years, several
receptor-like cytoplasmic kinases (RLCKs) have emerged
as central components of PRR complexes that link PRR
activation to various early signaling events.
Botrytis-induced kinase 1 (BIK1) and PBS1-like 1 (PBL1),

two highly homologous members of RLCK-VII family, act as
positive regulator inmultiple PRR complexes (Lu et al., 2010;

Figure 2         Atomic structures of FLS2LRR-flg22-BAK1LRR, BRI1LRR-BL-BAK1LRR, and PSKRLRR-PSK-SERK2LRR. The ECDs of FLS2, BRI1, and
PSKR form the right-hand superhelical structure. Flg22 interacts with 14 LRRs of the concave of FLS2. C-terminal residue Gly18 of flg22 directly mediates
N-terminus of BAK1LRR interaction. BL and PSK bind the island domain (ID) of BRI1 and PSKR respectively. PSK induces conformational change of PSKR
ID to recruit SERK2 to form stable PSKR-SERK2 complex.
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Zhang et al., 2010). BIK1 and PBL1 can directly asso-
ciate with unstimulated FLS2, EFR, CERK1 and PEPR1
(Zhang et al., 2010; Liu et al., 2013b). Accordingly, the
bik1 pbl1 double mutant exhibits reduced immune responses
triggered by multiple PAMPs, such as ROS production,
defense gene expression, callose deposition, and transient
influx of calcium ion from the apoplast, and is severely com-
promised in nonadapted bacterial pathogen and pathogenic
fungus Botrytis cinerea (Li et al., 2014b; Lu et al., 2010;
Veronese et al., 2006; Zhang et al., 2010). Furthermore,
both Xanthomonas effector AvrAC and Pseudomonas effec-
tor AvrPphB can specifically target Arabidopsis BIK1 and
related PBLs, resulting in reduced kinase activity and inhibi-
tion of plant immunity (Feng et al., 2012; Zhang et al., 2010).
The fact that unrelated effectors from completely different
pathogens target BIK1/PBLs further highlights the impor-
tance of BIK1/PBLs in plant immunity.
In rice, RLCK185 and RLCK176, two members of

BIK1 family, directly interacts with CERK1 to mediate
chitin- and PGN-induced plant immunity (Ao et al., 2014;
Yamaguchi et al., 2013). Similarly, PBL27, an Arabidopsis
ortholog of RLCK185, also interacts with CERK1 and con-
tributes to chitin-induced immunity but not flg22-induced
immunity (Shinya et al., 2014). In addition, BR-signaling
kinase 1 (BSK1), associates with FLS2 and is required
for flg22-induced ROS burst (Shi et al., 2013). Recently,
another RLCK-VII family member PCRK1 was reported to
play important roles during flg22-, elf18- and pep1-triggered
immunity, although it is unknown whether it interacts with
PRRs (Sreekanta et al., 2015). So far, the above mentioned
findings suggest that while some RLCKs associate with
multiple PRRs, others may interact with one or a few specific
PRRs. It will be interesting to investigate whether different
RLCKs regulate distinct or overlapping downstream compo-
nents during immune signaling.
Transient Ca2+ influx is one critical early cellu-

lar response after FLS2, EFR and PEPR activation
(Lecourieux et al., 2006; Qi et al., 2010). The calcium as
a second messenger, almost participates in all the defense
responses (Lecourieux et al., 2006). Recent work showed
that BIK1 and PBL1 are required for the flg22-induced cal-
cium influx, which is required for the activation of RbohD to
regulate ROS production (Li et al., 2014b; Ranf et al., 2014).
How PRR complexes activate transient Ca2+ influx is un-
known. The fact that BIK1 and PBL1 are required for the
flg22-idnuced calcium influx suggest that phosphorylation
of an unknown calcium channel may lead to the opening of
the Ca2+ channel.
ROS burst is another cellular response mediated by mul-

tiple PRRs. Recently, respiratory burst oxidase homolog
D (RbohD), a membrane-localized enzyme responsible for
transient ROS production (Torres et al., 2002), was iden-
tified as the first substrate of BIK1 (Kadota et al., 2014;

Li et al., 2014b). RbohD directly associates with FLS2 and
other PRR complexes before activation. Upon stimulation
by PAMPs, RbohD is phosphorylated directly by the acti-
vated BIK1, and then dissociates from the PRR complex,
allowing it to be activated by other signals, such as calcium
(Kadota et al., 2014; Li et al., 2014b; Ma, 2014).
Recently, it was shown that heterotrimeric G proteins

composed of Gα protein XLG2, Gβ protein AGB1, and
Gγ proteins AGG1 and AGG2 are required for ROS pro-
duction and disease resistance mediated by FLS2, EFR,
and CERK1 (Liu et al., 2013a; Maruta et al., 2015). Most
recent report showed that the G proteins directly interact
with FLS2-BIK1 receptor complex. Upon activation of the
FLS2-BIK1 complex by flg22, BIK1 directly phosphory-
lates the N terminus of XLG2 to enhance ROS production
(Liang et al., 2016). However, the phosphorylated XLG2
did not affect XLG2-BIK1 interaction or BIK1 stability in
the post-activation state. Considering that XLG2 associates
with RbohD constitutively and that RbohD activity is reg-
ulated by binding to Ca2+ and phosphatidic acid (PA), and
phosphorylation by BIK1 and CPK5 (Dubiella et al., 2013;
Kadota et al., 2014; Li et al., 2014b; Liang et al., 2016;
Zhang et al., 2009), it will be interesting to determine whether
the phosphorylated XLG2 modulates these processes.
After PRR complexes are activated, MPK activation

occurs within 1–2 min and then reaches a peak at 10–15
min, which plays crucial roles in multiple defense responses
including cell death, defense gene expression and stomatal
closure (Meng and Zhang, 2013). Although it has not been
genetically established, multiple lines evidence support a role
of BIK1/PBLs in MPK activation. For example, although the
bik1 pbl1 mutant exhibited normal flg22-induced activation
of MPKs (Feng et al., 2012), the Xanthomonas campestris
effector protein AvrAC, which specifically inhibits multiple
PBLs by uridylylation, severely inhibited flg22-induced
MPK activation (Feng et al., 2012). This suggests that
additional PBLs are required for MPK activation, although it
does not rule out the possibility that new components other
than RLCKs are involved. In the future, it will be important
to determine whether uncharacterized RLCKs play a specific
role in MPK activation or multiple RLCKs act redundantly
to control MPK activation.

DYNAMIC REGULATION OF PRR COM-
PLEXES

Rapid and robust activation of plant immune signaling is cru-
cial for plants to mount effective defenses against invading
pathogens. However, excessive immune signaling can be
detrimental to plants. Thus the composition, activity, and
abundance of PRR complexes must be subject to tight reg-
ulation both before and after immune activation.
An important regulatory aspect is to control PRR com-
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plexes formation prior to ligand perception. For example,
recent findings showed that LRR-RLK BIR2, a pseudoki-
nase, prevents the PRRs-BAK1 complex formation at resting
state (Halter et al, 2014a). BIR2 associates with BAK1
constitutively to prevent the interactions of BAK1 with
adjacent PRRs before PAMPs perception. After ligands
perception, BIR2 is released from BAK1 and results in
PRRs and BAK1 interaction and immune activation rapidly
(Blaum et al., 2014; Halter et al., 2014a, b). In addition, an-
other LRR-RLKBIR1 also interacts with BAK1 to negatively
regulate plant defense responses (Gao et al., 2009). In con-
trast to BIR2, BIR1 is an active kinase and the kinase activity
is partially required for its function, although they belong to
the same subfamily and both bir1 and bir2 mutant have a
cell death phenotype (Gao et al., 2009; Halter et al., 2014a,
b). This suggests that BIR1 and BAK1 complex regulates
plant immunity likely via a different molecular mechanism,
such as perception of an unknown signal.
PRR complex stability is another important regulatory

mechanism. Recent advances showed that BIK1 stability is
known to be regulated by 26S proteasome pathway and that
CPK28 facilitates BIK1 degradation to negatively regulate
immunity in the pre-activation state (Monaghan et al., 2014).
More recent studies showed that, in addition to regu-
lating ROS production in the post-activation state, the
heterotrimeric G proteins are directly coupled to FLS2-BIK1
receptor complex to stabilize the BIK1 protein, also in the
pre-activation state (Liang et al., 2016). This allows plants
to initiate robust immune responses once stimulated by
flg22 (Liang et al., 2016). The findings indicate that CPK28
and G proteins control BIK1 turn-over oppositely by 26S
proteasome pathway, ensuring optimum level of BIK1 for
immune activation. Since CPK28 and the G proteins both
regulate BIK1 in the pre-activation state, it is possible that
they regulate BIK1 ubiquitination by the same, unknown E3
ligases.
In addition to pre-activation, PRR complex stability also

is regulated after stimulation by PAMPs. For example,
FLS2 is subject to degradation by the 26S proteasome path-
way after flg22 perception to attenuate immune signaling
(Lu et al., 2011). FLS2 is ubiquitinated by two U-Box E3
ligases PUB12 and PUB13 for degradation. PUB12 and
PUB13 constitutively interact with BAK1 and are recruited
to the FLS2 after flg22 perception, resulting in an flg22-in-
duced ubiquitination and degradation of FLS2 but not BAK1
(Lu et al., 2011), which is crucial for preventing prolonged
immune activation. These findings shed light on one im-
portant mechanism of how E3 ligases attenuate immune
signaling after the PRR activation.
Ligand-induced endocytosis is another regulatory mech-

anism controlling PRR immune activation. After flg22
elicitation, FLS2 is subject to endocytosis and degradation

within 1 h, which may prevent continuous immune activa-
tion (Smith et al., 2014). There is no evidence that FLS2
ubiquitination by PUB12/13 contributes to FLS2 endocytosis
(Li et al., 2014a). The stimulated cells are replenished with
newly synthesized FLS2 to restore flg22-sensing capability
within 2 h (Smith et al., 2014). FLS2 endocytosis may
also serve to promote flg22-signaling competency. For
example, FLS2 co-localizes with the endosomal sorting
complex required for transport (ESCRT)-I subunits at endo-
somes after flg22 perception, resulting in FLS2 endosomal
sorting (Spallek et al., 2013). The ESCRT-I components
VSP37-1 and VSP28-2 are required for not only FLS2
endocytosis, but also flg22-induced stomatal immunity
(Spallek et al., 2013). Moreover, stomatal cytokinesis
defective 1 (SCD1), which functions in clathrin-mediated
endocytosis (McMichael et al., 2013), was also found as an
FLS2 interaction partner required for flg22-induced ROS
burst (Korasick et al., 2010). These findings raise interesting
possibility that the activated PRR complex is mobilized to
intracellular compartments to activate various downstream
responses.

CONCLUDING REMARKS

Increasing evidences support that the RLK and RLP super
families play a crucial role in the perception of diverse mi-
crobial and endogenous patterns, forming a powerful surveil-
lance system at the cell surface against invadingmicrobes and
insects. We are far from that knowing the complete repertoire
of PRRs in a plant species and ligands they perceive. A daunt-
ing taskwill be to assign biological and biochemical functions
to the vast majority of RLKs and RLPs that are functionally
unknown, particularly those involved in plant immunity.
RLK-RK or RLK-RP oligomerization induced by cognate

ligand is a common mechanism for the activation of PRRs.
The PRRs, as core components, can recruit RLCKs, sub-
strates of RLCKs, and other regulators to form dynamic plant
PRR immune complexes, allowing robust but controlled in-
tracellular signaling in the face of pathogen attacks without
unwanted effect on growth and development under normal
conditions. An important question is how different compo-
nents are organized in the PRR complex, whether they re-
side in the same complex or different complexes. Major gaps
remain in our knowledge concerning regulation of early im-
mune signaling events, such as the control of calcium burst
andMPK activation. Future challenge is to identify new com-
ponents linking PRR complexes and activation of various key
signaling events.
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