Johnson et al. Journal for ImmunoTherapy of Cancer 2014, **2**(Suppl 3):O1 http://www.immunotherapyofcancer.org/content/2/S3/O1

ImmunoTherapy of Cancer

ORAL PRESENTATION

Pre-clinical validation of a humanized anti-EGFR variant III chimeric antigen receptor and phase I trial of CART-EGFRvIII in glioblastoma

Laura A Johnson¹, John Scholler², Takayuki Ohkuri³, Akemi Kosaka³, Prachi R Patel², Shannon E McGettigan⁴, Arben Nace⁵, Pramod Thekkat⁶, Andreas Loew⁷, Taylor J Chen², Joseph A Fraietta¹, Avery D Posey², Alina C Boesteanu⁸, Alexandria P Cogdill², Boris Engels⁷, Reshma Singh⁷, Tucker R Ezell⁷, Neeraja Idamakanti⁹, Gabriela Plesa¹⁰, John Seykora², Hideho Okada¹¹, Carl June², Jennifer Brogdon⁷, Marcela Maus^{12*}

From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014

Chimeric antigen receptors are synthetic molecules designed to re-direct T cells to specific surface antigens; CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of novel surface targets with limited expression. The variant III mutation of the epidermal growth factor receptor (EGFR variant III) is the most common variant of the EGF receptor observed in human tumors, and results from an in-frame deletion of a portion of the extracellular domain. In glioblastoma, the EGFRvIII mutation is oncogenic, portends a poor prognosis, and is thought to be enriched in glioblastoma stem cells. However, because the neoepitope of EGFR variant III is based on a small peptide sequence, an antibody or single-chain variable fragment (scFv) directed to this epitope must be rigorously tested to confirm lack of cross-reactivity to the ubiquitously expressed normal EGFR. Having selected a candidate murine scFv directed to EGFRvIII and a vector backbone encoding a second generation CAR, we generated a panel of humanized scFv's and tested their specificity and function as soluble proteins and in the form of CARtransduced T cells. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to kill antigen-bearing targets effectively, and proliferate and secrete cytokines specifically in response to antigen. We further evaluated the specificity of the lead candidate CAR by comparing it to a cetuximab-based CAR which

¹²Abramson Cancer Center, Dept. of Medicine, University of Pennsylvania Perelman School of Medicine, Bryn Mawr, PA, USA

Full list of author information is available at the end of the article

does not discriminate between EGFR and EGFR variant III; the two CARs, along with negative controls, were tested in vitro against primary cells derived from a panel of normal tissues, and in vivo in immunodeficient mice grafted with normal human skin, which naturally expresses EGFR. CAR-T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFR variant III+ glioblastoma. We have designed a Phase I clinical study of CAR T cells transduced with humanized scFv directed to EGFR variant III in patients with glioblastoma.

Authors' details

¹Translational Research Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. ²University of Pennsylvania, Philadelphia, PA, USA. ³University of Pittsburgh, Pittsburgh, PA, USA. ⁴University of Pennsylvania, Hatboro, PA, USA. ⁵University of Pennsylvania, Landenberg, PA, USA. ⁶Novartis Institutes of BioMedical Research Inc, Quincy, MA, USA. ⁷Novartis Institutes for Biomedical Research Inc, Cambridge, MA, USA. ⁸University of Pennsylvania Abramson Cancer Center, Wilow Grove, PA, USA. ⁹Novartis, Burlington, VT, USA. ¹⁰University of Pennsylvania, Blue Bell, PA, USA. ¹¹University of California San Francisco, San Francisco, CA, USA. ¹²Abramson Cancer Center, Dept. of Medicine, University of Pennsylvania Perelman School of Medicine, Bryn Mawr, PA, USA.

Published: 6 November 2014

doi:10.1186/2051-1426-2-S3-O1

Cite this article as: Johnson *et al.*: Pre-clinical validation of a humanized anti-EGFR variant III chimeric antigen receptor and phase I trial of CART-EGFRvIII in glioblastoma. *Journal for ImmunoTherapy of Cancer* 2014 2(Suppl 3):O1.

© 2014 Johnson et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.