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Abstract

Background: Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high
conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous,
vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the
usability and advantages of these feedback methods were explored mainly by looking at the performance results, not
taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this
study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when
manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback,
and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting.

Methods: 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive
days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a
30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback
only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they
were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also,
during the test the subject’s EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured.

Results: The results show that a higher mental effort is needed when the subjects rely only on their vision, and that
this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal
feedback). Furthermore, better temporal performance and better grasping performance was obtained in the
audiovisual modality.

Conclusions: The performance improvements when using auditory cues, along with vision (multimodal feedback),
can be attributed to a reduced attentional demand during the task, which can be attributed to a visual “pop-out” or
enhance effect. Also, the NASA TLX, the EEG’s Alpha and Beta band, and the Heart Rate could be used to further
evaluate sensory feedback systems in prosthetic applications.

Background
It is well known that upper limb amputees have to rely
extensively on visual feedback in order to monitor and
manipulate successfully their prosthetic device. This sit-
uation seems to lead to a high conscious burden for the
users, which generates fatigue and frustration [1,2]. This
lack of sensory feedback is a major drawback that many
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researchers are trying to cope with by using indirect meth-
ods to convey information from the artificial limb to
the amputee, such as electro-cutaneous stimulation [3-8],
vibrotactile stimulation [8-12], force stimulation [13-18],
or auditory cues [19-22]. Although the results obtained
are very positive, the usability and advantages of these
feedback methods were explored mainly by looking at
the performance results, which do not take into account
measurements of the user’s mental effort, attention, and
emotions. As a different approach, A. Hernandez et al.,
in [3], explored the effect of electro-tactile feedback on
amputees’ cerebral cortex using fMRI data, showing that
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the motor-sensory areas of the lost limb in a subject’s
brain were activated when the subject grabbed an object
with a prosthetic hand while looking at the action and
feeling the electrical stimulation. This result gives good
insight of the brain plasticity, but still the authors didn’t
address the mental load due to the multimodal informa-
tion display. It has been claimed or assumed in literature
that, by adding a feedback loop to the prosthetic control,
the users will improve his performance and awareness
of the robot hand, reducing their consciousness burden
[1-3,6-13,17]. However, to the best of our knowledge,
there haven’t been studies supporting this claim or
assumption directly. The evaluation methods used in
these studies had focused only on performance results and
informal reports. Therefore, it is possible that by using an
extra feedback loop, the performance will be improved,
but at the expense of a higher mental effort, driving the
amputee to fatigue faster. Therefore, it is reasonable to
question how does the presentation of multimodal infor-
mation affect the robot hand user? Is the mental workload
increasing or decreasing?
In order to measure mental workload, different methods

have been used in the area of human machine interac-
tion and psychology. The most common method used is
self-assessment questionnaires, for example, the NASA
TLX questionnaire [23,24]. This method has proven to
be very reliable for different applications, but there are
problems with validity and corroboration since subjects
can answer differently from what they are really feeling or
they might be confused by the questions and not answer
correctly. Another disadvantage is that continuous mon-
itoring cannot be accomplished. Therefore, to validate
and corroborate these self-report measurements, psycho-
physiological measurements have been widely used. By
measuring changes in the autonomic nervous system
(ANS) and the central nervous system (CNS), it is pos-
sible to directly and continuously monitor changes in
cognitive activity and emotions of a person when carry-
ing out different tasks [25]. This method has been used
to assess mental effort [26-29], to measure user experi-
ences in entertainment technologies [30], and in human
robot interaction [31,32]. However, care must be taken
when interpreting the results. There are many factors that
can affect the measurements (e.g. ambient light, temper-
ature, physical motion, electromagnetic noise), thus it is
recommended that experimentation should be carried in a
controlled environment. Also, it is recommended to mea-
sure more than one variable simultaneously in order to
have a robust assessment.
Since psycho-physiological measurements haven’t been

used in prosthetic applications, the main objective of
this study was to explore the feasibility of using psycho-
physiological measurements to assess cognitive effort
when manipulating a robot hand with and without the

usage of a sensory feedback system, and how these mea-
surements are related to temporal and grasping perfor-
mance when using the prosthetic hand in a static or
fixed setting. In this way, we can examine the changes
in different physiological variables and their relationship
with the mental effort during the manipulation of a pros-
thetic hand, and how the usage of auditory information
as the sensory feedback system affects their performance.
The NASA TLX self-assessment questionnaire and the
subject’s EEG, ECG, electro-dermal activity (EDA), and
respiration rate were used to assess the cognitive effort.

Methodology
Robot hand
A tendon driven robot hand was mounted on a tripod
ready to grasp a bottle on a table, as shown in Figure 1.
This type of robot hand has the advantage that the shape
of the grip can adapt to almost any object shape pas-
sively without controlling many degrees of freedom. A
Data Glove (5DTUltra 5) was used tomeasure joint angles
of the subject’s hand to manipulate the prosthetic hand.
Since this Data Glove has only 1 sensor per finger, the con-
trollability of the robot hand was reduced to 1 degree of
freedom per finger. By limiting the degrees of freedom of
the robot hand the subject was forced to pay more atten-
tion to position of the robot hand’s fingers instead of the
position of his hand since one position of the robot hand
can be achieved by different position of the subject’s fin-
gers. Furthermore, for this experiment, the position of
only the robot hand’s thumb, pointer, and middle finger
was sampled (at 40Hz) for a cylindrical grasp (grasp a
cylindrical bottle.)

Sensory feedback system
Our research group developed a sensory feedback system
using an auditory display, which is used as a redundant
source of both kinematic and somatosensory informa-
tion in prosthetic applications. This system was designed
to enhance motor-sensory performance and awareness
during the manipulation of a robot hand [21,22]. In this

Figure 1 Experiment setting. a) Subject’s perspective of the robot
hand during the experiment. The task was to grasp a bottle with the
prosthetic hand. b) View of the whole experiment setting. The subject
used a Data Glove to control the robot hand motion and bending
sensors in the robot hand fingers were used to produce the auditory
feedback cues.
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system different types of grasp (e.g. palm grasping, pinch-
ing) are mapped to different types of sounds (e.g. a piano,
or a violin). This way the subject is able to easily know
whether the prosthetic hand is doing or not his intended
motion. Also, the robot hand motion needed to achieve
the desired grasp is divided in different hand configura-
tions. These hand configurations are mapped directly to
the pitch of the grasping type sound, allowing the sub-
ject to dynamically monitor the motion of the robot hand.
Furthermore, the trajectory of the robot hand’s fingers is
compared to the expected trajectory and if one or more
fingers are not following the expected trajectory (e.g. due
to a mechanical malfunction or an obstacle) an error
signal is generated and conveyed as an Auditory Icon.
Auditory icons refer to sounds designed to convey infor-
mation of a discrete event by analogy to everyday sound,
for example the sound made by deleting files on a com-
puter [33,34]. Similarly to convey grip force, a different
sound from the one being used during the reaching phase
is presented to the subject. The developed system uses
OpenAL API (Creative Labs) to playback the sounds.
Figure 2 shows the block diagram of the system used to

generate the auditory information. For this study only the
cylindrical or palmar grasp was used during experimen-
tation. The robot hand motion was divided in 8 different
hand configurations and each configuration was mapped
to 8 Piano major triads. The Hand Configuration 1 (C1)
was considered to be the state when all the robot hand’s
fingers were extended and was represented by a low C
major triad. On the other hand, the hand configuration
8 (C8) denoted the state when all the fingers were com-
pletely flexed and was represented by a high Cmajor triad.
Since the task was to grasp a bottle, the robot hand never
reached a completed flexed configuration (C8), therefore
only the sound of 5 triads were presented to the subjects
(C, D, E, F, G major triads). Finally, due to lack of pres-
sure sensors in the robot hand used for this experiment, to
indicate that the bottle was completely grasped a discrete
signal was presented as another auditory icon. The fully
grasp signal was triggered when the robot hand reached

the hand configuration C6. C6was realized when the angle
of the subject’s finger was approximately 60.

Experiment setting
10 male subjects, between 22 and 30 years old, right
handed, and with no sensory or motor impairment
participated in this study. They were asked to come
for 2 consecutive days. On the first day the experiment
objective, tasks, and experiment setting were explained.
After they completed a 30 minutes guided training. On
the second day each subject was tested in 3 different
modalities: Auditory Feedback only control (AF), Visual
Feedback only control (VF), and Audiovisual Feedback
control (AVF). For each modality they were asked to per-
form 10 trials. At the end of each test, the subject had to
answer the NASA TLX questionnaire. The order of the
modality tests was randomly chosen for each subject.
The subjects were asked to wear the Data Glove and

sit beside the prosthetic device so that the device is on
the pose and position from which the subject could begin
reaching and grasping motions with his own upper limb
(Figure 1a). The subject’s perspective of this setting is
shown in Figure 1b. Since the psycho-physiological vari-
ables (EEG, ECG, EDA, Respiration) were being recorded
during the tests, they were told tomove as little as possible
during the trials. Although the subject was able to manip-
ulate all 5 fingers, they were told that only the Thumb,
Pointer, and Middle finger were going to be tested.
The experiment tasks consisted of closing the robot

hand until the bottle was securely grasped (C6), which was
achieved at approximately 60% of finger flexure as mea-
sured by the Data Glove, and then opening it again until
the fingers were completely extended (C1). We empha-
sized on the fact that since the fingers controllability is
only 1 degree of freedom, they cannot rely on the posi-
tion of their own hand to monitor the robot hand motion
because the robot hand mechanism will not always yield
the same position as their own hand. The experimenter
was able to induce errors randomly in the motion of
the robot hand’s thumb, pointer, or middle finger during

Figure 2 Experiment setting block diagram. The subjects controlled the robot hand’s motion using a Data Glove. The different profiles of the
robot hand movements were mapped to sounds and conveyed back to the subjects. During tests, the experimenter forced one of the robot hand’s
fingers to stop moving, which generated an error signal that was conveyed back to the subject as an auditory icon.
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the closing or opening motion. Therefore, if an error
was induced on the pointer, this finger was forced to
stop moving. This will prevent the pointer to follow the
expected trajectory, thus generating an error. Once the
subject detected this error, he was required to stop his
hand motion, check which finger generated the error
(relying on visual only, auditory only, or audiovisual infor-
mation), and move his respective finger backwards until
the robot hand’s finger moved 1 position backwards as
well. After this, continue with the motion. In this study,
only 1 error per trial was presented.
The subjects were also required to fully grasp (exert

enough force on the bottle so it would not slip if lifted)
the bottle in order to finish the trial. A fully grasped bot-
tle was indicated by a discrete auditory signal in the AF
and AVFmodalities. However in the VF modality the sub-
ject was required to approximate the grasp just by looking
at the robot hand. If the bottle wasn’t completely grasped
after finishing the open-close-open motion, the subject
was required to close the robot hand again until the bot-
tled was fully grasped and then open it again to finish
the trial.

Auditory Feedback only (AF)
When testing this feedback modality the subjects’ eyes
were covered, thus they had to rely only on the sounds
to monitor the Robot Hand’s finger position. To start a
trial the subject was asked to leave their own hand com-
pletely open and wait for the sound corresponding to
C1 to be presented, then, start closing the hand until
they heard the auditory icon that represented a com-
plete grasp, and then open the hand until they heard
the C1 sound again. They were required to repeat this
for 10 times in a self-paced movement. If they detected
an error happened they had to stop the motion, move
the affected finger backwards until they heard the pre-
vious hand configuration sound, and then continue with
the motion.

Visual Feedback only (VF)
For the VF modality, the subject was asked to monitor the
robot hand’s finger motion only by looking at it. This is
the same way by which current prosthetic hands have to
be monitored and manipulated, thus can be regarded as
a control group. A green LED was used to indicate when
to start and finish each trial. The subject was asked to
open his hand completely and wait for the LED to turn
on, then, start closing the robot hand until the bottle was
fully grasped. After that, the subject was asked to open
the robot hand until the LED turned off. If the LED didn’t
turn off, then the bottle was not completely grasped, or
the error wasn’t detected and fixed, thus the subject had
to close and open the robot hand again until the LED
turned off.

Audiovisual Feedback (AVF)
In this modality the subject could monitor the robot hand
using both the auditory and visual feedback as explained
in the previous subsections.

Performance Evaluation
We recorded the time taken to complete each trial and for
each error to be detected and fixed. An error was con-
sidered detected and fixed when the subject moved the
affected finger backward one position. This way we deter-
mined how long it took the subject to detect the error.
We expected that, for the VF modality, the subjects were
going to take more time to detect an error since it’s more
difficult to notice when a finger stops moving, and also
we expected the trials to last longer. Additionally, due to
the lack of pressure sensors in the robot hand, a com-
plete grasp was indicated by a digital signal. This is why, to
assess the grasping performance, we measured how much
the subjects flexed their fingers in order to achieve a com-
plete grasp of the bottle with the robot hand. The output
of the Data Glove was obtained as the percentage of the
finger flexure, where 0% indicated a totally extended finger
and 100% totally flexed finger. For this application, in
order to achieve a complete grasp of the bottle the subject
had to flex his fingers around 60%. For the VFmodality we
expected the subjects to flex their fingers more than in the
other 2 modalities since they have to approximate visually
when the bottle was completely grasped.

Cognitive effort evaluation
We recorded several psycho-physiological variables (EEG,
ECG, EDA, Respiration) during the different experimen-
tal modalities, and asked the subjects to fill the NASA
TLX self-assessment questionnaire after each modality
was finished. Baselines were recorded for 1 minute before
the start of each test, during this time the subjects were
asked to remain relaxed. As described before, for the AF
modality the subjects had their eyes covered and they were
asked to close their eyes. The BIOPAC MP30 was used to
record all the psycho-physiological variables at a sampling
rate of 1000Hz and the data was analyzed offline using
Matlab 7.0. Also, due to the contamination of the psycho-
physiological signals, only the data from 9 subjects could
be analyzed.

Self-Assessment questionnaire
The NASA TLX was used to measure the subjective
mental workload of the system. The overall workload
score obtained is based on a weighted average rating
of 6 sub scales: Mental Demands, Physical Demands,
Temporal Demands, Own Performance, Effort, and Frus-
tration. This scale has been successfully used to assess
workload in different human-machine interfaces applica-
tions as described in [23,24,28]. In order to calculate the
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overall score each sub scale has to be weighted by present-
ing a pair of factors and asking the subjects to choose what
they think contributed more to the workload of the task
(there are 15 pair-wise comparisons). The final weights are
obtained by summing the times each factor was selected.
These weights range from 0 (no important) to 5 (more
important than any other factors). After that, the sub-
jects have to rate each of the factors in a scale divided
into 20 equal intervals anchored by a bipolar descrip-
tor (e.g. High/Low). Finally, each rating was multiplied by
the weight given to that factor and all the results were
summed and divided by 15.

EEGmeasurements
For this study, EEG measurements were carried out by
1 bipolar channel placed, according to the 10-20 stan-
dard in P4 (positive lead), T6 (negative lead), and A2
(ground lead), on the right side of the head. The posi-
tion of the electrodes was chosen as recommended by
the BIOPAC manual in order to reduce the blinking arti-
facts. The raw data was filtered with a 40Hz low pass filter.
A manual inspection of the data was done in order to
remove artifacts due to blinking. After that, the spectral
powers of each trial were obtained for the Alpha (8 13Hz)
and Beta (14 35Hz) bands. A Hamming window and the
Fast Fourier Transform (FFT) were used to calculate the
spectral powers of each frequency band [35,36]. Finally,
the values obtained were divided by the baseline value of
each modality in order to obtain an index of change of the
signals [26] from the resting states.

Heart ratemeasurements
In this experiment, the heart rate measurements were car-
ried out by a 3 lead configuration setting, that is, the
Ground lead attached under the right clavicle, the Nega-
tive lead attached under the left clavicle, and the Positive
lead attached to the lower left ribcage. The raw data was
filtered with a 60Hz low pass filter, the number of spikes
during each trial was recorded, and the inter-beat inter-
val (IBI) between 2R peaks was recorded as well [37]. The
approximate heart rate of each trial was calculated in beat
per minutes. For the HRV, the FFT of the detrended IBI
data set of the duration of eachmodality was obtained and
the 0.1Hz component was extracted as described in [37].
After that, the HR and the HRV values were divided by
each modality’s baseline in order to obtain a change index
from the resting period.

Electro-dermal activity (EDA)measurements
In this study, the Skin Conductance Level (SCL) and the
Skin Conductance Reactions (SCR) were obtained from 2
electrodes (Biopac SS57L) attached to the left hand’s index
and middle finger. A baseline was obtained 2 seconds
before the beginning of each trial and then the mean SCL

of each trial was obtained. The final score for each trial
was obtained by diving the trial’s level with the 2s baseline
level. The SCR was recorded when the maximum level of
a trial was higher than the mean of the 2s baseline, thus
only one reaction was taken in account per trial. Due to a
problem with one transducer during experimentation the
data of only 7 people were taken in account to calculate
the results.

Respiration ratemeasurements
Respiration rate was measured with Biopac’s SS5LB trans-
ducer, which measures the change in thoracic circum-
ference. The raw data was band passed filtered between
0.05Hz and 1Hz, and the respiration rate was calcu-
lated as the amount of positive crest during each trial.
After, the resulting values were divided by the base-
line in order to obtain a change index from resting
period.

Results
The results obtained were analyzed in SPSS 16.0 using a
Repeated Measures Analysis Of Variance (ANOVA) and
the Greenhouse-Geisser correction estimates were used
to measure the statistical effect. Table 1 shows a summary
of the results from all psycho-physiological measurements
and Table 2 shows the summary of the results when
Subject 1 and subject 8 were not taken in consideration.

Performance
Figure 3a shows the mean of a trial’s duration of each
modality for all subjects. A significant effect was found
between modalities, F(1.4, 105)=4.947 p<0.05, and a
Bonferroni Post Hoc test revealed that the trial duration
of the VF modality was significantly longer than that of
the AVF modality (p=0.023), but there is no significant
difference between the trial durations of the VF and AF
modalities (p=0.22). Figure 3b shows how long it took the
subjects to detect and fix an error, and applying the same
statistical test a significant difference between modali-
ties, F(1.2,48)=14.93 p<0.01, was found. Post Hoc test
showed no significant difference between the AF and AVF
(p=0.478), but there was a significant difference between
the modalities AF and VF (p<0.001) and between the AVF
and VF (p<0.001). These results were expected because
during the VF modality it is more difficult to detect an
error fast.
Figure 4 shows how much the finger flexed his finger

when grasping the bottle as measured by the Data Glove,
where 0% refers to the fingers completely extended and
100% to the fingers completely flexed. A statistical dif-
ference was found between modalities, F(1.9,135)=184.99,
p<0.01. The Post Hoc tests showed that there was no sig-
nificant difference between AF and the AVF modalities
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Table 1 Summary of psycho-physiological measurements results

Visual Auditory AudioVisual Description
feedback (VF) feedback (VF) feedback (VF)

NASA TLX AF < VF AF > AVF VF > AVF Higher perceivedworkload in VFmodality followed very closely
by the AF modality

Alpha Band AF > VF* AF > AVF VF < AVF Higher attentional demand in VF modality

Beta Band AF < VF AF < AVF VF > AVF Similar cognitive demand in all modalities.

HR AF < VF AF > AVF VF > AVF** Significantly higher Task difficulty and attentional demand in
VF modality

HRV AF > VF AF > AVF VF < AVF No significant difference were found between modalities

SCL AF < VF AF < AVF VF < AVF No significant arousal during the tests

SCR AF < VF AF < AVF VF < AVF No significant arousal during the tests

Respiration Rate AF > VF** AF > AVF** VF < AVF Couldn’t be related to mental effort

*significance at p < 0.05.
**significance at p <0.001.

(p=0.48), but a significant difference between AF and VF
(p=0.001) and AVF and VF (p=0.001) was found. These
results were also expected because during the VF modal-
ity the subjects have to rely on what they see to achieve a
complete grasp.

Nasa TLX results
The NASA TLX mean scores showed that, in general,
the VF modality was ranked with the highest mental
workload, followed very closely by the AF modality when
manipulating the prosthetic device (Figure 5). On the
other hand it seems, from the overall results, that the
subjects agreed that the mental workload is lower when
a multimodal feedback (AVF modality) is used, although
no statistical difference was found between modalities,
mainly due to the variability between the subjects’ rat-
ings. Comparing the subject’s individual scores (Figure 6a)
it is possible to notice that Subject 1 and Subject 8 were
the only ones that reported that the mental effort in the

VF modality was lower than in the other 2 modalities,
which were considered to be similarly difficult. Therefore,
if we consider Subject 1 and Subject 8 as outliers, and
exclude their scores from the statistical analysis, the
results showed the same tendency, but with a significant
effect between modalities F(1.8,12.9)=7.954 p=0.006 with
a significant difference (p<0.05) found between the VF
and the AVF modalities (Figure 6b).

EEG results
The EEG mean power spectra of the Alpha and Beta band
of each modality for all subjects are shown in Figure 7a.
We observed that there was a higher Alpha suppression
for the VF modality compared to the other 2 modalities
(F(1.4,105)=6.455, p=0.006). Comparing the VF modality
with the AF modality, a significant difference of p=0.013
was found, whereas comparing the VF modality with the
AVFmodality, no significant difference was found. The AF
and AVF modalities didn’t show any significant difference

Table 2 Summary of psycho-physiological measurements results without outliers (Subject 1 and Subject 8)

Visual Auditory AudioVisual Description
feedback (VF) feedback (VF) feedback (VF)

NASA TLX AF < VF AF > AVF VF >AVF** Significantly higher perceived workload in VF modality
followed very closely by the AF modality

Alpha Band AF > VF** AF > AVF** VF < AVF* Significantly higher attentional demand in VF modality

Beta Band AF > VF AF < AVF VF < AVF Similar cognitive demand in all modalities.

HR AF < VF AF > AVF* VF > AVF* Significant Higher Task difficulty and attentional demand in VF
modality

HRV AF > VF AF > VF VF < AVF No significant difference were found between modalities

SCL AF < VF AF < VF VF < AVF No significant arousal during the tests

SCR AF < VF AF < VF VF < AVF No significant arousal during the tests

Respiration Rate AF > VF** AF > AVF** VF < AVF Couldn’t be related to mental effort

*significance at p < 0.05.
**significance at p <0.001.
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Figure 3 Temporal performance results. a) Trial Duration. It can be noted that the trial duration was lower when the auditory and the visual
feedback was used simultaneously. b) Duration to detect and fix an error. An error was detected and fixed faster when the auditory display was used.

either. The Beta band didn’t show any significant effect
between modalities.
As expected from this kind of measurements a large

variability between subjects was found. The results
pointed out that Subjects 1 and 8 also had a different ten-
dency than the rest of the subjects. Therefore, by treating
Subjects 1 and 8 as outliers we found a significantly sta-
tistical effect between the modalities (F(1.27,75.2)=14.06
p<0.001) and the Post Hoc test showed a significant dif-
ference between all modalities: p<0.01 between AF and
VF, p=0.011 between AF and AVF, and p=0.006 between

Figure 4 Finger flexure results. The finger flexure was measured as
a percentage value where 0% indicated a fully open hand pose and
100% indicated a fully closed hand pose (e.g. fist). From the results it
can be noted that the Auditory feedback allowed the subject to know
more accurately when the bottle was completely grasped.

VF and AVF. Furthermore, for the Beta band no significant
differences were obtained between modalities. This result
can be observed in Figure 7b.

ECG results
The Heart Rate results are shown in Figure 8. It can
be noted that for all modalities there was a deceleration
of the heart rate from resting values, and the statisti-
cal test showed a significant effect between modalities
F(1.7,133.6)=6.944 p=0.002. This effect was due to a sig-
nificant difference between the VF and the AVFmodalities

Figure 5 NASA TLX scores. The NASA TLX mean scores showed that,
in general, the VF modality was ranked with the highest mental
workload, followed very closely by the AF modality when
manipulating the prosthetic device.
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Figure 6 NASA TLX scores without outliers. a) Subject 1 and Subject 8 were the only ones that reported that the mental effort in the VF modality
was lower than in the other 2 modalities, which were considered to be similarly difficult. b) Considering Subject 1 and Subject 8 as outliers, the
results showed the same tendency, but with a significant effect between modalities.

(p=0.004), since the VFmodality showed the lowest decel-
eration of all the groups, followed very closely by the AF
modality, while the AVF showed the highest deceleration.
Additionally, the Heart Rate Variability results showed the
lowest variability for the VF modality, but no statistical
effect was found.
Considering Subject 1 and 8 as outliers for the other

measurements, the AVF modality showed the highest
deceleration, but a smaller statistical effect between
modalities was found (F(1.9,111.56)=3.69 p=0.03). The

HRV didn’t show any statistical difference between
modalities.

Respiration rate and electrodermal activity results
The respiration rate increased from resting values for all
feedback modalities and was significantly higher for the
AF modality when compared with the VF (p<0.001) and
with the AVF (p=0.003) modalities, and the respiration
rate for the VF and the AVF modalities was very similar.
On the other hand, the electro-dermal activity (EDA)

Figure 7 EEG results. a) The EEG mean power spectra of the Alpha and Beta band of each modality for all subjects. A higher Alpha suppression was
found for the VF modality. b) When considering Subject 1 and 8 as outliers, we found a significantly statistical effect between the modalities. These
results points out a higher attentional demand in the VF modality.
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Figure 8 ECG results. The VF modality showed the lowest
deceleration of all the groups, followed very closely by the AF
modality, while the AVF showed the highest deceleration. Which
points out a lower mental effort and more focused attention in the
AVF modality.

didn’t show any statistical effect between modalities for
all subjects, which points out that the subjects were not
aroused during the experiments.

Scores correlations
Finally, the correlations between the performance and
the variables used to measure mental effort are shown
in Table 3. We can see a strong relationship between
the subjective ratings and the performance results.
Also a significant correlation between the performance
and some of the psycho-physiological variables was
found.

Discussion
Performance
The performance results presented in this paper showed
a better temporal performance in the AF and AVF
modalities than in the VF modality for detecting and
correcting an error in the robot hand’s finger trajecto-
ries. This is an expected result for the experiment setting
used in this study because it is well known that audi-
tory cues convey faster and more accurately the moment

an error occurred, than when the subject is only looking
at the hand [33,34,38-40]. Also, it has been considered
in literature that auditory cues enhance visual percep-
tion when the sound is congruent with visual feedback
[33,34,38,40-43], which explains why the performance in
the AVF modality was the best for all subjects. Another
problem of relying only on vision to manipulate a robot
hand is that while reaching and grasping there can be
blind spots that prevent the user from successfully mon-
itor the motions. For example, in this experiment the
bottle partially blocked the pointer, middle, ring and lit-
tle finger, making the detection of errors in these fingers
more difficult for the subjects (Figure 3). Similar results
were obtained by S. Kousidou et al. [38], C. Ghez et al.
[39], and H. Huang et al. [41]. They showed that subjects
performed smoother motions in less time when auditory
feedback was used for rehabilitation therapies.
Also, since the subject had to approximate the grasping

force of the bottle in the VF modality, we were expecting
that in some trials the subject could not grasp completely
the object, thus, had to close and open the hand again.
This situation happened approximately once per subject
because most of the subjects opted to flex more than nec-
essary their fingers, which can be seen from the grasping
finger flexion results presented in Figure 4. These results
showed the low ability of the VF modality to approximate
correctly the grasping force necessary to be applied to an
object, therefore, the user will end up doing more mental
and physical effort. Richard P. et al. showed similar results
for force feedback when manipulating virtual deformable
objects [44]. Tomake this comparisonmore realistic, force
sensors will be added to the robotic hand in order to inves-
tigate this situation directly. In that way, the subject will
be required to approximate the grasping force as well, but
using sounds.

ECGmeasurements
Heart rate is the most used physiological variable to assess
mental workload since is the easiest to measure and cal-
culate [25]. In general, larger heart rate deceleration has
been associated with a decrease in the difficulty level of
a task [27,45], and it is important to take in consider-
ation that these changes are related to the type of task
used in the experiments. Kramer, A. [29] discussed that
Heart Rate deceleration have been related to intake of

Table 3 Spearman correlations between performance results and the psycho-physiological measurements

Alpha Beta HR HRV SCL SCR Resp NASA TLX

Duration 0.029 0.109 0.191** 0.348* -.376** -0.193 0.220** 0.511**

Detecting -0.100 -0.036 0.242** 0.102 -.215** -0.104 0.136 0.376*

Grasping -0.102 0.116* 0.041 -0.318 -0.107 -0.256 -0.098 0.436**

*significance at p < 0.05.
**significance at p <0.001.
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information (e.g. visual or auditory detection) rather than
rejection of information (e.g. mental arithmetic, memory
retrieval), and Pascalis, V.D. et al. [45] argued that heart
rate deceleration is an expression of stimulus process-
ing and a focus in attention priorities. Our results are
in agreement with these findings since the subjects used
visual and auditory information to achieve the task and
deceleration was found for all modalities. Also, we can
assume that the larger deceleration found in the AVF
might be related to a higher attentional state and conse-
quently lower mental effort was required in the task, as
described in [27,29,45,46], because the sensory integra-
tion of auditory and visual feedback helps the subjects
to focus more in the task at hand [47]. Also, this atten-
tional state can be attributed to the enhancing factor of
the visual information by the auditory cues, as discussed
in [40]. This can also be observed from the heart rate
results obtained in the AF modality because during the
AF modality some subjects showed a higher deceleration
while others showed lower deceleration in the heart rate.
This shows that individual difficulties play a big role in
processing or giving meaning to the auditory cues, which
seems to disappear when the visual input is also available
(AVF modality). Also, the low HR deceleration showed in
the VF modality indicates a higher difficulty in the task,
and can be attributed to a higher attentional demand state
as discussed in [25,27,29]. It is possible that in this modal-
ity the subjects were more distracted from the task (e.g.
occasionally looking to another point in the room).

EEGmeasurements
The EEG has been widely used for assessing cognitive
effort and attentional demand because it’s a direct link to
activity in the CNS and, when compared to fMRI, rela-
tively easy to setup. Studies have found a sensitivity of the
EEG to mental effort and attentional demands. For exam-
ple, in [26] the results showed a higher alpha suppression
for increased task difficulty in a simultaneous dual task of
tracking and mental arithmetic. Ray, W. et al. [48] com-
pared the effect of attentional demand (intake-rejection
of sensory information) on the EEG during cognitive and
emotional tasks. They found that increases in Beta band
activity are more related to cognitive (rejection of sensory
information) and emotional processes, and that a reduc-
tion in Alpha band activity reflects attentional demand to
sensory information processing (intake). Also, Shier, M.
A. [49] showed how simulated driving imposes significant
demands on attention by a higher suppression of the alpha
band.
Furthermore, Fournier, L. et al. [50] and Kramer, A.

[29] point out that Alpha band decreases with increase
of task difficulty when external information processing
increases. Therefore, the small differences obtained in the
Beta band and the suppression of the Alpha activity for

all modalities point out that the effect of manipulating
the robot hand increased the subject’s attentional demand,
but didn’t show a significant effect in cognitive processing
(e.g. thinking about the meaning of the sounds or process-
ing which finger had an error). Therefore, the EEG results
obtained in this study can be related more to changes in
attentional demand than changes in cognitive effort since
the changes in the Beta band were not significant.
Alpha activity is suppressed with visual stimulation

because it increases cortical activation [51], and that is
the reason why the alpha activity increases when a per-
son closes his eyes. This is why we decided to calculate
the change ratio from resting values of the EEG data in
order to eliminate this bias, but nevertheless the results
showed a large difference between the AF modality and
the other 2 modalities. From this we can argue that, in
our experiment, when the subjects’ eyes were covered
visual processing was cut away, reducing external dis-
tractions, thus decreasing cortical activation greatly. On
the other hand, when their eyes were not covered, the
subjects’ brain was not only processing the robot hand
activity, but also all the things around it, which increased
the attentional demand. It is because of this point why
it is difficult to compare the Alpha band results between
the AF modality with the AVF and VF modality. Never-
theless, when using the auditory information along with
vision (AVF modality) there was considerably less alpha
suppression than when only relying on vision (VF modal-
ity). This can be attributed to an enhance or “pop-out”
effect on the visual input by the auditory information, as
discussed in [40] and [47]. This allowed the subjects to
pay more attention to the robot hand’s motions. Also, as
discussed in [43], it is possible that sensory integration of
visual and auditory input helped the subjects to under-
stand better and faster what was happening during the
task, decreasing the attentional demand, thus improving
mental processing and improving their performance.
We wanted to explore the possibility to measure work-

load using only 1 EEG channel to reduce the subject’s
discomfort of attaching many sensors for future experi-
ments. Although our results and the results obtained by
Huang et al. [36] showed that it is possible to measure to a
certain extent the mental workload using 1 EEG channel,
it is better to use at least 2 to 4 channels to have a better
resolution, allowingmore localized observation and better
resolution of the brain activity.

Respiration rate and electro-dermal activity
Respiration rate, in [50,52], was found to be significantly
faster during a tracking and mental arithmetic multi-task
condition, i.e. more demanding tasks. In this study, the
results presented didn’t show any significant effect on task
difficulty between VF and AVF, but in the AF modality
the subjects had a significant increase in the respiration
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rate. In [30] and [32] it is argued that increases in res-
piration rate are directly related to increases in arousal,
which might be related to having the eyes covered, but
the EDA obtained showed a very low arousal state during
all modalities. However, the task used in this study might
have been too simple to elicit a strong EDA activity. On the
other hand, as indicated by Gomez et al. [53], the speed
in which the sounds changed could have affected directly
the respiration rate, which can explain why in the AF and
the AVF modalities the subjects had a larger respiration
rate.

General discussion
In this preliminary study we used the NASA TLX and dif-
ferent psycho-physiological measurements to explore the
subject’s mental effort when manipulating a robot hand.
According to what has been claimed or assumed in liter-
ature, we were expecting that the needed mental effort to
manipulate the robot hand would be similar between the
VF and the AF modality (unimodal feedback) and to be
significantly lower during the AVF modality (multimodal
feedback). The results obtained from the NASA TLX, the
ECG and the EEG points out that the difficulty of the
task was considerable reduced when using a multimodal
feedback scheme (during the AVF feedback). However, for
this study, the changes in mental effort and performance
can be associated to changes in the subject’s attentional
demand rather than cognitive effort, as has been regarded
in literature.
In general, the VF modality was rated to be the most

mentally demanding task, which relates to be the modal-
ity with the highest suppression in the Alpha Band, the
lowest deceleration in HR and the lowest performance
results. As discussed before, all of these results can be
attributed to an increase of attentional demand since the
subjects need to be looking at the robot hand at all times
in order to accomplish the task. Also, the NASA TLX and
the ECG results were similar during the AF and VFmodal-
ity thus can be also attributed to an increase of attentional
demand although the performance was better during the
AF modality. The performance results during the AF
modality were expected since auditory cues allowed the
subjects to detect and react faster to the errors. During
this modality, having the eyes covered could have influ-
ence the results obtained for the EEG. On the other hand,
the results showed that during the AVF modality the
attentional demand was reduced significantly (low Alpha
suppression, high HR deceleration) and was rated to be
the less mentally demanding modality in the NASA TLX
and can be attributed to the “pop out” or enhance effect
due to the sensory feedback system [40,43,44].
Furthermore, another important factor showed by the

results is how individual differences could affect the per-
ception of a sensory feedback system. In this study Subject

1 and 8 considered the VF to be the less mentally demand-
ing task in the NASA TLX as opposed to the other
subjects and when removing their data from the analy-
sis we found out a significant variation on the EEG and
ECG results. After the experiments these 2 subjects com-
mented that they had difficulties remembering the mean-
ing of the sounds and that were a little overwhelmed by
the auditory feedback during the trials. However, they also
showed better performance in the AVF modality, which
could be an indication that the multimodal sensory feed-
back helped them improve the performance, but increased
their mental demand and could have an important effect
when using the system for longer periods of time. This is a
very important point that needs to be researched further.
Table 4 shows a summary of the insights obtained in this
study concerning the psycho-physiological assessment of
mental effort, compared with the claims in other studies.
The results obtained in this study suggest that sensory

integration plays an important role for successfullymanip-
ulating the robotic hand from a point of view of atten-
tion to the task and performance, regardless of individual
differences. Although the results obtained are prelimi-
nary, they can be interpreted by the model illustrated in
Figure 9, based on the famous attention model described
by Treisman, A. et al. [54] and Deutsch, J. et al. [55]. The
high performance and low mental effort showed in the
AVF modality can be described by an early integration of
the auditory and visual information, which enhance the
perception of the task. This enhancement helps to allocate
attention to different situations, allowing the subject to
process faster the important information. As showed and
discussed in [40,43,47], if the sensory information is com-
ing from the same source (e.g. Robot Hand) and is congru-
ent with one another the overall perception of the activity
will be enhanced. On the other hand, if the information is

Table 4 Comparison of the psycho-physiological
assessment of mental effort between this study and other
studies in literature

This study Other studies

Attention Mental
effort

Attention Mental
effort

Alpha Activity ++ + ++ +

Beta Activity + ++

HR
Deceleration

++ ++ ++ ++

HRV + ++

SCL - - +

SCR - - +

Resp. - - +

++Very useful.
+useful.
-inconclusive.
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Figure 9 Attentional model. Sensory information is integrated,
enhancing or reducing the attention to a specific task. Then, this
information is processed in order to understand the meaning of the
sensory input and to decide what actions should be taken. Long term
memory wasn’t taken in consideration in this study.

contradictory or unrelated, the overall perception will be
decreased (e.g. more distraction or attentional demand).
Also, different studies in neuroscience have shown a co-
activation by both visual and auditory information in
different portions of the brain [56-58], which points out
an integration of sensory information in an early stage of
processing. Moreover, in [56] the authors discussed that
attention is allocated to ensure that the appropriate task
relevant information is passed on to decision making and
behavioral control systems. Also, as discussed in [59], the
multimodal feedback can have a beneficial effect on work-
load and performance. The performance showed in the VF
and AF modality can be describe as well with the model
in Figure 9. In the VF and AF modalities less information
was available than in the AVF modality, thus the subjects
needed to process the meaning of this information a little
further (e.g. in which finger the error happened or when
an error happened) [40,43,58].
Furthermore, it seems that the task used in this study

didn’t have a strong impact on the mental workload
since it was a static setting. Therefore, the subjects
didn’t have to spend too much effort to think about
what is the meaning of a sound, or how to react if

an error happened. Also, since the training session was
held a day before the trials, and a short-term remain-
der of the sounds was held right before the trials,
the long-term memory access and its effect on per-
formance and the psychophysiological variables weren’t
explored.

Conclusion
In this preliminary study we explored the feasibility of
using psychophysiological measurements to assess men-
tal effort directly when manipulating a robot hand with
and without the usage of a sensory feedback system. For
the task used in this study the results point out that the
use of an auditory display as a sensory feedback system
reduces the attentional demand needed to complete the
task, rather than the cognitive effort as it is considered
in literature. Therefore, performance improvements when
using auditory cues, along with vision (multimodal feed-
back), can be attributed to a reduced attentional demand
during the task, which can be attributed to a visual
“pop-out” or enhance effect. It will be very important
to investigate whether this result can be extrapolated to
other sensory feedback schemes as well. Furthermore, the
psycho-physiological and self-assessment questionnaire
results showed how individual differences could affect the
perception of a sensory feedback system, affecting the
results greatly.
From the results we consider that the NASA TLX, the

EEG’s Alpha and Beta band, and the Heart Rate could be
used to further evaluate sensory feedback systems in pros-
thetic application. However, it is important to design a
new experiment where the subjects have to use the system
for longer periods of time in order to take into account
also the fatigue effect. Also the experiment should be
design for daily living situation where a dynamical manip-
ulation of the prosthetic hand is needed, thus the com-
plexity of the task is larger. Moreover, we should explore
the emotional aspect of using a robot hand in order to
assess anxiety and engagement. In this way we can further
corroborate, validate and extend the model presented in
this study.
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